Geometry of Flat Origami Triangulations

Bryan Gin-ge Chen \& Chris Santangelo UMass Amherst Physics AMHERST

Origami in nature and engineering

Saito et al, PNAS 2017

Andresen et al, PRE 2007

J.-H. Na et al.,Adv. Mat. 2015

Wood et al, Science 2015

Robert Lang
Daniel Piker，after Ron Resch，Ben Parker and John Mckeeve http：／／spacesymmetrystructure．wordpress．com／2009／03／24／origami－electromagnetism／ AMHERST

Robert Lang
Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve

Robert Lang
MASSCAM
Center for Autonomous Materials
Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve
 NAFA MAn

But how much does a crease pattern really tell us?

Robert Lang
MASSCAM
Center for Autonomous Materials

Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve http://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/ AMHERST

Rigid origami as bond-node structure

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

Rigid origami as bond-node structure

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201 I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201 I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201 I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices
$3 \mathrm{~V}_{\text {int }}+\mathrm{V}_{\mathrm{b}}-3$: \# of folds

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201 I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices $3 \mathrm{~V}_{\mathrm{int}}+\mathrm{V}_{\mathrm{b}}-3$: \# of folds

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201 I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices $3 \mathrm{~V}_{\text {int }}+\mathrm{V}_{\mathrm{b}}-3$: \# of folds \# of degrees of freedom?

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices $3 \mathrm{~V}_{\mathrm{int}}+\mathrm{V}_{\mathrm{b}}-3$: \# of folds \# of degrees of freedom? $\quad N_{0}=3\left(V_{i n t}+V_{b}\right)-\left(3 V_{i n t}+V_{b}-3+V_{b}\right)$

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices $3 \mathrm{~V}_{\mathrm{int}}+\mathrm{V}_{\mathrm{b}}-3$: \# of folds \# of degrees of freedom? $\quad N_{0}=3\left(V_{i n t}+V_{b}\right)-\left(3 V_{i n t}+V_{b}-3+V_{b}\right)$

$$
\begin{aligned}
& =V_{b}+3 \\
& =6+\left(V_{b}-3\right)
\end{aligned}
$$

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201 I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices $3 \mathrm{~V}_{\text {int }}+\mathrm{V}_{\mathrm{b}}-3$: \# of folds \# of degrees of freedom? $\quad N_{0}=3\left(V_{i n t}+V_{b}\right)-\left(3 V_{i n t}+V_{b}-3+V_{b}\right)$

$$
=V_{b}+3
$$

$$
=6+\left(V_{b}-3\right)
$$

Rigid origami as bond-node structure

Demaine et al, Graphs and Combinatorics, 201 I

Triangulated V_{b}-gon : $\mathbf{V}_{\mathbf{b}}$ boundary vertices

$\mathrm{V}_{\text {int }}$: \# of internal vertices $3 \mathrm{~V}_{\text {int }}+\mathrm{V}_{\mathrm{b}}-3$: \# of folds \# of degrees of freedom? $\quad N_{0}=3\left(V_{i n t}+V_{b}\right)-\left(3 V_{i n t}+V_{b}-3+V_{b}\right)$

$$
=V_{b}+3
$$

$$
=6+\left(V_{b}-3\right)
$$

Configuration space near the flat state

Configuration space near the flat state

Configuration space near the flat state

BGC and Santangelo, 2017 AMHERST

BGC and Santangelo, 2017 AMHERST

Flat is not generic!

UMASS AMHERST

Flat is not generic!

UMASS

Flat is not generic!

UMASS AMHERST

Flat is not generic!

Toy example:

Flat is not generic!

Flat is not generic!

redundant constraints $=$ 'self stress'

Flat is not generic!

Self stresses and second-order constraints

compression
tension

Self stresses and second-order constraints

The second-order constraints are in I to I correspondence with self stresses!

Connelly and Whiteley, SIAM J Discrete Math 1996

Self stresses and second-order constraints

compression
tension

The second-order constraints are in I to I correspondence with self stresses!

$$
u^{T} \Omega u=0 \quad \Omega \underset{\text { "stress matrix" }}{\text { symmetric }}
$$

Connelly and Whiteley, SIAM J Discrete Math 1996

Self stresses and second-order constraints

The second-order constraints are in I to I correspondence with self stresses!

$$
u^{T} \Omega u=0 \quad \Omega \underset{\text { "stress matrix" }}{\text { symmetric }}
$$

Connelly and Whiteley, SIAM J Discrete Math 1996

Self stresses in flat triangulations

BGC and Santangelo, 2017

Self stresses in flat triangulations

"wheel stress"

BGC and Santangelo, 2017

Self stresses in flat triangulations

"wheel stress"

BGC and Santangelo, 2017

Self stresses in flat triangulations

u vertical displacements

BGC and Santangelo, 2017

Self stresses in flat triangulations

$$
u_{\underset{\text { displacements }}{\text { vertical }}}^{\substack{\text { ven }}}
$$

$$
u^{T} \Omega u=0
$$

$\Omega \quad \begin{gathered}\text { symmetric } \\ \text { stress matrix }\end{gathered}$
BGC and Santangelo, 2017

Self stresses in flat triangulations

u
vertical displacements

$$
u^{T} \Omega u=0
$$

$\Omega \quad \begin{gathered}\text { symmetric } \\ \text { stress matrix }\end{gathered}$

BGC and Santangelo, 2017

Self stresses in flat triangulations

vertical displacements

$$
u^{T} \Omega u=0
$$

$\Omega \underset{\substack{\text { symmetric } \\ \text { stress matrix }}}{\substack{\text {. } \\ \text {. } \\ \text {. }}}$

"wheel stress"

Gaussian curvature vanishes at each vertex

BGC and Santangelo, 2017

origami n-vertex configuration space

3-dim kernel from isometries

origami n-vertex configuration space

3-dim kernel from isometries

Always exactly one negative eigenvalue!
Kapovich and Millson, Publ. RIMS Kyoto Univ, I997

UMASS AMHERST

origami n-vertex configuration space

3-dim kernel from isometries

Always exactly one negative eigenvalue!
Kapovich and Millson, Publ. RIMS Kyoto Univ, I997
BGC,Theran and Nixon, 2017
BGC and Santangelo, 2017

UMASS AMHERST

origami n-vertex configuration space

3-dim kernel from isometries

Always exactly one negative eigenvalue!
Kapovich and Millson, Publ. RIMS Kyoto Univ, I997
BGC,Theran and Nixon, 2017
BGC and Santangelo, 2017

What are the two nappes?

BGC and Santangelo, 2017

What are the two nappes?

BGC and Santangelo, 2017

What are the two nappes?

BGC and Santangelo, 2017

What are the two nappes?

What are the two nappes?

Negative eigenvector maximizes
Gaussian curvature

What are the two nappes?

BGC and Santangelo, 2017
MASSEAM Demaine et al, Proceedings of the IASS, 2016

What are the two nappes?

BGC and Santangelo, 2017
MASSEAM Demaine et al, Proceedings of the IASS, 2016

What are the two nappes?

BGC and Santangelo, 2017
MASSEAM Demaine et al, Proceedings of the IASS, 2016
UMASS AMHERST

What are the two nappes?

What are the two nappes?

The two nappes correspond to popped up and popped down configurations!
BGC and Santangelo, 2017
Demaine et al, Proceedings of the IASS, 2016
Abel et al, JoCG, 2016; Streinu and Whiteley, 2005

Multiple vertex configuration space

Multiple vertex configuration space

Multiple vertex configuration space

$$
V_{\text {int }}=2 \Rightarrow 2 \text { wheel stresses }
$$

Multiple vertex configuration space

$$
V_{\text {int }}=2 \Rightarrow 2 \text { wheel stresses }
$$

2 homogeneous quadratic equations in 3 unknowns

Multiple vertex configuration space

$$
V_{\text {int }}=2 \Rightarrow 2 \text { wheel stresses }
$$

2 homogeneous quadratic equations in 3 unknowns

Bézout's theorem: at most $\mathbf{2}^{\wedge} 2$ solutions

Multiple vertex configuration space

Exactly $2^{\wedge} V_{\text {int }}$ solutions ???

V_{i}	triangulations generated	precision used
2	100	500
3	5000	690
4	1000	690
5	1000	690
6	1000	690
7	300	690
8	50	690

Exactly $2^{\wedge} \bigvee_{\text {int }}$ solutions ???

Exactly $2^{\wedge} \bigvee_{\text {int }}$ solutions ???

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

vertex sign patterns seem to uniquely label pairs of branches!

UMASS BGC and Santangelo, 2017 AMHERST

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

UMASS BGC and Santangelo, 2017 AMHERST

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

UMASS BGC and Santangelo, 2017 AMHERST

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

Yes, if the crease pattern is constructed with Henneberg-I moves from a pair of triangles!

Exactly $2^{\wedge} \vee_{\mathrm{int}}{ }^{*}$ solutions ???

Yes, if the crease pattern is constructed with Henneberg-l moves from a pair of triangles!

Demaine et al, Graphs and Combinatorics, 201I

Exactly $2^{\wedge} \vee_{\text {int }}{ }^{*}$ solutions ???

Yes, if the crease pattern is constructed with Henneberg-I moves from a pair of triangles!

N
Demaine et al, Graphs and Combinatorics, 201I

How to show that all vertex sign patterns are realized twice?

But how much does a crease pattern really tell us?

Robert Lang

But how much does a crease pattern really tell us?

Robert Lang
Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve http://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/ 5 AS AMHERST

But how much does a crease pattern really tell us?

Robert Lang

Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve http://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/ 5 AS AMHERST

But how much does a crease pattern really tell us?

$\#$ of Mountain-Valley choices $=2^{\# c r e a s e s}=2^{\wedge}\left(3 \mathrm{~V}_{\text {int }}+\mathrm{I}\right)$
Only a tiny fraction of MV's can be realized!

Robert Lang
MASSCAM
Center for Autonomous Materials

Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve http://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/ AMHERST

But how much does a crease pattern really tell us?

 $\#$ of branches $\leq 2^{\wedge}\left(\mathrm{V}_{\text {int }}\right)$

$\#$ of Mountain-Valley choices $=2^{\# c r e a s e s}=2^{\wedge}\left(3 \mathrm{~V}_{\text {int }}+\mathrm{I}\right)$
Only a tiny fraction of MV's can be realized!

Maybe we're in good shape...

Robert Lang

One crease pattern with fixed M-V labels : two branches!

(a) $(+)$ solution

(b) $(-)$ solution

Brunck et al, PRE, 2016
Hull and Tachi, J Mechanisms Robotics, 2017

UMASS AMHERST

One crease pattern with fixed M-V labels : two branches!

Brunck et al, PRE, 2016
Hull and Tachi, J Mechanisms Robotics, 2017

UMASS AMHERST

One crease pattern with fixed M-V labels : two branches!

Brunck et al, PRE, 2016
Hull and Tachi, J Mechanisms Robotics, 2017

UMASS AMHERST

One crease pattern with fixed M-V labels : two branches!

Brunck et al, PRE, 2016
Hull and Tachi, J Mechanisms Robotics, 2017

UMASS AMHERST

Same M-V labels, same vertex sign pattern : two branches!

BGC and Santangelo, 2017

UMASS AMHERST

Same M-V labels, same vertex sign pattern : two branches!

BGC and Santangelo, 2017

UMASS AMHERST

Same M-V labels, same vertex sign pattern : two branches!

BGC and Santangelo, 2017

UMASS AMHERST

Summary:

The flat state is singular, but self stresses help us navigate...

$2^{\wedge} V_{\text {int }}$ branches from popping vertices up / down?
Do these second-order motions generically extend to continuous motions?

Thanks!

Tom Hull, Louis Theran

