Globally rigid braced triangulations

Tibor Jordán

Department of Operations Research and the Egerváry Research Group on Combinatorial Optimization, Eötvös University, Budapest

Lancaster University, July 7, 2017

A ►

A B M A B M

Consider a convex polyhedron P in \mathbb{R}^3 . In the graph G(P) of the polyhedron the vertices are the vertices of P, with two vertices adjacent if they form the endpoints of an edge of P.

Theorem (Cauchy, 1813)

Let P_1 and P_2 be convex polyhedra in \mathbb{R}^3 whose graphs are isomorphic and for which corresponding faces are pairwise congruent. Then P_1 and P_2 are congruent.

Consider a convex polyhedron P in \mathbb{R}^3 . In the graph G(P) of the polyhedron the vertices are the vertices of P, with two vertices adjacent if they form the endpoints of an edge of P.

Theorem (Cauchy, 1813)

Let P_1 and P_2 be convex polyhedra in \mathbb{R}^3 whose graphs are isomorphic and for which corresponding faces are pairwise congruent. Then P_1 and P_2 are congruent.

Consider a convex polyhedron P in \mathbb{R}^3 . In the graph G(P) of the polyhedron the vertices are the vertices of P, with two vertices adjacent if they form the endpoints of an edge of P.

Theorem (Cauchy, 1813)

Let P_1 and P_2 be convex polyhedra in \mathbb{R}^3 whose graphs are isomorphic and for which corresponding faces are pairwise congruent. Then P_1 and P_2 are congruent.

A non-convex example

・ロト ・日下 ・ 日下

The graphs of convex polyhedra

Theorem (Steinitz)

A graph G is the graph of some convex polyhedron P in \mathbb{R}^3 if and only if G is 3-connected and planar.

Theorem (Steinitz, 1906)

A graph G is the graph of some convex polyhedron P in \mathbb{R}^3 with triangular faces if and only if G is a maximal planar graph.

We shall simply call a maximal planar graph (or planar triangulation) a *triangulation*.

The graphs of convex polyhedra

Theorem (Steinitz)

A graph G is the graph of some convex polyhedron P in \mathbb{R}^3 if and only if G is 3-connected and planar.

Theorem (Steinitz, 1906)

A graph G is the graph of some convex polyhedron P in \mathbb{R}^3 with triangular faces if and only if G is a maximal planar graph.

We shall simply call a maximal planar graph (or planar triangulation) a *triangulation*.

The graphs of convex polyhedra

Theorem (Steinitz)

A graph G is the graph of some convex polyhedron P in \mathbb{R}^3 if and only if G is 3-connected and planar.

Theorem (Steinitz, 1906)

A graph G is the graph of some convex polyhedron P in \mathbb{R}^3 with triangular faces if and only if G is a maximal planar graph.

We shall simply call a maximal planar graph (or planar triangulation) a *triangulation*.

Convex polyhedra with triangular faces

A convex polyhedron with triangular faces

A *d*-dimensional (bar-and-joint) framework is a pair (G, p), where G = (V, E) is a graph and p is a map from V to \mathbb{R}^d . We consider the framework to be a straight line *realization* of G in \mathbb{R}^d .

Two realizations (G, p) and (G, q) of G are *equivalent* if ||p(u) - p(v)|| = ||q(u) - q(v)|| holds for all pairs u, v with $uv \in E$, where ||.|| denotes the Euclidean norm in \mathbb{R}^d . Frameworks (G, p), (G, q) are *congruent* if ||p(u) - p(v)|| = ||q(u) - q(v)||holds for all pairs u, v with $u, v \in V$. A *d*-dimensional (bar-and-joint) framework is a pair (G, p), where G = (V, E) is a graph and p is a map from V to \mathbb{R}^d . We consider the framework to be a straight line *realization* of G in \mathbb{R}^d .

Two realizations (G, p) and (G, q) of G are *equivalent* if ||p(u) - p(v)|| = ||q(u) - q(v)|| holds for all pairs u, v with $uv \in E$, where ||.|| denotes the Euclidean norm in \mathbb{R}^d . Frameworks (G, p), (G, q) are *congruent* if ||p(u) - p(v)|| = ||q(u) - q(v)||holds for all pairs u, v with $u, v \in V$. The framework (G, p) is *rigid* if there exists an $\epsilon > 0$ such that, if (G, q) is equivalent to (G, p) and $||p(u) - q(u)|| < \epsilon$ for all $v \in V$, then (G, q) is congruent to (G, p).

Equivalently, the framework is rigid if every continuous deformation that preserves the edge lengths results in a congruent framework.

The framework (G, p) is *rigid* if there exists an $\epsilon > 0$ such that, if (G, q) is equivalent to (G, p) and $||p(u) - q(u)|| < \epsilon$ for all $v \in V$, then (G, q) is congruent to (G, p).

Equivalently, the framework is rigid if every continuous deformation that preserves the edge lengths results in a congruent framework.

Corollary

Let P be a convex polyhedron with triangular faces and let (G(P), p) be the corresponding bar-and-joint realization of its graph in three-space. Then (G(P), p) is rigid.

Proof sketch

Consider a continuous motion of the vertices of (G(P), p) which preserves the edge lengths. Then it must also preserve the faces as well as the convexity in a small enough neighbourhood. Thus it results in a congruent realization by Cauchy's theorem.

Corollary

Let P be a convex polyhedron with triangular faces and let (G(P), p) be the corresponding bar-and-joint realization of its graph in three-space. Then (G(P), p) is rigid.

Proof sketch

Consider a continuous motion of the vertices of (G(P), p) which preserves the edge lengths. Then it must also preserve the faces as well as the convexity in a small enough neighbourhood. Thus it results in a congruent realization by Cauchy's theorem.

We say that (G, p) is globally rigid in \mathbb{R}^d if every *d*-dimensional framework which is equivalent to (G, p) is congruent to (G, p).

We say that (G, p) is globally rigid in \mathbb{R}^d if every *d*-dimensional framework which is equivalent to (G, p) is congruent to (G, p).

Testing rigidity is NP-hard for $d \ge 2$ (T.G. Abbot, 2008). Testing global rigidity is NP-hard for $d \ge 1$ (J.B. Saxe, 1979).

The framework is *generic* if there are no algebraic dependencies between the coordinates of the vertices.

The rigidity (resp. global rigidity) of frameworks in \mathbb{R}^d is a generic property, that is, the rigidity (resp. global rigidity) of (G, p) depends only on the graph G and not the particular realization p, if (G, p) is generic. We say that the graph G is *rigid* (*globally rigid*) in \mathbb{R}^d if every (or equivalently, if some) generic realization of G in \mathbb{R}^d is rigid.

Testing rigidity is NP-hard for $d \ge 2$ (T.G. Abbot, 2008). Testing global rigidity is NP-hard for $d \ge 1$ (J.B. Saxe, 1979).

The framework is *generic* if there are no algebraic dependencies between the coordinates of the vertices.

The rigidity (resp. global rigidity) of frameworks in \mathbb{R}^d is a generic property, that is, the rigidity (resp. global rigidity) of (G, p) depends only on the graph G and not the particular realization p, if (G, p) is generic. We say that the graph G is *rigid* (*globally rigid*) in \mathbb{R}^d if every (or equivalently, if some) generic realization of G in \mathbb{R}^d is rigid.

Testing rigidity is NP-hard for $d \ge 2$ (T.G. Abbot, 2008). Testing global rigidity is NP-hard for $d \ge 1$ (J.B. Saxe, 1979).

The framework is *generic* if there are no algebraic dependencies between the coordinates of the vertices.

The rigidity (resp. global rigidity) of frameworks in \mathbb{R}^d is a generic property, that is, the rigidity (resp. global rigidity) of (G, p) depends only on the graph G and not the particular realization p, if (G, p) is generic. We say that the graph G is *rigid* (*globally rigid*) in \mathbb{R}^d if every (or equivalently, if some) generic realization of G in \mathbb{R}^d is rigid.

Testing rigidity is NP-hard for $d \ge 2$ (T.G. Abbot, 2008). Testing global rigidity is NP-hard for $d \ge 1$ (J.B. Saxe, 1979).

The framework is *generic* if there are no algebraic dependencies between the coordinates of the vertices.

The rigidity (resp. global rigidity) of frameworks in \mathbb{R}^d is a generic property, that is, the rigidity (resp. global rigidity) of (G, p) depends only on the graph G and not the particular realization p, if (G, p) is generic. We say that the graph G is *rigid* (*globally rigid*) in \mathbb{R}^d if every (or equivalently, if some) generic realization of G in \mathbb{R}^d is rigid.

We say that G is *redundantly rigid in* \mathbb{R}^d if removing any edge of G results in a rigid graph.

Theorem (B. Hendrickson, 1992)

Let G be a globally rigid graph in \mathbb{R}^d . Then either G is a complete graph on at most d + 1 vertices, or G is (i) (d + 1)-connected, and (ii) redundantly rigid in \mathbb{R}^d .

Global rigidity on the line and in the plane

Lemma

Graph G is globally rigid in \mathbb{R}^1 if and only if G is a complete graph on at most two vertices or G is 2-connected.

Theorem (B. Jackson, T. J., 2005)

Let G be a 3-connected and redundantly rigid graph in \mathbb{R}^2 on at least four vertices. Then G can be obtained from K_4 by extensions and edge-additions.

Theorem (B. Jackson, T. J., 2005)

Graph G is globally rigid in \mathbb{R}^2 if and only if G is a complete graph on at most three vertices or G is 3-connected and redundantly rigid.

Global rigidity on the line and in the plane

Lemma

Graph G is globally rigid in \mathbb{R}^1 if and only if G is a complete graph on at most two vertices or G is 2-connected.

Theorem (B. Jackson, T. J., 2005)

Let G be a 3-connected and redundantly rigid graph in \mathbb{R}^2 on at least four vertices. Then G can be obtained from K_4 by extensions and edge-additions.

Theorem (B. Jackson, T. J., 2005)

Graph G is globally rigid in \mathbb{R}^2 if and only if G is a complete graph on at most three vertices or G is 3-connected and redundantly rigid.

Global rigidity on the line and in the plane

Lemma

Graph G is globally rigid in \mathbb{R}^1 if and only if G is a complete graph on at most two vertices or G is 2-connected.

Theorem (B. Jackson, T. J., 2005)

Let G be a 3-connected and redundantly rigid graph in \mathbb{R}^2 on at least four vertices. Then G can be obtained from K_4 by extensions and edge-additions.

Theorem (B. Jackson, T. J., 2005)

Graph G is globally rigid in \mathbb{R}^2 if and only if G is a complete graph on at most three vertices or G is 3-connected and redundantly rigid.

< ロ > < 同 > < 回 > < 回 >

In what follows we shall call a graph H = (V, E + B) a braced triangulation if it is obtained from a triangulation G = (V, E) by adding a set B of new edges (called bracing edges). In the special case when |B| = 1 we say that H is a uni-braced triangulation.

In what follows we shall call a graph H = (V, E + B) a braced triangulation if it is obtained from a triangulation G = (V, E) by adding a set B of new edges (called bracing edges). In the special case when |B| = 1 we say that H is a uni-braced triangulation.

Braced triangulations II.

Theorem (Whiteley, 1988)

Every 4-connected uni-braced triangulation is redundantly rigid in $\ensuremath{\mathbb{R}}^3.$

Conjecture (Whiteley, 2015)

Every 4-connected uni-braced triangulation is globally rigid in \mathbb{R}^3 .

▲□ ► < □ ► </p>

Braced triangulations II.

Theorem (Whiteley, 1988)

Every 4-connected uni-braced triangulation is redundantly rigid in $\ensuremath{\mathbb{R}}^3.$

Conjecture (Whiteley, 2015)

Every 4-connected uni-braced triangulation is globally rigid in \mathbb{R}^3 .

Let H = (V, E) be a graph. For a vertex $v \in V$ we use $N_H(v)$ to denote the set of neighbours of v in H. Given a vertex $v_1 \in V$ and a partition $\{U_{12}, U_1, U_2\}$ of $N_H(v)$ with $|U_{12}| = k$, the *k*-vertex splitting operation at v_1 with respect to $\{U_{12}, U_1, U_2\}$ removes the edges connecting v_1 to U_2 and inserts a new vertex v_2 as well as new edges between v_2 and $v_1 \cup U_{12} \cup U_2$. The operation is nontrivial if U_1 and U_2 are both non-emtpy.

Let H = (V, E) be a graph. For a vertex $v \in V$ we use $N_H(v)$ to denote the set of neighbours of v in H. Given a vertex $v_1 \in V$ and a partition $\{U_{12}, U_1, U_2\}$ of $N_H(v)$ with $|U_{12}| = k$, the *k*-vertex splitting operation at v_1 with respect to $\{U_{12}, U_1, U_2\}$ removes the edges connecting v_1 to U_2 and inserts a new vertex v_2 as well as new edges between v_2 and $v_1 \cup U_{12} \cup U_2$. The operation is nontrivial if U_1 and U_2 are both non-emtpy.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Steinitz, 1906)

Every triangulation can be obtained from K_4 by a sequence of 2-vertex splitting operations.

Theorem (Whiteley, 1991)

Let H be a rigid graph in \mathbb{R}^d and let G be obtained from H by a (d-1)-vertex splitting operation. Then G is rigid in \mathbb{R}^d .

Theorem (Gluck, 1975)

Every triangulation is rigid in \mathbb{R}^3 .

・ 同 ト く 三 ト く

Theorem (Steinitz, 1906)

Every triangulation can be obtained from K_4 by a sequence of 2-vertex splitting operations.

Theorem (Whiteley, 1991)

Let *H* be a rigid graph in \mathbb{R}^d and let *G* be obtained from *H* by a (d-1)-vertex splitting operation. Then *G* is rigid in \mathbb{R}^d .

Theorem (Gluck, 1975)

Every triangulation is rigid in \mathbb{R}^3 .

Theorem (Steinitz, 1906)

Every triangulation can be obtained from K_4 by a sequence of 2-vertex splitting operations.

Theorem (Whiteley, 1991)

Let *H* be a rigid graph in \mathbb{R}^d and let *G* be obtained from *H* by a (d-1)-vertex splitting operation. Then *G* is rigid in \mathbb{R}^d .

Theorem (Gluck, 1975)

Every triangulation is rigid in \mathbb{R}^3 .

Conjecture (Whiteley, 2005)

Let *H* be globally rigid in \mathbb{R}^d with at least d + 2 vertices and let *G* be obtained from *H* by a nontrivial (d - 1)-vertex-splitting operation. Then *G* is globally rigid in \mathbb{R}^d .

Theorem (T.J and S. Tanigawa, 2017)

Suppose that G can be obtained from K_{d+2} by a sequence of non-trivial (d-1)-vertex splitting operations. Then G is globally rigid in \mathbb{R}^d .

Conjecture (Whiteley, 2005)

Let *H* be globally rigid in \mathbb{R}^d with at least d + 2 vertices and let *G* be obtained from *H* by a nontrivial (d - 1)-vertex-splitting operation. Then *G* is globally rigid in \mathbb{R}^d .

Theorem (T.J and S. Tanigawa, 2017)

Suppose that G can be obtained from K_{d+2} by a sequence of non-trivial (d-1)-vertex splitting operations. Then G is globally rigid in \mathbb{R}^d .

Equilibrium stress and the stress matrix

The function $\omega : e \in E \mapsto \omega(e) \in \mathbb{R}$ on framework (G, p) is *in* equilibrium with respect to $F : V \to \mathbb{R}^d$ if for each vertex $v \in V$ we have

$$\sum_{u\in N(v)}\omega(uv)(p(u)-p(v))=-F(v). \tag{1}$$

Equilibrium stress and the stress matrix

The function $\omega : e \in E \mapsto \omega(e) \in \mathbb{R}$ on framework (G, p) is in equilibrium with respect to $F : V \to \mathbb{R}^d$ if for each vertex $v \in V$ we have

$$\sum_{u\in N(v)}\omega(uv)(p(u)-p(v))=-F(v). \tag{1}$$

The function $\omega : e \in E \mapsto \omega(e) \in \mathbb{R}$ on framework (G, p) is an *equilibrium stress* if it is in equilibrium with respect to $F \equiv 0$.

Tibor Jordán Globally rigid braced triangulations

The function $\omega : e \in E \mapsto \omega(e) \in \mathbb{R}$ on framework (G, p) is an *equilibrium stress* if it is in equilibrium with respect to $F \equiv 0$.

The stress matrix Ω of ω is a symmetric matrix of size $|V| \times |V|$ in which all row (and column) sums are zero and

$$\Omega[u,v] = -\omega(uv). \tag{2}$$

Theorem (Connelly, 2005, Gortler, Healy, Thurston, 2010)

Let (G, p) be a generic framework in \mathbb{R}^d on at least d + 2 vertices. Then (G, p) is globally rigid in \mathbb{R}^d if and only if (G, p) has an equilibrium stress ω for which the rank of the associated stress matrix Ω is |V| - d - 1. The stress matrix Ω of ω is a symmetric matrix of size $|V| \times |V|$ in which all row (and column) sums are zero and

$$\Omega[u, v] = -\omega(uv). \tag{2}$$

Theorem (Connelly, 2005, Gortler, Healy, Thurston, 2010)

Let (G, p) be a generic framework in \mathbb{R}^d on at least d + 2 vertices. Then (G, p) is globally rigid in \mathbb{R}^d if and only if (G, p) has an equilibrium stress ω for which the rank of the associated stress matrix Ω is |V| - d - 1. Let (G, p) be a *d*-dimensional framework and let ω be a stress on (G, p). For a given vertex v of G and a given non-empty subset $X \subseteq N_G(v)$ we define $\omega \circ p(X) \in \mathbb{R}^d$ by

$$\omega \circ p(X) := \sum_{u \in X} \omega(uv)(p(u) - p(v)).$$

We say that ω is *degenerate* (resp. *non-degenerate*) with respect to a *d*-subpartition $\{X_1, \ldots, X_d\}$ of $N_G(v)$ if the set of vectors $\{\omega \circ p(X_i) : 1 \le i \le d\}$ is linearly dependent (linearly independent, respectively). Due to the equilibrium condition, ω is always degenerate with respect to a *d*-partition of $N_G(v)$. We say that ω is *non-degenerate* if it is non-degenerate with respect to every vertex *v* and every proper *d*-subpartition of the neighborhood of *v*. We call a graph *G* non-degenerate in \mathbb{R}^d if every generic realization (G, p) of *G* in \mathbb{R}^d admits a non-degenerate stress.

Lemma (T.J. and S. Tanigawa, 2017)

Non-degeneracy is a generic property in \mathbb{R}^d for all $d \ge 1$.

Conjecture (T.J. and S. Tanigawa, 2017

Every globally rigid graph G in \mathbb{R}^d is non-degenerate in \mathbb{R}^d .

We call a graph *G* non-degenerate in \mathbb{R}^d if every generic realization (G, p) of *G* in \mathbb{R}^d admits a non-degenerate stress.

Lemma (T.J. and S. Tanigawa, 2017)

Non-degeneracy is a generic property in \mathbb{R}^d for all $d \ge 1$.

Conjecture (T.J. and S. Tanigawa, 2017)

Every globally rigid graph G in \mathbb{R}^d is non-degenerate in \mathbb{R}^d .

Let G be obtained from H by a nontrivial vertex splitting at v_1 with respect to partition $\{U_{12}, U_1, U_2\}$ of $N_G(v_1)$, where $U_{12} = \{u_1, \ldots, u_{d-1}\}$. Suppose that a generic framework (H, p) in \mathbb{R}^d admits a full rank stress ω . Then (a) If ω is not degenerate with respect to $\{\{u_1\}, \ldots, \{u_{d-1}\}, U_2\}$, then some generic framework (G, p') admits a full rank stress. (b) Moreover, if ω is non-degenerate, then (G, p') admits a full rank non-degenerate stress.

Let *H* be a globally rigid graph in \mathbb{R}^d with maximum degree at most d + 2 and let *G* be obtained from *H* by a sequence of nontrivial (d - 1)-vertex splitting operations. Then *G* is globally rigid in \mathbb{R}^d .

Theorem (T.J. and S. Tanigawa, 2017)

Suppose that G can be obtained from K_{d+2} by a sequence of non-trivial (d-1)-vertex splitting operations. Then G is globally rigid in \mathbb{R}^d .

- 4 同 🕨 - 4 目 🕨 - 4 目

Let *H* be a globally rigid graph in \mathbb{R}^d with maximum degree at most d + 2 and let *G* be obtained from *H* by a sequence of nontrivial (d - 1)-vertex splitting operations. Then *G* is globally rigid in \mathbb{R}^d .

Theorem (T.J. and S. Tanigawa, 2017)

Suppose that G can be obtained from K_{d+2} by a sequence of non-trivial (d-1)-vertex splitting operations. Then G is globally rigid in \mathbb{R}^d .

Let G = (V, E) be a triangulation and let $a, b \in V$ be a pair of non-adjacent vertices. Then G + ab is called a *uni-braced triangulation rooted at* (a, b). Let H = G + ab be a 4-connected uni-braced triangulation. We say that an edge e = uv avoids the vertex pair (a, b) if $\{u, v\} \cap \{a, b\} = \emptyset$. An edge e is said to be *contractible* in H if e avoids (a, b) and H/e is a 4-connected uni-braced triangulation rooted at (a, b).

Theorem (T.J. and S. Tanigawa, 2017)

Let H = G + ab be a 4-connected uni-braced triangulation rooted at (a, b). Then either (i) H has a contractible edge not induced by $N_G(a) \cap N_G(b)$, or (ii) G is a double pyramid with poles (a, b). Let G = (V, E) be a triangulation and let $a, b \in V$ be a pair of non-adjacent vertices. Then G + ab is called a *uni-braced triangulation rooted at* (a, b). Let H = G + ab be a 4-connected uni-braced triangulation. We say that an edge e = uv avoids the vertex pair (a, b) if $\{u, v\} \cap \{a, b\} = \emptyset$. An edge e is said to be *contractible* in H if e avoids (a, b) and H/e is a 4-connected uni-braced triangulation rooted at (a, b).

Theorem (T.J. and S. Tanigawa, 2017)

Let H = G + ab be a 4-connected uni-braced triangulation rooted at (a, b). Then either (i) H has a contractible edge not induced by $N_G(a) \cap N_G(b)$, or (ii) G is a double pyramid with poles (a, b).

・ロト ・同ト ・ヨト ・ヨト

Double pyramid

Let H = G + ab be a 4-connected uni-braced triangulation. Then H can be obtained from K_5 by a sequence of non-trivial 2-vertex splitting operations.

Theorem (T.J. and S. Tanigawa, 2017)

Every 4-connected uni-braced triangulation is globally rigid in \mathbb{R}^3 .

Theorem (T.J. and S. Tanigawa, 2017)

Every 4-connected braced triangulation is globally rigid in \mathbb{R}^3 .

- 4 同 🕨 - 4 目 🕨 - 4 目

Let H = G + ab be a 4-connected uni-braced triangulation. Then H can be obtained from K_5 by a sequence of non-trivial 2-vertex splitting operations.

Theorem (T.J. and S. Tanigawa, 2017)

Every 4-connected uni-braced triangulation is globally rigid in \mathbb{R}^3 .

Theorem (T.J. and S. Tanigawa, 2017)

Every 4-connected braced triangulation is globally rigid in \mathbb{R}^3 .

- 4 同 ト 4 ヨ ト 4 ヨ

Let H = G + ab be a 4-connected uni-braced triangulation. Then H can be obtained from K_5 by a sequence of non-trivial 2-vertex splitting operations.

Theorem (T.J. and S. Tanigawa, 2017)

Every 4-connected uni-braced triangulation is globally rigid in \mathbb{R}^3 .

Theorem (T.J. and S. Tanigawa, 2017)

Every 4-connected braced triangulation is globally rigid in \mathbb{R}^3 .

Let H = (V, E + B) be a braced triangulation and let $e \in B$ be a designated bracing edge. The unique maximal 4-connected subgraph containing e is called the 4-*block* of e in H.

Theorem (T.J. and S. Tanigawa, 2017)

Let H = (V, E + B) be a braced triangulation and let $e \in E + B$ be a designated edge. Then H - e is rigid if and only if e belongs to the 4-block of some bracing edge in H.

It follows that *H* is redundantly rigid if and only if every edge belongs to the 4-block of some bracing edge.

Let H = (V, E + B) be a braced triangulation and let $e \in B$ be a designated bracing edge. The unique maximal 4-connected subgraph containing e is called the 4-*block* of e in H.

Theorem (T.J. and S. Tanigawa, 2017)

Let H = (V, E + B) be a braced triangulation and let $e \in E + B$ be a designated edge. Then H - e is rigid if and only if e belongs to the 4-block of some bracing edge in H.

It follows that *H* is redundantly rigid if and only if every edge belongs to the 4-block of some bracing edge.

Let H = (V, E + B) be a braced triangulation and let $e \in B$ be a designated bracing edge. The unique maximal 4-connected subgraph containing e is called the 4-*block* of e in H.

Theorem (T.J. and S. Tanigawa, 2017)

Let H = (V, E + B) be a braced triangulation and let $e \in E + B$ be a designated edge. Then H - e is rigid if and only if e belongs to the 4-block of some bracing edge in H.

It follows that H is redundantly rigid if and only if every edge belongs to the 4-block of some bracing edge.

Let G be a triangulation and let $\{u, v\}$ be a pair of non-adjacent vertices of G. Then $\{u, v\}$ is globally loose.

Theorem (Whiteley, 1988)

Let H be a graph with a quadrilateral hole and a quadrilateral block, obtained from a triangulation by removing an edge and adding a new edge between adjacent triangles. Then H is rigid in \mathbb{R}^3 if and only if there exist 4 vertex-disjoint paths between the hole and the block.

Conjecture (T.J. and S. Tanigawa, 2017)

Let G = (V, E) be a 5-connected braced triangulation with $|E| \ge 3|V| - 4$. Then G - e is globally rigid in \mathbb{R}^3 for all $e \in E$.

Let G be a triangulation and let $\{u, v\}$ be a pair of non-adjacent vertices of G. Then $\{u, v\}$ is globally loose.

Theorem (Whiteley, 1988)

Let *H* be a graph with a quadrilateral hole and a quadrilateral block, obtained from a triangulation by removing an edge and adding a new edge between adjacent triangles. Then *H* is rigid in \mathbb{R}^3 if and only if there exist 4 vertex-disjoint paths between the hole and the block.

Conjecture (T.J. and S. Tanigawa, 2017)

Let G = (V, E) be a 5-connected braced triangulation with $|E| \ge 3|V| - 4$. Then G - e is globally rigid in \mathbb{R}^3 for all $e \in E$

Let G be a triangulation and let $\{u, v\}$ be a pair of non-adjacent vertices of G. Then $\{u, v\}$ is globally loose.

Theorem (Whiteley, 1988)

Let *H* be a graph with a quadrilateral hole and a quadrilateral block, obtained from a triangulation by removing an edge and adding a new edge between adjacent triangles. Then *H* is rigid in \mathbb{R}^3 if and only if there exist 4 vertex-disjoint paths between the hole and the block.

Conjecture (T.J. and S. Tanigawa, 2017)

Let G = (V, E) be a 5-connected braced triangulation with $|E| \ge 3|V| - 4$. Then G - e is globally rigid in \mathbb{R}^3 for all $e \in E$.

Theorem (Barnette, 1990)

(a) Every 4-connected triangulation of the projective plane can be obtained from K_6 or K_7 minus a triangle by nontrivial vertex-splitting operations.

(b) Every 4-connected triangulation of the torus can be obtained from one of 21 graphs by nontrivial vertex-splitting operations.

Theorem (T.J. and S. Tanigawa, 2017)

Suppose that G is a 4-connected triangulation of the torus or the projective plane. Then G is globally rigid in \mathbb{R}^3 .

Theorem (Barnette, 1990)

(a) Every 4-connected triangulation of the projective plane can be obtained from K_6 or K_7 minus a triangle by nontrivial vertex-splitting operations.

(b) Every 4-connected triangulation of the torus can be obtained from one of 21 graphs by nontrivial vertex-splitting operations.

Theorem (T.J. and S. Tanigawa, 2017)

Suppose that G is a 4-connected triangulation of the torus or the projective plane. Then G is globally rigid in \mathbb{R}^3 .

Thank you.

Tibor Jordán Globally rigid braced triangulations

(4日) (4日)

문 🛌 문