Categorification of unpunctured non-orientable marked surfaces
work in progress, jut. with V. Bazier-Matte, K. Wright

* Green texts = extra info

Summary
(known):

Categorification of mutation ($=f l_{\text {ip }}$) and associated cluster algebra [Fomin-Shapiro-Thurston, Fock-Goncharov]

Question : Non-orientable surfaces (Nos)?

Idea: \exists crientable double cover $\widetilde{\$}$ for an NoS S. ie. $S=\tilde{\$} / \sigma \quad \sigma$: orientation-reversing auto. $\sigma^{2}=1$

Today: Goal I, II. "II"
$\xi 81$ Surface top pogy

Setup
S: Surface $=$ compact 2 -dime $/ R$ w/ nou-emply boundary
M: finite set of marked points in ∂S (\therefore unpunctured)
s.4. each boundary component contains $\geqslant 1$ markeal pt.
and $(5, M) \neq 1,2,3$-gan
$\infty \infty \quad$ 樶 $|M|=2$.
S1.1) Working with non-crientable surfaces (NOS)

$$
-\mathbb{R} \mathbb{P}^{2}=\underbrace{n} \cdot \underline{\operatorname{crosscap}}:=\mathbb{R} \mathbb{P}^{2} \backslash \text { disc }
$$

home o \simeq Möbins strip,

In practice, represent by the symbol $\otimes($ or θ, \otimes, etc.)

Rank: Some literature call $\mathbb{R} \mathbb{P}^{2}$ the crooscup instead.

S1.2] Double cover

$$
(N) O S(S, M) \Leftrightarrow(\widetilde{S}, M) / \sigma
$$

where

σ : orientation-neversing auto. of order 2 .

* no intersection
 between the 2 carves shaw!
§ 1.2 Objects of interest
$\gamma:$ Curve on $(S, M)!$ ether $\left[\begin{array}{ll}\frac{c l o s e d}{} \gamma \simeq S^{\prime} \\ & \gamma \cap M=\phi \\ \text { nom-contran }\end{array}\right.$ nom -contractible

- Always considered up to isotopies that fix ∂ \& point wise

Non-crossing (set of) curves: \Leftrightarrow no intersection except possibly $\stackrel{11}{N C}$ at endpoints.

- Arc \Leftrightarrow NC non-cloxed curves
- Internal $\frac{\operatorname{arc}}{: ~} \Leftrightarrow \operatorname{arc} \nsim$ boundary interval

- 1-sided closed curve : \Leftrightarrow non-orientable cloud curve
(If simple, then equiv. to $\exists_{\text {regular }}$ unbid $\underset{\text { Como }}{\sim}$ Mains strip)
- 2-sided cloned curve $: \Leftrightarrow$ rot 1-sided
(If simple, then equar. to regular unbid romeo annulus)

- Quasi-are \Leftrightarrow either internal arc, or 1-sided simple closed curve "no self-intersection
- (quasi-) triangulation : \Leftrightarrow maximal NC set of (quai-) arcs
E. $M_{2}(:=$ Mobbing strip wi/ 2 marked pt's) has 6 quasi-triang n's.

$\xi \leqslant 2$ Trianguktion us QP
2.1) Orientable case $(\widetilde{\mathbb{S}}, \widetilde{M}), \widetilde{T}$ $\rightarrow P(Q, W): Q P\left(Q_{\text {niver with }} \quad\right.$ Potectial)
where $\int Q_{0}=\{$ internal ares of $\widetilde{T}\}$
$Q_{1}=C W$ arvented angles of triangles of \widetilde{T} $\omega=\sum_{\substack{\text { interand } \\ \text { tringles }}} \nabla$
\sim Jacobian algebra
N.B. J工̃ is f.d. and a gentle algebre

Convention/Refinition QP is gentle. if indured by "triang".
E.s.
$(\widetilde{\Phi},(\tilde{M}), \widetilde{T}:$

$$
\begin{aligned}
& Q=\underset{3 \in b_{b}^{\prime}}{\substack{j}}, \quad W=a b c
\end{aligned}
$$

Thm [Assem, Brüstle, Charbonneau-Jodoin, Plamondon]

$$
\left\{(\widetilde{S}, \tilde{M}: \tilde{T}): \begin{array}{c}
\text { trizngulated } \\
\text { ori. surfues }
\end{array}\right\} \stackrel{(: 1)}{ }\{(Q, \omega): \text { gentle } Q P\}
$$

2.2) NOS case $(S, M)\left(\frac{2: 1}{}(\widetilde{I},(M) S \sigma\right.$

Det (1) Q : quiver
An inculution $\sigma: Q \rightarrow Q$

$$
\begin{aligned}
& \therefore \quad \sigma=\left(\sigma_{0}: Q_{0} \rightarrow Q_{0}, \sigma_{1}: Q_{1} \rightarrow Q_{1}\right) \\
& \text { s.t. }\left\{\begin{array}{l}
\sigma^{2}=1 \\
\sigma(v \xrightarrow{\alpha} \omega)=\left(\sigma(v) \Vdash^{\sigma(\alpha)} \sigma(\omega)\right)
\end{array}\right.
\end{aligned}
$$

N.B. Specitying modution $\sigma \Rightarrow{ }^{7}\left(12 Q \xrightarrow{\text { des }} 12 Q^{p}\right)$
(2) An involution on a $Q P \quad(Q, \omega) \quad O W= \pm W$ of
$\therefore \Leftrightarrow$ an involution σ on Q s.t. $\sigma W=W$
$\Leftrightarrow 11$ i-1. $\sigma\left(\partial_{a} \omega\right)=\left(\partial_{a} \omega\right)$

Eg.
(1) $!\xrightarrow{\alpha}$? $\quad \sigma: \begin{aligned} & 1 \longleftrightarrow 2 \\ & \alpha \hookrightarrow \alpha\end{aligned}$

(4) Exercies: $A_{n, n}$-quiver

Obs: The setup $\sigma C(\overparen{S, M}) \xrightarrow{2: 1}(\mathbb{Q}, M)$ incluces an involution σ on (Q, W)

Moreover, σ is fixed-point free (FPF)

$$
\begin{array}{ll}
v(v) \neq u & \forall v \in Q_{0} \\
v(\alpha) \neq \alpha & \forall v \in Q_{1}
\end{array}
$$

$\operatorname{Prop}(B M-C-W)($ Goal I)

$$
\left.\left\{\begin{array}{l}
\text { connected NoS } \\
\text { urh triangulation }
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{lll}
(Q, \omega ; \sigma) & \text { s.t. }(Q, \omega) \text { gentle, } \\
Q \text { connected, } & \sigma \text { is a FPF involution }
\end{array}\right\} \right\rvert\,
$$

$$
(\$, M ; \tau) \longmapsto(Q, \omega ; \sigma)
$$

Ramk "Same" argument worke for sinilar setting
0.5 . Iocally sentle quivers us dissuctions skew-gentle us orbifold disection
\$§3 Triangulation us CTO (cluster-titting obj)
Setup: From now on, $k_{k}=$ complex numbers

Orientcble case see [Brüstle-Zhang]

Elements are
$\left(\omega^{n}, \lambda\right)$, where ω : primitive,

$$
\text { ie. } \omega \neq l^{k} \text { in } \pi_{1}(\widetilde{\mathscr{S}})
$$

with $k>1$

Moreover,

Slogan: Crossings $=$ Non-split extensions

Prop $[B M-C-W]$
\exists exact contravariant duality i.e. $\nabla^{2} \cong I d$

such that
(1) $\forall r$: non-closed on $(\widetilde{S}, M), \stackrel{\text { Top.losy }}{\sigma(\gamma)} \longleftrightarrow \stackrel{\text { Cate }}{\sim}$
(2) $\forall\left(\omega^{n}, \lambda\right) \in\left\{\begin{array}{l}\text { c.c.'s } \\ \text { on }(\Phi, m)\end{array}\right\} \times 1 h^{x},\left(\sigma(\omega)^{n}, \lambda^{-1}\right) \longleftrightarrow \nabla\left(\omega^{n}, \lambda\right)$

Eng

$$
\begin{aligned}
& Q=\left(\frac{2 \stackrel{a}{\vec{b}}}{}{ }^{2}\right), W=0 \\
& \sigma: \begin{array}{l}
k \longrightarrow 2 \\
a c \rightarrow b
\end{array}
\end{aligned}
$$

$\ell_{(\widetilde{s}, m)}$

$$
\begin{gathered}
\vdots \\
\left(\begin{array}{l}
\lambda \\
{\left[\begin{array}{c}
1 C^{2} \lambda \lambda \\
2
\end{array}\right]} \\
\lambda \in \mathbb{R}^{1} \\
\nabla \bigcup \\
\lambda \leftrightarrow \lambda^{-1}
\end{array}\right.
\end{gathered}
$$

The [BM-C-W] (Partial Goal II, III)
$\forall \operatorname{NoS}(S, M)$, have
$\left\{\begin{array}{c}\text { non-cloed } \\ \text { curves on }\end{array}(S, M)\right\} \stackrel{(i l}{\longleftrightarrow}\{\nabla \gamma \oplus \gamma \mid \gamma:$ string oh j $\}$ which induces

$$
\left\{\begin{array}{c}
\text { triangulations } \\
\text { of }(\$, M)
\end{array}\right\} \quad \stackrel{\mid: 1}{\longrightarrow}\left\{\begin{array}{cc}
\text { basic } & C T O M \in l \\
\text { s.t. } & \underbrace{\nabla M \cong M}_{\leftarrow}
\end{array}\right\}
$$

Rank . This is mutation compatible (as long as it is possible.)

- Mutation send corresp. S. I-tilting pair to incomparable s.e-tittmy pair.

Eg. $(S, M)=M_{1}$

$$
\Rightarrow L H S=\{(\otimes, \quad \text { RHS }=\{\text { initial } \operatorname{c\tau 0}\}
$$

What about quasi-triangulations? and then mutations?

Sst Symmetric representations ($=$ E-representations)

$$
\varepsilon=\{ \pm 1\}
$$

[Boos-Cerulli Irelli]
orthoganal

$$
(\varepsilon=+1)
$$

Throughout this section,

- $(A=12 Q / I, \sigma)$: σ involution on Q fixing I.
- modules $=$ right f.d. modules

Def
2) $\underline{\varepsilon \text {-furm }}: \Leftrightarrow\left\{\begin{array}{l}\text { ssymnetric bilinear form if } \varepsilon=+1, \\ \text {-skewsymm }\end{array}\right.$ bilinerr form if $\varepsilon=-1$.
2) An E-representation over (A, σ)
$: \Leftrightarrow$. M : oridinary rep.

- $(-,-): M \times M \rightarrow \mathbb{k}$ non-degen. E-form

$$
\text { s.t. }\left\{\begin{array}{l}
\quad\left\langle m e_{i}, n e_{j}\right\rangle=0 \quad \forall j \neq \sigma(i) ; e_{i}, e_{j}=\text { primntive } \\
\text { idem's. } \\
\cdot\langle m \alpha, n\rangle+\langle m, n \sigma(\alpha)\rangle=0 \\
(i l, \quad \sigma(\alpha) \text { is adjont of } \alpha)
\end{array}\right.
$$

$M: \varepsilon-\operatorname{rep}^{n} \Rightarrow \exists \psi_{M}: M \stackrel{\cong}{\cong} \nabla M$ as A-mochle s.t. $\nabla\left(\psi_{M}\right)=\varepsilon \psi_{M}$

Indecomposability makes sense for ε-repi's.
"Slogan"

E-rep" \simeq anti-version of repn over skew.grup ning $\Lambda * D / 2$

Prup $[D-\omega, B-C I]$ (Characteristion of indec ε-rep ${ }^{n \prime}$,
M ! indec. E-repn/(A,v)
$\Rightarrow \exists \bar{M}$: indec. A-module
s.t. exactly one of the following holds.
a) $\nabla \bar{M} \not \approx \bar{M}, \quad M=\bar{M} \oplus \nabla \bar{M} \rightarrow$ call M split
b, $\nabla \bar{M} \cong \bar{M}, \quad M=\bar{M} \oplus \nabla \bar{M} \rightarrow$ call M ramifred
c) $\nabla \bar{M} \cong \bar{M}, M=\bar{M} \rightarrow$ call M tyet I-sided

Notation: wi primitive $c c, \quad l(\omega):=\# \omega \cap \widetilde{\square}$.

The $[B M-C-W]$
M : index e-repn/ $\operatorname{Jac}(Q, \omega),(Q, \omega)$: gentle FPF-symm. Qp
$\Rightarrow M \cong$ exactly one of the following.
split $\int-M(\gamma) \oplus M(\sigma(\gamma)) \quad$ a all strong s
ramitial. [. $M_{\lambda}\left(\omega^{n}\right)^{* 2}$ s.t. all remaining (axe)

Hence
"Index" top. obj.
Index E-repn's
$\{1$-sided c.c. ω on $(\$, M)\} \stackrel{(: 1)}{\longrightarrow}\left\{1\right.$-sided zindec $\left.M_{\varepsilon_{\omega}}(\omega)\right\}$
$\{1: 1$

$$
\mathfrak{v}_{1: 1}
$$

$\{2$-sided $c . c, \omega$ on $(S, M)\} \stackrel{(: 1)}{\longrightarrow}\left\{\right.$ ramified singed $\left.M_{-\varepsilon_{\omega}}(\omega)^{\otimes 2}\right\}$

$$
\left\{\begin{array}{c}
\text { hon-closed curve } \gamma \\
\text { on }(S, M)
\end{array}\right\} \backslash \stackrel{(1: 1}{\longrightarrow}\left\{\begin{array}{l}
\text { split E-indic } \\
\text { "it sting type" } M(\gamma) \oplus \nabla M(\gamma)
\end{array}\right\}
$$

\rightarrow Goal II
$\$ \$ 5$
E-extension, ε-rizid
Go back to $l=\mathscr{l}_{(\Omega,(N)}$.

$F i \times \quad \varepsilon \in\{ \pm 1\}$, T : triang ${ }^{n}$.

Def:

- $X \in l$ is an indec. E-object: $\Leftrightarrow \cdot \pi X$ an indec. ε-rep" $/ s$
- In this cane,
(1) $\exists(\nabla \bar{x} \rightarrow x \rightarrow \bar{x} \rightarrow): \Delta$ in e with \bar{x} :indic we call any such \bar{X} E-factor N.B. not unigu!!

$$
\text { l.g. } S=M_{2} \text { : }
$$

(2) Isom. $X \underset{\epsilon_{x}}{\sim} \nabla x$ s.t. $\nabla\left(\psi_{x}\right)=\varepsilon \psi_{x}$

- Xel is an s-object $: ~ X X=\Theta$ indee e-objis.
, X,Y: E-objects

$$
f: x \rightarrow \bar{y}[c] \text { s-t. }\left\{\begin{array}{l}
\bar{y}: \text { - } \text {-factur of } y \\
f \circ \psi_{x} \circ \nabla f=0
\end{array}\right.
$$

In this cax, ${ }^{\text {I }}$ comm. dgm:

Fact: This is self-dual obj; in l
We call this E an e-extension of $\left[\begin{array}{l}x \\ y\end{array}\right]$.

- An E-extersion splits $: \Leftrightarrow E \cong X \oplus \bar{Y} \oplus \nabla \bar{Y}$

Wrile $\varepsilon E x t^{\prime}(x, y)=0$ if all ε-ext of $\binom{x}{y}$ splits
X is indec. E-njid $: \Leftrightarrow\left\{\begin{array}{l}X \text { irdec } \varepsilon \text {-doj } \\ \varepsilon \operatorname{Ext}^{\prime}(x, x)=0\end{array}\right.$
. X is indec. E-njid $: \Leftrightarrow\left\{\begin{array}{l}X \in \operatorname{Ex}^{\prime}(x, x)=0 .\end{array}\right.$

$$
x \text { is } \underline{\varepsilon-n z^{i d}}: \Leftrightarrow\left\{\begin{array}{r}
-x=\Theta \text { indec } \varepsilon \text {-rijid. } \\
-\forall \text { E-indec's } y, z\langle\oplus X \\
y \neq z \Rightarrow E x t_{e}^{\prime}(y, z)=0
\end{array}\right.
$$

Es.

$$
\begin{aligned}
& \Rightarrow \pi \omega=16_{2}^{1} 2 \lambda \quad \varepsilon=-\lambda \in\{ \pm 1\} \\
& \pi \gamma=S_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \pi \nabla \sigma=s_{2} \quad \pi \sigma \\
& 222 \xrightarrow{17} \underset{\substack{\text { Df }}}{1} \xrightarrow{f} 222
\end{aligned}
$$

If $f \neq 0$, this conporition is nonzero.
\Rightarrow anly split extewians everywhere.

$$
\Rightarrow \text { E-risid. }
$$

Goal III
Conj/"Thn" [DM-C-W] ("Baby" categarifiction of quas: triany")

$$
\left\{\begin{array}{l}
\text { indec } \\
\text { E-nzid }
\end{array}\right\} \stackrel{\text { l:1 }}{\longrightarrow}\{\text { quasi-arc of }(s, M)\}
$$

which then induces

$$
\{\underset{\text { s-rizid obj }}{\operatorname{maximal}}\} \stackrel{(: 1}{\longrightarrow}\{\text { quari-triangulations of }(\$, M)\}
$$

Expectations

1) Define Strictly E-rizid bs $x: \Leftrightarrow \varepsilon \operatorname{Ext}^{\prime}(x, x)=0$
\Rightarrow (maximal e-nyid \Leftrightarrow maximal strictly $2-r i j i d)$

If ε-externs's? count crossings on ($\$, M$)
3) Exchange relation/Mutation of quasi-triaugulation:

$$
\phi \in T \in \mu^{\mu}(T \backslash\{\alpha\}) \cup\left\{\alpha^{\prime}\right\} \text {. }
$$

is categorifred by existence of some "special" ε-extensionglequr. 27 Part of Goal IV.

