The Rigidity of Infinite Frameworks in Euclidean and Polyhedral Normed Spaces

Sean Dewar

Lancaster University, Department of Mathematics

June 8, 2017

Normed spaces

A real normed space is a vector space X over \mathbb{R} together with a map $\|\cdot\|: X \to [0,\infty)$ such that for all $x, y \in X$ and $\lambda \in \mathbb{R}$:

- $||x|| = 0 \Leftrightarrow x = 0$
- $\|\lambda x\| = |\lambda| \|x\|$
- $||x + y|| \le ||x|| + ||y||.$

(ロ)、(型)、(E)、(E)、 E) の(の)

The Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^d is given by

$$\|(a_1,\ldots,a_d)\|_2 = \sqrt{a_1^2 + \ldots + a_d^2}$$

The Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^d is given by

$$\|(a_1,\ldots,a_d)\|_2 = \sqrt{a_1^2 + \ldots + a_d^2}.$$

For a centrally symmetric polytope $\mathcal{P} \subseteq \mathbb{R}^d$ with with facets $\pm F_1, \ldots, \pm F_n$ we can define the norm $\|\cdot\|_{\mathcal{P}}$ on \mathbb{R}^d by

$$\|x\|_{\mathcal{P}} = \max_{1 \le k \le n} \left| \left\langle \hat{F}_k, x \right\rangle \right|$$

where $\hat{F} \in \mathbb{R}^d$ is the unique vector that defines the hyperspace that the face F lies on.

Asimow-Roth for normed spaces

The following is a famous result from *The Rigidity of Graphs* by L.Asimow and B. Roth and an equivalent result for polyhedral normed spaces from *Finite and Infinitesimal Rigidity with Polyhedral Norms* by Derek Kitson.

Theorem

Let (G, p) be a finite, affinely spanning and regular framework in $(\mathbb{R}^d, \|\cdot\|_2)$ or $(\mathbb{R}^d, \|\cdot\|_{\mathcal{P}})$. Then TFAE:

- (G, p) is infinitesimally rigid
- (G, p) is continuously rigid (all deformations are rigid motions)
- (G, p) is locally rigid (all equivalent frameworks within a neighbourhood of p are congruent).

What would be an equivalent result for infinite frameworks in either space?

Figure: Infinitesimally rigid but continuously flexible in $(\mathbb{R}^2, \|\cdot\|_2)$. This framework is infinitesimally flexible for all generic positions.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Frameworks

We shall always assume that $(X, \|\cdot\|)$ is a finite dimensional real normed space with an open set of smooth points.

Definition

A framework in $(X, \|\cdot\|)$ is a pair (G, p) where G is a simple graph (i.e. no loops, repeated edges and undirected) and $p \in X^{V(G)}$.

Frameworks

We shall always assume that $(X, \|\cdot\|)$ is a finite dimensional real normed space with an open set of smooth points.

Definition

A *framework* in $(X, \|\cdot\|)$ is a pair (G, p) where G is a simple graph (i.e. no loops, repeated edges and undirected) and $p \in X^{V(G)}$.

For a framework we will define the *rigidity map* to be

$$f_G: X^{V(G)} \to \mathbb{R}^{E(G)}, \ (x_v)_{v \in V(G)} \mapsto (\|x_v - x_w\|)_{vw \in E(G)}.$$

Frameworks

We shall always assume that $(X, \|\cdot\|)$ is a finite dimensional real normed space with an open set of smooth points.

Definition

A *framework* in $(X, \|\cdot\|)$ is a pair (G, p) where G is a simple graph (i.e. no loops, repeated edges and undirected) and $p \in X^{V(G)}$.

For a framework we will define the *rigidity map* to be

$$f_G: X^{V(G)} \to \mathbb{R}^{E(G)}, \ (x_v)_{v \in V(G)} \mapsto (\|x_v - x_w\|)_{vw \in E(G)}$$

Definition

We say an edge $vw \in E(G)$ of (G, p) is well-positioned if $p_v - p_w$ is a smooth point and we say (G, p) is well-positioned if all edges (G, p) are well-positioned.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Support functionals

For a well-positioned edge $vw \in E(G)$ we define the linear functional $\varphi_{v,w} : X \to \mathbb{R}$ to be the support functional of $p_v - p_w$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Support functionals

For a well-positioned edge $vw \in E(G)$ we define the linear functional $\varphi_{v,w} : X \to \mathbb{R}$ to be the support functional of $p_v - p_w$.

For $(\mathbb{R}^d, \|\cdot\|_2)$:

$$\varphi_{\mathbf{v},\mathbf{w}}(\cdot) = \left\langle \frac{p_{\mathbf{v}} - p_{\mathbf{w}}}{\|p_{\mathbf{v}} - p_{\mathbf{w}}\|}, \cdot \right\rangle.$$

Support functionals

For a well-positioned edge $vw \in E(G)$ we define the linear functional $\varphi_{v,w} : X \to \mathbb{R}$ to be the support functional of $p_v - p_w$.

For $(\mathbb{R}^d, \|\cdot\|_2)$:

$$\varphi_{\mathbf{v},\mathbf{w}}(\cdot) = \left\langle \frac{p_{\mathbf{v}} - p_{\mathbf{w}}}{\|p_{\mathbf{v}} - p_{\mathbf{w}}\|}, \cdot \right\rangle.$$

For polyhedral normed space $(\mathbb{R}^d, \|\cdot\|_{\mathcal{P}})$:

$$\varphi_{\mathbf{v},\mathbf{w}}(\cdot) = \left\langle \hat{F}, \cdot \right\rangle$$

where $\|p_v - p_w\|_{\mathcal{P}} = \left\langle \hat{F}, p_v - p_w \right\rangle$.

Motivation	Preliminaries	Rigidity in infinite frameworks	Euclidean and polyhedral normed spaces	
Notation				

The space of infinitesimal flexes:

$$\mathcal{F}(G,p) = \left\{ u \in X^{V(G)} : \varphi_{v,w}(u_v - u_w) = 0 \text{ for all } vw \in E(G) \right\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Motivation	Preliminaries	Rigidity in infinite frameworks	Euclidean and polyhedral normed spaces	
Notatio	n			

The space of infinitesimal flexes:

$$\mathcal{F}(G,p) = \left\{ u \in X^{V(G)} : \varphi_{v,w}(u_v - u_w) = 0 \text{ for all } vw \in E(G) \right\}$$

The space of trivial flexes:

$$\mathcal{T}(p) = \left\{ (\gamma_{p_{\nu}}'(0))_{\nu \in V(G)} \in X^{V(G)} : \gamma \text{ is a smooth rigid body motion} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation	Preliminaries	Rigidity in infinite frameworks	Euclidean and polyhedral normed spaces	
Notation				

The space of infinitesimal flexes:

$$\mathcal{F}(G,p) = \left\{ u \in X^{V(G)} : \varphi_{v,w}(u_v - u_w) = 0 \text{ for all } vw \in E(G) \right\}$$

The space of trivial flexes:

 $\mathcal{T}(p) = \left\{ (\gamma'_{p_{\nu}}(0))_{\nu \in V(G)} \in X^{V(G)} : \gamma \text{ is a smooth rigid body motion} \right\}$ Orbit of p:

$$\mathcal{O}_p := \left\{ (h(p_v))_{v \in V(G)} : h \text{ is an isometry of } (X, \|\cdot\|)
ight\}$$

Let *F* be a family of continuous curves $f : I \to X$ for some interval *I* and some normed space *X*. We say that *F* is *equicontinuous at* $t_0 \in I$ if for all $\epsilon > 0$ there exists $\delta > 0$ such that

$$t \in (-\delta + t_0, \delta + t_0) \Rightarrow ||f(t_0) - f(t)|| < \epsilon$$

for all $f \in F$. If F is equicontinuous at all $t \in I$ then F is equicontinuous.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equicontinuity

Let *F* be a family of continuous curves $f : I \to X$ for some interval *I* and some normed space *X*. We say that *F* is *equicontinuous at* $t_0 \in I$ if for all $\epsilon > 0$ there exists $\delta > 0$ such that

$$t \in (-\delta + t_0, \delta + t_0) \; \Rightarrow \; \|f(t_0) - f(t)\| < \epsilon$$

for all $f \in F$. If F is equicontinuous at all $t \in I$ then F is equicontinuous.

Definition

We say that a family $\alpha = (\alpha_v)_{v \in V(G)}$ of continuous paths $\alpha_v : (-1, 1) \to X$ is an equicontinuous finite flex of (G, p) in $(X, \|\cdot\|)$ if: • $\alpha_v(0) = p_v$ for all $v \in V(G)$ • $\|\alpha_v(t) - \alpha_w(t)\| = \|p_v - p_w\|$ for all $vw \in E(G)$ and $t \in (-1, 1)$

• α is equicontinuous.

For $X^{V(G)}$ we define the generalised metric (i.e. a metric that allows infinite distances between points) $d_{V(G)}$ where

$$d_{V(G)}(x,y) := \sup_{v \in V(G)} ||x_v - y_v||.$$

(日) (日) (日) (日) (日) (日) (日) (日)

For $X^{V(G)}$ we define the *generalised metric* (i.e. a metric that allows infinite distances between points) $d_{V(G)}$ where

$$d_{V(G)}(x,y) := \sup_{v \in V(G)} ||x_v - y_v||.$$

We now define for all $p \in X^{V(G)}$ and r > 0 the open balls of $X^{V(G)}$

$$B_r(p) := \left\{ q \in X^{V(G)} : d_{V(G)}(p,q) < r
ight\}.$$

For $X^{V(G)}$ we define the *generalised metric* (i.e. a metric that allows infinite distances between points) $d_{V(G)}$ where

$$d_{V(G)}(x,y) := \sup_{v \in V(G)} ||x_v - y_v||.$$

We now define for all $p \in X^{V(G)}$ and r > 0 the open balls of $X^{V(G)}$

$$B_r(p) := \left\{ q \in X^{V(G)} : d_{V(G)}(p,q) < r \right\}.$$

For more information on generalised metric spaces see A Course in Metric Geometry by Dmitri Burago, Yuri Burago and Sergei Ivanov.

Motivation

Preliminarie

Rigidity in infinite frameworks

Euclidean and polyhedral normed space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Questions?

Rigidity for infinite frameworks

Definition

A framework (G, p) is *infinitesimally rigid* if $\mathcal{F}(G, p) = \mathcal{T}(p)$.

Motivation

Preliminario

Rigidity in infinite frameworks

Euclidean and polyhedral normed space

Questions?

Rigidity for infinite frameworks

Definition

A framework (G, p) is *infinitesimally rigid* if $\mathcal{F}(G, p) = \mathcal{T}(p)$.

Definition

A framework (G, p) is *locally rigid* (with respect to the $d_{V(G)}$ -topology on $X^{V}(G)$) if there exists r > 0 such that $f_{G}^{-1}[f_{G}(p)] \cap B_{r}(p) = \mathcal{O}_{p} \cap B_{r}(p)$.

Rigidity for infinite frameworks

Definition

A framework (G, p) is *infinitesimally rigid* if $\mathcal{F}(G, p) = \mathcal{T}(p)$.

Definition

A framework (G, p) is *locally rigid* (with respect to the $d_{V(G)}$ -topology on $X^{V}(G)$) if there exists r > 0 such that $f_{G}^{-1}[f_{G}(p)] \cap B_{r}(p) = \mathcal{O}_{p} \cap B_{r}(p)$.

Definition

A framework (G, p) is equicontinuously rigid if all equicontinuous finite flexes are rigid body motions.

^oreliminari

Rigidity in infinite frameworks

Euclidean and polyhedral normed space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Questions?

Local rigidity implies equicontinuous rigidity

Proposition

Let (G, p) be locally rigid in $(X, \|\cdot\|)$, then (G, p) is equicontinuously rigid.

Local rigidity implies equicontinuous rigidity

Proposition

Let (G, p) be locally rigid in $(X, \|\cdot\|)$, then (G, p) is equicontinuously rigid.

So how does this link to infinitesimal rigidity?

Local rigidity implies equicontinuous rigidity

Proposition

Let (G, p) be locally rigid in $(X, \|\cdot\|)$, then (G, p) is equicontinuously rigid.

So how does this link to infinitesimal rigidity?

Figure: Locally and equicontinously rigid but infinitesimally and continuously flexible in $(\mathbb{R}^2, \|\cdot\|_2)$.

Motivation

reliminarie

Rigidity in infinite frameworks

Euclidean and polyhedral normed space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Questions?

Bounded infinitesimal rigidity

We say that $u \in \mathcal{F}(G, p)$ is a bounded flex if

 $\sup_{v\in V(G)}\|u_v\|<\infty.$

Motivation

reliminarie

Rigidity in infinite frameworks

Euclidean and polyhedral normed space

Questions?

Bounded infinitesimal rigidity

We say that $u \in \mathcal{F}(G, p)$ is a bounded flex if

 $\sup_{v\in V(G)}\|u_v\|<\infty.$

We denote $b\mathcal{F}(G, p)$ to be the space of bounded flexes of (G, p).

Bounded infinitesimal rigidity

We say that $u \in \mathcal{F}(G, p)$ is a bounded flex if

 $\sup_{v\in V(G)}\|u_v\|<\infty.$

We denote $b\mathcal{F}(G,p)$ to be the space of bounded flexes of (G,p).

Definition

We say that a well-positioned framework (G, p) is bounded infinitesimally rigid if $b\mathcal{F}(G, p) \subseteq \mathcal{T}(p)$.

Equivalence of rigidity for Euclidean spaces

Theorem

Let (G, p) be an affinely spanning framework in a d-dimensional Euclidean space such that

- The points of the placement p are uniformly discrete in X
- for some r > 0 we have that $b\mathcal{F}(G, q)$ is linearly isomorphic to $b\mathcal{F}(G, p)$ for all $q \in B_r(p)$;

then the following are equivalent:

- (G, p) is bounded infinitesimally rigid
- (G,q) is locally rigid for all $q \in B_r(p)$.

Equivalence of rigidity for Euclidean spaces

Theorem

Let (G, p) be an affinely spanning framework in a d-dimensional Euclidean space such that

- The points of the placement p are uniformly discrete in X
- for some r > 0 we have that $b\mathcal{F}(G,q)$ is linearly isomorphic to $b\mathcal{F}(G,p)$ for all $q \in B_r(p)$;

then the following are equivalent:

- (G, p) is bounded infinitesimally rigid
- (G,q) is locally rigid for all $q \in B_r(p)$.

It is an open question whether there is any way of choosing placements such that the condition on linear isomorphisms of bounded flex spaces on an open neighbourhood is automatic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Figure: A generic framework in $(\mathbb{R}^2, \|\cdot\|_2)$ that is infinitesimally and continuously rigid but locally flexible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Equivalence of rigidity for polyhedral normed spaces

Definition

We say a framework (G, p) is uniformly well-positioned if there exists r > 0 such that (G, q) is well-positioned for all $q \in B_r(p)$.

Equivalence of rigidity for polyhedral normed spaces

Definition

We say a framework (G, p) is uniformly well-positioned if there exists r > 0 such that (G, q) is well-positioned for all $q \in B_r(p)$.

Theorem

Let (G, p) be a uniformly well-positioned framework in a polyhedral normed space $(\mathbb{R}^d, \|\cdot\|_{\mathcal{P}})$ then the following are equivalent:

- (G, p) is bounded infinitesimally rigid
- (G, p) is locally rigid
- (G, p) is equicontinuously rigid.

Equivalence of rigidity for polyhedral normed spaces

Definition

We say a framework (G, p) is uniformly well-positioned if there exists r > 0 such that (G, q) is well-positioned for all $q \in B_r(p)$.

Theorem

Let (G, p) be a uniformly well-positioned framework in a polyhedral normed space $(\mathbb{R}^d, \|\cdot\|_{\mathcal{P}})$ then the following are equivalent:

- (G, p) is bounded infinitesimally rigid
- (G, p) is locally rigid
- (G, p) is equicontinuously rigid.

The result is important as checking if a framework is uniformly well-positioned is much easier than checking if all frameworks in a neighbourhood of a placement are bounded infinitesimally rigid.

The max norm $\|\cdot\|_{\infty}$ on \mathbb{R}^d :

$$\|(a_1,\ldots,a_d)\|_\infty:=\max_{1\leq k\leq d}|a_k|=\max_{1\leq k\leq d}|\langle e_k,(a_1,\ldots,a_d)
angle|$$

where e_1, \ldots, e_d is the standard basis of \mathbb{R}^d .

Special case: $(\mathbb{R}^d, \|\cdot\|_{\infty})$

The max norm $\|\cdot\|_{\infty}$ on \mathbb{R}^d :

$$\|(a_1,\ldots,a_d)\|_{\infty}:=\max_{1\leq k\leq d}|a_k|=\max_{1\leq k\leq d}|\langle e_k,(a_1,\ldots,a_d)\rangle$$

where e_1, \ldots, e_d is the standard basis of \mathbb{R}^d .

Theorem

Let (G, p) be a uniformly well-positioned framework in $(\mathbb{R}^d, \|\cdot\|_{\infty})$ then the following are equivalent:

- (G, p) is infinitesimally rigid
- (G, p) is bounded infinitesimally rigid
- (G, p) is locally rigid
- (G, p) is equicontinuously rigid.

Figure: (Left) Unit ball of $(\mathbb{R}^2, \|\cdot\|_{\infty})$; (right) a framework in $(\mathbb{R}^2, \|\cdot\|_{\infty})$ that is infinitesimally, equicontinuously and locally rigid.

Motivation	Rigidity in infinite frameworks	Euclidean and polyhedral normed spaces	Questions?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Thank you for listening!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for listening!

Questions?