The Karoubi envelope of an extriangulated category

Dixy Msapato

University of Leeds

January 7, 2022

Outline

- Introduction and Motivation
- The Karoubi envelope
- 3 Extriangulated Categories
- 4 Karoubi envolope of an extriangulated category
- 6 Comparison with triangulated case (Balmer-Schlichting 2001)
- 6 Weak idempotent completion

Closing remarks

Idempotent complete

Definition

Let \mathcal{A} be an additive category and X an object in \mathcal{A} . A morphism $e: X \to X$ is called *idempotent* if $e^2 = e$.

Idempotent complete

Definition

Let \mathcal{A} be an additive category and X an object in \mathcal{A} . A morphism $e \colon X \to X$ is called *idempotent* if $e^2 = e$.

Definition (Karoubi 1968)

An additive category \mathcal{A} is *idempotent complete* if every idempotent morphism $e: \mathcal{A} \to \mathcal{A}$ gives a decomposition $\mathcal{A} \cong \mathcal{K} \oplus \mathcal{L}$ so that $e \cong \begin{pmatrix} 0 & 0 \\ 0 & 1_{\mathcal{L}} \end{pmatrix}$ with respect to this decomposition.

Idempotent completeness in literature

Idempotent completeness in literature

Theorem (Krause 2015)

An additive category A is a Krull-Remak-Schmidt category if and only if it is idempotent complete and the endomorphism ring of every object is semi-perfect

Idempotent completeness in literature

Theorem (Krause 2015)

An additive category A is a Krull-Remak-Schmidt category if and only if it is idempotent complete and the endomorphism ring of every object is semi-perfect

Definition (Jasso 2016)

Let *n* be a positive integer. An additive category A is *n*-Abelian if:

• \mathcal{A} is idempotent complete

• . . .

Karoubi envelope

Dixy Msapato (University of Leeds) The Karoubi envelope of an extriangulated ca

Karoubi envelope

Definition (See for example Balmer-Schlichting 2001)

Let $\mathcal A$ be an additive category. The Karoubi envelope of $\mathcal A$ is denoted by $\tilde{\mathcal A}$ is defined as follows:

- $\operatorname{ob}(\tilde{\mathcal{A}}) := \{(A, p) \mid A \in \operatorname{ob}(\mathcal{A}), p \colon A \to A \text{ such that } p^2 = p\},\$
- A morphism in à from (A, p) to (B, q) is a morphism σ: A → B ∈ A such that σp = qσ = σ,
- For any object (A, p) in $\tilde{\mathcal{A}}$, the identity morphism $1_{(A,p)} = p \colon A \to A$.

Karoubi envelope

Proposition (See for example Bühler 2010)

- The Karoubi envelope $\tilde{\mathcal{A}}$ is an idempotent complete.
- The biproduct in $\tilde{\mathcal{A}}$ is defined as $(A, p) \oplus (B, q) = (A \oplus B, p \oplus q)$.
- The inclusion i_A: A → Ã where on objects A → i_A(A) = (A, 1_A) and on morphisms f → i_A(f) = f is a fully faithful additive functor.
- Universality. Let \mathcal{B} be an idempotent complete category. For all additive functors $F : \mathcal{A} \to \mathcal{B}$, there exists a functor $\tilde{F} : \tilde{\mathcal{A}} \to \mathcal{B}$ and a natural isomorphism $\alpha : F \Rightarrow \tilde{F}i_{\mathcal{A}}$.

Extriangulated categories

Image: A math a math

э

Extriangulated categories

Definition (Nakaoka-Palu 2019)

Two sequences of morphisms $A \xrightarrow{x} B \xrightarrow{y} C$, and $A \xrightarrow{x'} B' \xrightarrow{y'} C$ in \mathcal{C} are *equivalent* if there exists an isomorphism $b: B \to B'$ such that the following diagram commutes.

$$\begin{array}{ccc} A & \xrightarrow{x} & B & \xrightarrow{y} & C \\ \| & & \downarrow_{b} & \| \\ A & \xrightarrow{x'} & B' & \xrightarrow{y'} & C \end{array}$$

We denote the equivalence class of a sequence $A \xrightarrow{x} B \xrightarrow{y} C$, by $[A \xrightarrow{x} B \xrightarrow{y} C]$.

Extriangulated categories

Definition (Nakaoka-Palu 2019)

An *extriangulated category* is a triple $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ satisfying the following axioms.

(ET0) C is an additive category.

(ET1) The functor $\mathbb{E} \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to Ab$ is a biadditive functor.

(ET2) The correspondence \mathfrak{s} is an additive realisation of \mathbb{E} . A realisation is \mathfrak{s} is a correspondence associating an equivalence class $\mathfrak{s}(\delta) = [A \xrightarrow{x} B \xrightarrow{y} C]$ to any \mathbb{E} -extension $\delta \in \mathbb{E}(C, A)$. We write $A \xrightarrow{x} B \xrightarrow{y} C \xrightarrow{\delta} \to \delta$

and call this an extriangle or
$$\mathbb{E}$$
-triangle.

Notation

Definition (Nakaoka-Palu 2019)

Let A, C be objects of \mathcal{C} . An element $\delta \in \mathbb{E}(C, A)$ is called an \mathbb{E} -extension, formally written (A, δ, C) . Since \mathbb{E} is a bifunctor, for any $a: A \to A'$ and $c: C' \to C$, we have the following \mathbb{E} -extensions:

$$a_*\delta := \mathbb{E}(\mathcal{C}, \mathbf{a})(\delta) \in \mathbb{E}(\mathcal{C}, \mathcal{A}'),$$

 $c^*\delta := \mathbb{E}(c^{\operatorname{op}}, \mathcal{A})(\delta) \in \mathbb{E}(\mathcal{C}', \mathcal{A}) \text{ and}$
 $c^*a_*\delta = a_*c^*\delta := \mathbb{E}(c^{\operatorname{op}}, \mathbf{a})(\delta) \in \mathbb{E}(\mathcal{C}', \mathcal{A}').$

Morphism of Extensions

Definition (Nakaoka-Palu 2019)

Let (A, δ, C) and (A', δ', C') be any pair of \mathbb{E} -extensions. A morphism $(a, c): \delta \to \delta'$ of \mathbb{E} -extensions is a pair of morphisms $a: A \to A'$ and $c: C \to C'$ such that:

$$a_*\delta = c^*\delta'.$$

Definition (Herschend-Liu-Nakaoka 2021)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category with biadditive functor $\mathbb{E} \colon \mathcal{C}^{op} \times \mathcal{C} \to Ab$. A functor $\mathbb{F} \colon \mathcal{C}^{op} \times \mathcal{C} \to Ab$ is an additive subfunctor if:

- $\mathbb{F}(C, A)$ is a subgroup of $\mathbb{E}(C, A)$ for objects A, C,
- $\mathbb{F}(c,a) = \mathbb{E}(c,a)_{|\mathbb{F}(C,A)}$ for morphisms $a: A \to A'$ and $c: C' \to C$.

Definition (Herschend-Liu-Nakaoka 2021)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category with biadditive functor $\mathbb{E} \colon \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to Ab$. A functor $\mathbb{F} \colon \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to Ab$ is an additive subfunctor if:

- $\mathbb{F}(C, A)$ is a subgroup of $\mathbb{E}(C, A)$ for objects A, C,
- $\mathbb{F}(c,a) = \mathbb{E}(c,a)_{|\mathbb{F}(C,A)}$ for morphisms $a \colon A \to A'$ and $c \colon C' \to C$.

Definition (Herschend-Liu-Nakaoka 2021)

A subfunctor \mathbb{F} is closed if for any $A \xrightarrow{x} B \xrightarrow{y} C \xrightarrow{--\delta}$ the following sequences of natural transformations are exact

$$\mathbb{F}(\mathcal{C},-) \stackrel{\mathbb{F}(y,-)}{\Longrightarrow} \mathbb{F}(B,-) \stackrel{\mathbb{F}(x,-)}{\Longrightarrow} \mathbb{F}(\mathcal{A},-)$$

$$\mathbb{F}(-,A) \stackrel{\mathbb{F}(-,x)}{\Longrightarrow} \mathbb{F}(-,B) \stackrel{\mathbb{F}(-,y)}{\Longrightarrow} \mathbb{F}(-,C)$$

Proposition (Herschend-Liu-Nakaoka 2021)

Let $\mathbb{F} \subseteq \mathbb{E}$ be an additive subfunctor. Then $(\mathbb{C}, \mathbb{F}, \mathfrak{s}_{|\mathbb{F}})$ is extriangulated if and only if \mathbb{F} is closed.

12 / 28

Main Theorem

Theorem

Let $(\mathbb{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category. Let $\tilde{\mathbb{C}}$ be the idempotent completion of \mathbb{C} . Then $\tilde{\mathbb{C}}$ has an extriangulated structure $(\tilde{\mathbb{C}}, \mathbb{F}, \mathfrak{r})$. Moreover, the embedding $i_{\mathbb{C}} : \mathbb{C} \to \tilde{\mathbb{C}}$ is an extriangulated functor.

Biadditive functor \mathbb{F}

Definition

Given a pair of objects (X, p) and (Y, q) in $\tilde{\mathbb{C}}$, we define \mathbb{F} on objects by setting,

$$\mathbb{F}((X,p),(Y,q)) := p^*q_*\mathbb{E}(X,Y) = \{p^*q_*\delta \mid \delta \in \mathbb{E}(X,Y)\}$$

For the pair $(\tilde{\alpha}, \tilde{\beta})$ we define

 $\mathbb{F}(\tilde{\alpha}^{\mathsf{op}},\tilde{\beta})\colon \mathbb{F}((Y,q),(U,e))\to \mathbb{F}((X,p),(V,f))$

as follows. For $\varepsilon \in \mathbb{F}((Y,q),(U,e))$ we set

 $\mathbb{F}(\tilde{\alpha}^{\mathsf{op}}, \tilde{\beta})(\varepsilon) := \beta_* \alpha^* \varepsilon.$

 ${\mathbb F}$ is *like* a closed additive subfunctor of ${\mathbb E}$

47 ▶

 ${\mathbb F}$ is *like* a closed additive subfunctor of ${\mathbb E}$

Proposition

- $\mathbb{F}((C, p), (A, q))$ is a subgroup of $\mathbb{E}(C, A)$ for objects A, C and idempotents $p: C \to C, q: A \to A$
- $\mathbb{F}(c, a) = \mathbb{E}(c, a)_{|\mathbb{F}((C,p),(A,q))}$ for morphisms $a: (A, q) \to (A', q')$ and $c: (C', p') \to (C, p)$.
- For an 𝔽-triangle

$$(X,q) \xrightarrow{xq} (Y,r) \xrightarrow{py} (Z,p) \xrightarrow{\delta}$$

the following sequences of natural transformations are exact.

$$\mathbb{F}(-,(X,q)) \stackrel{\mathbb{F}(-,xq)}{\Longrightarrow} \mathbb{F}(-,(Y,r)) \stackrel{\mathbb{F}(-,py)}{\Longrightarrow} \mathbb{F}(-,(Z,p))$$
$$\mathbb{F}((Z,p),-) \stackrel{\mathbb{F}(py,-)}{\Longrightarrow} \mathbb{F}((Y,r),-) \stackrel{\mathbb{F}(xq,-)}{\Longrightarrow} \mathbb{F}((X,q),-)$$

Lemma

Let $(\mathcal{A}, \mathbb{G}, \mathfrak{t})$ be a triple satisfying (ET0), (ET1), (ET2), (ET3) and (ET3)^{op}. Let δ be an extension in $\mathbb{G}(C, A)$ with $\mathfrak{t}(\delta) = [A \xrightarrow{a} B \xrightarrow{b} C]$. Let $(e, f): \delta \to \delta$ be a morphism of \mathbb{G} -extensions where $e: A \to A$ and $f: C \to C$ are idempotent morphisms. Then there exists an idempotent morphism $g: B \to B$ such that the diagram below commutes.

$$\begin{array}{ccc} A \xrightarrow{a} & B \xrightarrow{b} & C \\ \downarrow e & \downarrow g & \downarrow f \\ A \xrightarrow{a} & B \xrightarrow{b} & C \end{array}$$

Additive realisation r

Definition

Let \mathfrak{r} be the correspondence between \mathbb{F} -extensions and equivalence classes of sequences of morphisms in $\tilde{\mathbb{C}}$ defined as follows. For any objects Z, X in \mathbb{C} and idempotent morphisms $p: Z \to Z, q: X \to X$ in \mathbb{C} , let $\delta = p^*q_*\varepsilon$ be an extension in $\mathbb{F}((Z, p), (X, q))$ such that

$$\mathfrak{s}(p^*q_*\varepsilon)=[X\xrightarrow{x}Y\xrightarrow{y}Z].$$

We set

$$\mathfrak{r}(\delta) := [(X,q) \xrightarrow{xq} (Y,r) \xrightarrow{py} (Z,p)],$$

where $r: Y \to Y$ is an idempotent morphism such that rx = xq and yr = py obtained by application of the above lemma.

17 / 28

Triangulated case

Definition (Balmer-Schlichting 2001)

A sequence of morphisms

$$t: (A,q) \xrightarrow{x} (B,r) \xrightarrow{y} (C,p) \xrightarrow{\delta} (\Sigma A, \Sigma q)$$

is a distinguished triangle in $\tilde{\mathbb{C}}$ if there exists a sequence of morphisms

$$t' \colon (\mathcal{A}',q') \xrightarrow{x'} (\mathcal{B}',r') \xrightarrow{y'} (\mathcal{C}',p') \xrightarrow{\delta'} (\Sigma \mathcal{A}',\Sigma q')$$

such that $t \oplus t'$ is isomorphic to the image of a distinguished triangle in \mathcal{C} under the embedding $i_{\mathcal{C}} \colon \mathcal{C} \to \tilde{\mathcal{C}}$.

Lemma

For any \mathbb{F} -triangle

$$(A,q) \xrightarrow{\times q} (B,r) \xrightarrow{p_{Y}} (C,p) \xrightarrow{\delta} (C,p)$$

there exists an \mathbb{F} -triangle

$$(A',q') \xrightarrow{\times'q'} (B',r') \xrightarrow{p'y'} (C',p') \xrightarrow{\delta'-\delta'}$$

such that their direct sum is isomorphic to the image of an \mathbb{E} -triangle in $(\mathbb{C}, \mathbb{E}, \mathfrak{s})$ under the embedding $i_{\mathbb{C}} \colon \mathbb{C} \to \tilde{\mathbb{C}}$.

Unification

Our main theorem is a unifies the exact and triangulated case.

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Weakly idempotent complete

Definition (See for example Bühler 2010)

Let \mathcal{A} a category. A morphism $r: B \to C$ is a *retraction* if there is $q: C \to B$ such that $rq = 1_C$. A morphism $s: A \to B$ is a *section* if there is $t: B \to A$ such that $ts = 1_A$.

Definition (See for example Selinger 2008)

Let \mathcal{A} be any category and A an object in \mathcal{A} . An idempotent morphism $e \colon A \to A$ is said to split if it admits a retraction $r \colon A \to X$ and a section $s \colon X \to A$ such that $s \circ r = e$ and $r \circ s = 1_X$.

Weakly idempotent complete

Definition (See for example Bühler 2010)

An additive category A is *weakly idempotent complete* if every retraction has a kernel. Equivalently, A is weakly idempotent complete if every section has a cokernel.

Weakly idempotent completeness in literature

Condition (Nakaoka-Palu 2019)

Let $(\mathbb{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category. Consider the following conditions.

- Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be composable morphisms. If gf is a deflation, then g is also a deflation.
- ② Let f: A → B and g: B → C be composable morphisms. If gf is an inflation, then f is also an inflation.

Weakly idempotent completeness in literature

Condition (Nakaoka-Palu 2019)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category. Consider the following conditions.

- Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be composable morphisms. If gf is a deflation, then g is also a deflation.
- ② Let f: A → B and g: B → C be composable morphisms. If gf is an inflation, then f is also an inflation.

Proposition

Let $(\mathfrak{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category. If $(\mathfrak{C}, \mathbb{E}, \mathfrak{s})$ satisfies one of the WIC conditions then \mathfrak{C} is weakly idempotent complete.

イロッ イボッ イヨッ イヨッ 三日

Weak idempotent completion

Definition (Neeman 1990)

Let \mathcal{A} be a small additive category. The *weak idempotent completion* of \mathcal{A} is denoted by $\hat{\mathcal{A}}$ is defined as follows:

- $ob(\hat{A}) := \{(A, p) \mid A \in ob(A), p \colon A \to A \text{ is a split idempotent}\},\$
- A morphism in from (A, p) to (B, q) is a morphism σ: A → B ∈ A such that σp = qσ = σ,
- For any object (A, p) in $\hat{\mathcal{A}}$, the identity morphism $1_{(A,p)} = p \colon A \to A$.

Weak idempotent completion

Proposition (See for example Bühler 2010)

- The weak idempotent completion $\hat{\mathcal{A}}$ is weakly idempotent complete.
- The biproduct in \hat{A} is defined as $(A, p) \oplus (B, q) = (A \oplus B, p \oplus q)$.
- The inclusion i_A: A → Â where on objects A → i_A(A) = (A, 1_A) and on morphisms f → i_A(f) = f is a fully faithful additive functor.
- Universality. Let B be an idempotent complete category. For all additive functors F: A → B, there exists a functor F̂: Â → B and a natural isomorphism α: F ⇒ F̂i_A.

Theorem

Let $(\mathfrak{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category such that \mathfrak{C} is small and $(\tilde{\mathfrak{C}}, \mathbb{F}, \mathfrak{r})$ be its idempotent completion. Then the weak idempotent completion $\hat{\mathfrak{C}}$ of \mathfrak{C} is an extension-closed subcategory of $\tilde{\mathfrak{C}}$. Hence $\hat{\mathfrak{C}}$ is an extriangulated category.

Thank you!

3

イロト イポト イヨト イヨト

Bibliograph I

- [1] Algbres de Clifford et K-thorie (inproceedings) Author Karoubi, Max Booktitle Annales scientifiques de l'cole Normale Suprieure Year 1968 Volume 1 Pages 161-270 Number 2
- Exact categories (article) Author Bhler. Theo Journal Expositiones Mathematicae Year 2010 Volume 28 Number 1 Pages [2] 1-69 Publisher Elsevier
- [3] Idempotents in dagger categories (article) Author Selinger, Peter Journal Electronic Notes in Theoretical Computer Science Year 2008 Volume 210 Pages 107-122 Publisher Elsevier
- [4] Krull-Schmidt categories and projective covers (article) Author Henning Krause Journal Expositiones Mathematicae Year 2015 Volume 33 Number 4 Pages 535 - 549 Doi https://doi.org/10.1016/j.exmath.2015.10.001 lssn 0723-0869 Url http://www.sciencedirect.com/science/article/pii/S0723086915000596
- [5] n-Abelian and n-exact categories (article) Author Jasso, Gustavo Journal Mathematische Zeitschrift Year 2016 Volume 283 Number 3-4 Pages 703-759 Publisher Springer
- [6] Model structures on exact categories (article) Author James Gillespie Journal Journal of Pure and Applied Algebra Year 2011 Volume 215 Number 12 Pages 2892 - 2902 Doi https://doi.org/10.1016/j.jpaa.2011.04.010 lssn 0022-4049 Url http://www.sciencedirect.com/science/article/pii/S0022404911001010
- [7] Idempotent completion of triangulated categories (article) Author Balmer, Paul and Schlichting, Marco Journal Journal of Algebra Year 2001 Volume 236 Number 2 Pages 819-834 Publisher Elsevier
- [8] The derived category of an exact category (article) Author Neeman, Amnon Journal Journal of Algebra Year 1990 Volume 135 Number 2 Pages 388–394 Publisher Academic Press
- [9] Extriangulated categories, Hovey twin cotorsion pairs and model structures (article) Author Nakaoka, Hiroyuki and Palu, Yann Journal Cah, Topol, Gom, Diffr, Catg 60.2 (2019); 117-193, Year 2019
- [10] n-exangulated categories (I): Definitions and fundamental properties (article) Author Herschend, Martin and Liu, Yu and Nakaoka, Hiroyuki Journal Journal of Algebra Year 2021 Volume 570 Pages 531-586 Publisher Elsevier (日) (同) (三) (三) (三)

3