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Origami in nature and engineering

Andresen et al, PRE 2007Saito et al, PNAS 2017

Wood et al, Science 2015

J.-H. Na et al., Adv. Mat. 2015
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Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve
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But how much does a crease pattern really tell us?

What does it tell us near the flat state?

http://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/
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“bird base”
Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary vertices
Vint : # of internal vertices

3Vint+Vb-3: # of folds

generically Vb-3 dofrigid body 
motions

# of degrees of freedom?

Rigid origami as bond-node structure

N0 = 3(Vint + Vb)� (3Vint + Vb � 3 + Vb)
=Vb + 3

=6 + (Vb � 3)
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Self stresses and second-order 
constraints

compression

tension

linear motion

The second-order constraints are in 1 to 1 correspondence with self stresses!

Connelly and Whiteley, SIAM J Discrete Math 1996

uT⌦u = 0 ⌦ symmetric 
“stress matrix”

u⌦
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Self stresses in flat triangulations

“wheel stress”

BGC and Santangelo, 2017

uT⌦u = 0

⌦ symmetric 
stress matrix

↵1,2

↵2,3
↵4,1

�1,2
�2,3

�4,1

 1

 2

 3

 4

Gaussian curvature 
vanishes at each vertex()

u vertical 
displacements

!!
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uT⌦u = 0

⌦
(n+1)x(n+1) 
symmetric 

stress matrix

u (n+1)-vector of vertical 
displacements

Always exactly one negative eigenvalue!

3-dim kernel from isometries

BGC, Theran and Nixon, 2017
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Negative 
eigenvector
maximizes 
Gaussian 
curvature

BGC and Santangelo, 2017
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What are the two nappes?
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The two nappes correspond to 
popped up and popped down configurations!

Demaine et al, Proceedings of the IASS, 2016

+

–

Abel et al, JoCG, 2016; Streinu and Whiteley, 2005

+

–

BGC and Santangelo, 2017
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2 homogeneous quadratic equations 
in 3 unknowns

Bézout’s theorem: 
at most 2^2 solutions

Multiple vertex configuration space
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Exactly 2^Vint solutions ???

vertex sign patterns seem 
to uniquely label 

pairs of branches!

2^Vint*

+
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Exactly 2^Vint solutions ???2^Vint*

Yes, if the crease pattern
is constructed with Henneberg-I
moves from a pair of triangles!

Demaine et al, Graphs and 
Combinatorics, 2011

How to show that all vertex 
sign patterns are realized twice?
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Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeeve
http://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

# of Mountain-Valley choices = 2#creases = 2^(3Vint+1)

Maybe we’re in good shape… 

Only a tiny fraction of MV’s can be realized!

# of branches ≤ 2^(Vint)

http://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/
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two branches!
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Thanks!

NSF PHY-1125915
EFRI ODISSEI-1240441

Tom Hull, Louis Theran

2^Vint branches from popping vertices up / down?

The flat state is singular,
but self stresses help us navigate…
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Summary:

Do these second-order 
motions generically extend 

to continuous motions?


