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Idempotent complete

Definition

Let A be an additive category and X an object in A. A morphism
e : X → X is called idempotent if e2 = e.

Definition (Karoubi 1968)

An additive category A is idempotent complete if every idempotent
morphism e : A→ A gives a decomposition A ∼= K ⊕ L so that

e ∼=
(

0 0
0 1L

)
with respect to this decomposition.
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Idempotent completeness in literature

Theorem (Krause 2015)

An additive category A is a Krull-Remak-Schmidt category if and only if it
is idempotent complete and the endomorphism ring of every object is
semi-perfect

Definition (Jasso 2016)

Let n be a positive integer. An additive category A is n-Abelian if:

A is idempotent complete

. . .
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Karoubi envelope

Definition (See for example Balmer-Schlichting 2001)

Let A be an additive category. The Karoubi envelope of A is denoted by
Ã is defined as follows:

ob(Ã) := {(A, p) | A ∈ ob(A), p : A→ A such that p2 = p},
A morphism in Ã from (A, p) to (B, q) is a morphism σ : A→ B ∈ A

such that σp = qσ = σ,

For any object (A, p) in Ã, the identity morphism 1(A,p) = p : A→ A.
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ob(Ã) := {(A, p) | A ∈ ob(A), p : A→ A such that p2 = p},
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Karoubi envelope

Proposition (See for example Bühler 2010)

The Karoubi envelope Ã is an idempotent complete.

The biproduct in Ã is defined as (A, p)⊕ (B, q) = (A⊕ B, p ⊕ q).

The inclusion iA : A→ Ã where on objects A 7→ iA(A) = (A, 1A) and
on morphisms f 7→ iA(f ) = f is a fully faithful additive functor.

Universality. Let B be an idempotent complete category. For all
additive functors F : A→ B, there exists a functor F̃ : Ã→ B and a
natural isomorphism α : F ⇒ F̃ iA.
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Extriangulated categories

Definition (Nakaoka-Palu 2019)

Two sequences of morphisms A
x−→ B

y−→ C , and A
x′

−→ B ′ y ′

−→ C in C are
equivalent if there exists an isomorphism b : B → B ′ such that the following
diagram commutes.

A B C

A B ′ C

x

b

y

x′ y ′

We denote the equivalence class of a sequence A
x−→ B

y−→ C , by

[A
x−→ B

y−→ C ].
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Extriangulated categories

Definition (Nakaoka-Palu 2019)

An extriangulated category is a triple (C,E, s) satisfying the following
axioms.

(ET0) C is an additive category.

(ET1) The functor E : Cop × C→ Ab is a biadditive functor.

(ET2) The correspondence s is an additive realisation of E. A
realisation is s is a correspondence associating an equivalence class
s(δ) = [A

x−→ B
y−→ C ] to any E-extension δ ∈ E(C ,A). We write

A B Cx y δ

and call this an extriangle or E-triangle.

(ET3)

(ET3)op

(ET4) An Octahedron axiom

(ET4)op
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Notation

Definition (Nakaoka-Palu 2019)

Let A,C be objects of C. An element δ ∈ E(C ,A) is called an
E-extension, formally written (A, δ,C ).
Since E is a bifunctor, for any a : A→ A′ and c : C ′ → C , we have the
following E-extensions:

a∗δ := E(C , a)(δ) ∈ E(C ,A′),

c∗δ := E(cop,A)(δ) ∈ E(C ′,A) and

c∗a∗δ = a∗c
∗δ := E(cop, a)(δ) ∈ E(C ′,A′).
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Morphism of Extensions

Definition (Nakaoka-Palu 2019)

Let (A, δ,C ) and (A′, δ′,C ′) be any pair of E-extensions. A morphism
(a, c) : δ → δ′ of E-extensions is a pair of morphisms a : A→ A′ and
c : C → C ′ such that:

a∗δ = c∗δ′.
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Relative theory of extriangulated categories

Definition (Herschend-Liu-Nakaoka 2021)

Let (C,E, s) be an extriangulated category with biadditive functor
E : Cop× C→ Ab. A functor F : Cop× C→ Ab is an additive subfunctor if:

F(C ,A) is a subgroup of E(C ,A) for objects A,C ,

F(c , a) = E(c , a)|F(C ,A) for morphisms a : A→ A′ and c : C ′ → C .

Definition (Herschend-Liu-Nakaoka 2021)

A subfunctor F is closed if for any A B Cx y δ the
following sequences of natural transformations are exact

F(C ,−) F(B,−) F(A,−)
F(y ,−) F(x ,−)

F(−,A) F(−,B) F(−,C )
F(−,x) F(−,y)
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Relative theory of extriangulated categories

Proposition (Herschend-Liu-Nakaoka 2021)

Let F ⊆ E be an additive subfunctor. Then (C,F, s|F) is extriangulated if
and only if F is closed.
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Main Theorem

Theorem

Let (C,E, s) be an extriangulated category. Let C̃ be the idempotent
completion of C. Then C̃ has an extriangulated structure (C̃,F, r).
Moreover, the embedding iC : C→ C̃ is an extriangulated functor.
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Biadditive functor F

Definition

Given a pair of objects (X , p) and (Y , q) in C̃, we define F on objects by
setting,

F((X , p), (Y , q)) := p∗q∗E(X ,Y ) = {p∗q∗δ | δ ∈ E(X ,Y )}.

For the pair (α̃, β̃) we define

F(α̃op, β̃) : F((Y , q), (U, e))→ F((X , p), (V , f ))

as follows. For ε ∈ F((Y , q), (U, e)) we set

F(α̃op, β̃)(ε) := β∗α
∗ε.
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F is like a closed additive subfunctor of E

Proposition

F((C , p), (A, q)) is a subgroup of E(C ,A) for objects A,C and
idempotents p : C → C , q : A→ A

F(c , a) = E(c , a)|F((C ,p),(A,q)) for morphisms a : (A, q)→ (A′, q′) and
c : (C ′, p′)→ (C , p).

For an F-triangle

(X , q) (Y , r) (Z , p) .
xq py δ

the following sequences of natural transformations are exact.

F(−, (X , q)) F(−, (Y , r)) F(−, (Z , p))
F(−,xq) F(−,py)

F((Z , p),−) F((Y , r),−) F((X , q),−)
F(py ,−) F(xq,−)
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Lemma

Let (A,G, t) be a triple satisfying (ET0), (ET1), (ET2), (ET3) and

(ET3)op. Let δ be an extension in G(C ,A) with t(δ) = [A
a−→ B

b−→ C ].
Let (e, f ) : δ → δ be a morphism of G-extensions where e : A→ A and
f : C → C are idempotent morphisms. Then there exists an idempotent
morphism g : B → B such that the diagram below commutes.

A B C

A B C

a

e

b

g f

a b
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Additive realisation r

Definition

Let r be the correspondence between F-extensions and equivalence classes
of sequences of morphisms in C̃ defined as follows. For any objects Z ,X in
C and idempotent morphisms p : Z → Z , q : X → X in C, let δ = p∗q∗ε be
an extension in F((Z , p), (X , q)) such that

s(p∗q∗ε) = [X
x−→ Y

y−→ Z ].

We set
r(δ) := [(X , q)

xq−→ (Y , r)
py−→ (Z , p)],

where r : Y → Y is an idempotent morphism such that rx = xq and
yr = py obtained by application of the above lemma.
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Triangulated case

Definition (Balmer-Schlichting 2001)

A sequence of morphisms

t : (A, q) (B, r) (C , p) (ΣA,Σq)x y δ

is a distinguished triangle in C̃ if there exists a sequence of morphisms

t ′ : (A′, q′) (B ′, r ′) (C ′, p′) (ΣA′,Σq′)x ′ y ′
δ′

such that t ⊕ t ′ is isomorphic to the image of a distinguished triangle in C

under the embedding iC : C→ C̃.
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Lemma

For any F-triangle

(A, q) (B, r) (C , p)
xq py δ

there exists an F-triangle

(A′, q′) (B ′, r ′) (C ′, p′)
x ′q′ p′y ′

δ′

such that their direct sum is isomorphic to the image of an E-triangle in
(C,E, s) under the embedding iC : C→ C̃.
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Unification

Our main theorem is a unifies the exact and triangulated case.
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Weakly idempotent complete

Definition (See for example Bühler 2010)

Let A a category. A morphism r : B → C is a retraction if there is
q : C → B such that rq = 1C . A morphism s : A→ B is a section if there
is t : B → A such that ts = 1A.

Definition (See for example Selinger 2008)

Let A be any category and A an object in A. An idempotent morphism
e : A→ A is said to split if it admits a retraction r : A→ X and a section
s : X → A such that s ◦ r = e and r ◦ s = 1X .
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Weakly idempotent complete

Definition (See for example Bühler 2010)

An additive category A is weakly idempotent complete if every retraction
has a kernel. Equivalently, A is weakly idempotent complete if every
section has a cokernel.
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Weakly idempotent completeness in literature

Condition (Nakaoka-Palu 2019)

Let (C,E, s) be an extriangulated category. Consider the following conditions.

1 Let f : A→ B and g : B → C be composable morphisms. If gf is a
deflation, then g is also a deflation.

2 Let f : A→ B and g : B → C be composable morphisms. If gf is an
inflation, then f is also an inflation.

Proposition

Let (C,E, s) be an extriangulated category. If (C,E, s) satisfies one of the WIC
conditions then C is weakly idempotent complete.
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Weak idempotent completion

Definition (Neeman 1990)

Let A be a small additive category. The weak idempotent completion of A is
denoted by Â is defined as follows:

ob(Â) := {(A, p) | A ∈ ob(A), p : A→ A is a split idempotent},

A morphism in Â from (A, p) to (B, q) is a morphism σ : A→ B ∈ A such
that σp = qσ = σ,

For any object (A, p) in Â, the identity morphism 1(A,p) = p : A→ A.
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Weak idempotent completion

Proposition (See for example Bühler 2010)

The weak idempotent completion Â is weakly idempotent complete.

The biproduct in Â is defined as (A, p)⊕ (B, q) = (A⊕ B, p ⊕ q).

The inclusion iA : A→ Â where on objects A 7→ iA(A) = (A, 1A) and on
morphisms f 7→ iA(f ) = f is a fully faithful additive functor.

Universality. Let B be an idempotent complete category. For all additive
functors F : A→ B, there exists a functor F̂ : Â→ B and a natural
isomorphism α : F ⇒ F̂ iA.
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Theorem

Let (C,E, s) be an extriangulated category such that C is small and (C̃,F, r) be its

idempotent completion. Then the weak idempotent completion Ĉ of C is an
extension-closed subcategory of C̃. Hence Ĉ is an extriangulated category.
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Thank you!
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