Sufficient conditions for the global rigidity of periodic graphs

Viktória E. Kaszanitzky¹ Csaba Király² Bernd Schulze³

¹Budapest University of Technology and Economics, Budapest, Hungary

²Dept. of Operations Research, ELTE Eötvös Loránd University, Budapest, Hungary

³Dept. of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom

2017.06.7-9.

イロト イポト イラト イラ

- A graph G̃ = (Ṽ, Ẽ) is *k-periodic* if there is a subgroup Γ of Aut(G̃) isomorphic to Z^k acting without loops on each vertex of G.
- **F-labeled graph:** $(G = (V, E), \psi)$ with reference orientation \vec{E} and $\psi : \vec{E} \to \Gamma$. (Here: NO loops.)
- $G \mapsto \widetilde{G} : \widetilde{V} = \{\gamma v_i : v_i \in V, \gamma \in \Gamma\}, \ \widetilde{E} = \{\{\gamma v_i, \psi(v_i v_j) \gamma v_j\} : (v_i, v_j) \in \overrightarrow{E}, \gamma \in \Gamma\}.$
- For a nonsingular homomorphism $L : \Gamma \to \mathbb{R}^d$ and $p : \widetilde{V} \to \mathbb{R}^d$, $(\widetilde{G}, \widetilde{p})$ is an *L*-periodic framework if

 $\widetilde{p}(v) + L(\gamma) = \widetilde{p}(\gamma v)$ for all $\gamma \in \Gamma$ and all $v \in \widetilde{V}$. (1)

- By (1): it is enough to realize *G* (with $p: V \to \mathbb{R}^d$) and *L*.
- Generic periodic framework: if the coordinates of *p* are generic.

- A graph G̃ = (Ṽ, Ẽ) is *k-periodic* if there is a subgroup Γ of Aut(G̃) isomorphic to Z^k acting without loops on each vertex of G.
- **Γ-labeled graph:** $(G = (V, E), \psi)$ with reference orientation \overrightarrow{E} and $\psi : \overrightarrow{E} \to \Gamma$. (Here: NO loops.)
- $G \mapsto \widetilde{G} : \widetilde{V} = \{\gamma v_i : v_i \in V, \gamma \in \Gamma\}, \ \widetilde{E} = \{\{\gamma v_i, \psi(v_i v_j) \gamma v_j\} : (v_i, v_j) \in \overrightarrow{E}, \gamma \in \Gamma\}.$
- For a nonsingular homomorphism $L : \Gamma \to \mathbb{R}^d$ and $p : \widetilde{V} \to \mathbb{R}^d$, $(\widetilde{G}, \widetilde{p})$ is an *L*-periodic framework if

 $\widetilde{p}(v) + L(\gamma) = \widetilde{p}(\gamma v)$ for all $\gamma \in \Gamma$ and all $v \in \widetilde{V}$. (1)

- By (1): it is enough to realize G (with $p: V \to \mathbb{R}^d$) and L.
- Generic periodic framework: if the coordinates of *p* are generic.

- A graph G̃ = (Ṽ, Ẽ) is *k-periodic* if there is a subgroup Γ of Aut(G̃) isomorphic to Z^k acting without loops on each vertex of G.
- **Γ-labeled graph:** $(G = (V, E), \psi)$ with reference orientation \overrightarrow{E} and $\psi : \overrightarrow{E} \to \Gamma$. (Here: NO loops.)

•
$$G \mapsto \widetilde{G} : \widetilde{V} = \{\gamma v_i : v_i \in V, \gamma \in \Gamma\}, \ \widetilde{E} = \{\{\gamma v_i, \psi(v_i v_j) \gamma v_j\} : (v_i, v_j) \in \overrightarrow{E}, \gamma \in \Gamma\}.$$

• For a nonsingular homomorphism $L : \Gamma \to \mathbb{R}^d$ and $p : \widetilde{V} \to \mathbb{R}^d$, $(\widetilde{G}, \widetilde{p})$ is an *L*-periodic framework if

 $\widetilde{p}(v) + L(\gamma) = \widetilde{p}(\gamma v)$ for all $\gamma \in \Gamma$ and all $v \in \widetilde{V}$. (1)

• By (1): it is enough to realize G (with $p: V \to \mathbb{R}^d$) and L.

• Generic periodic framework: if the coordinates of *p* are generic.

- A graph G̃ = (Ṽ, Ẽ) is *k-periodic* if there is a subgroup Γ of Aut(G̃) isomorphic to Z^k acting without loops on each vertex of G.
- **Γ-labeled graph:** $(G = (V, E), \psi)$ with reference orientation \overrightarrow{E} and $\psi : \overrightarrow{E} \to \Gamma$. (Here: NO loops.)

•
$$G \mapsto \widetilde{G} : \widetilde{V} = \{\gamma v_i : v_i \in V, \gamma \in \Gamma\}, \ \widetilde{E} = \{\{\gamma v_i, \psi(v_i v_j) \gamma v_j\} : (v_i, v_j) \in \overrightarrow{E}, \gamma \in \Gamma\}.$$

• For a nonsingular homomorphism $L: \Gamma \to \mathbb{R}^d$ and $p: \widetilde{V} \to \mathbb{R}^d$, $(\widetilde{G}, \widetilde{\rho})$ is an *L*-periodic framework if

$$\widetilde{p}(v) + L(\gamma) = \widetilde{p}(\gamma v)$$
 for all $\gamma \in \Gamma$ and all $v \in \widetilde{V}$. (1)

• By (1): it is enough to realize G (with $p: V \to \mathbb{R}^d$) and L.

• Generic periodic framework: if the coordinates of *p* are generic.

- A graph G̃ = (Ṽ, Ẽ) is *k-periodic* if there is a subgroup Γ of Aut(G̃) isomorphic to Z^k acting without loops on each vertex of G.
- **Γ-labeled graph:** $(G = (V, E), \psi)$ with reference orientation \overrightarrow{E} and $\psi : \overrightarrow{E} \to \Gamma$. (Here: NO loops.)

•
$$G \mapsto \widetilde{G} : \widetilde{V} = \{\gamma v_i : v_i \in V, \gamma \in \Gamma\}, \ \widetilde{E} = \{\{\gamma v_i, \psi(v_i v_j) \gamma v_j\} : (v_i, v_j) \in \overrightarrow{E}, \gamma \in \Gamma\}.$$

• For a nonsingular homomorphism $L: \Gamma \to \mathbb{R}^d$ and $p: \widetilde{V} \to \mathbb{R}^d$, $(\widetilde{G}, \widetilde{p})$ is an *L*-periodic framework if

$$\widetilde{p}(v) + L(\gamma) = \widetilde{p}(\gamma v)$$
 for all $\gamma \in \Gamma$ and all $v \in \widetilde{V}$. (1)

- By (1): it is enough to realize G (with $p: V \to \mathbb{R}^d$) and L.
- Generic periodic framework: if the coordinates of *p* are generic.

- A graph G̃ = (Ṽ, Ẽ) is *k-periodic* if there is a subgroup Γ of Aut(G̃) isomorphic to Z^k acting without loops on each vertex of G.
- **Γ-labeled graph:** $(G = (V, E), \psi)$ with reference orientation \overrightarrow{E} and $\psi : \overrightarrow{E} \to \Gamma$. (Here: NO loops.)

•
$$G \mapsto \widetilde{G} : \widetilde{V} = \{\gamma v_i : v_i \in V, \gamma \in \Gamma\}, \ \widetilde{E} = \{\{\gamma v_i, \psi(v_i v_j) \gamma v_j\} : (v_i, v_j) \in \overrightarrow{E}, \gamma \in \Gamma\}.$$

• For a nonsingular homomorphism $L: \Gamma \to \mathbb{R}^d$ and $p: \widetilde{V} \to \mathbb{R}^d$, $(\widetilde{G}, \widetilde{\rho})$ is an *L*-periodic framework if

$$\widetilde{p}(v) + L(\gamma) = \widetilde{p}(\gamma v)$$
 for all $\gamma \in \Gamma$ and all $v \in \widetilde{V}$. (1)

- By (1): it is enough to realize G (with $p: V \to \mathbb{R}^d$) and L.
- Generic periodic framework: if the coordinates of *p* are generic.

A D N A B N A B N A B N

- *L*-periodical global rigidity: every equivalent *L*-periodic framework (with the same *L*!!!) is congruent.
- *L*-periodical rigidity: every equivalent *L*-periodic framework in an open neighborhood of \tilde{p} (with the same *L*!!!) is congruent.
- *L*-periodical rigidity is known to be a generic property but for *L*-periodical global rigidity this is only known when d = 2 by a recent paper of Kaszanitzky, Schulze, Tanigawa (2016).
- L-periodical 2-rigidity: for every v ∈ V, (G̃ Γv, p̃) is L-periodically rigid. In other words, for every v ∈ V, (G v, ψ, p) is L-periodically rigid.
- *L*-periodical redundant rigidity: for every $e \in E$, $(G e, \psi, p)$ is *L*-periodically rigid. (This is known to be a necessary condition for global rigidity by Kaszanitzky, Schulze and Tanigawa (2016)).

- *L*-periodical global rigidity: every equivalent *L*-periodic framework (with the same *L*!!!) is congruent.
- *L*-periodical rigidity: every equivalent *L*-periodic framework in an open neighborhood of p
 (with the same *L*!!!) is congruent.
- *L*-periodical rigidity is known to be a generic property but for *L*-periodical global rigidity this is only known when d = 2 by a recent paper of Kaszanitzky, Schulze, Tanigawa (2016).
- L-periodical 2-rigidity: for every v ∈ V, (G̃ Γv, p̃) is L-periodically rigid. In other words, for every v ∈ V, (G v, ψ, p) is L-periodically rigid.
- *L*-periodical redundant rigidity: for every $e \in E$, $(G e, \psi, p)$ is *L*-periodically rigid. (This is known to be a necessary condition for global rigidity by Kaszanitzky, Schulze and Tanigawa (2016)).

- *L*-periodical global rigidity: every equivalent *L*-periodic framework (with the same *L*!!!) is congruent.
- *L*-periodical rigidity: every equivalent *L*-periodic framework in an open neighborhood of p
 (with the same *L*!!!) is congruent.
- *L*-periodical rigidity is known to be a generic property but for *L*-periodical global rigidity this is only known when d = 2 by a recent paper of Kaszanitzky, Schulze, Tanigawa (2016).
- L-periodical 2-rigidity: for every v ∈ V, (G̃ Γv, p̃) is L-periodically rigid. In other words, for every v ∈ V, (G v, ψ, p) is L-periodically rigid.
- *L*-periodical redundant rigidity: for every $e \in E$, $(G e, \psi, p)$ is *L*-periodically rigid. (This is known to be a necessary condition for global rigidity by Kaszanitzky, Schulze and Tanigawa (2016)).

- *L*-periodical global rigidity: every equivalent *L*-periodic framework (with the same *L*!!!) is congruent.
- *L*-periodical rigidity: every equivalent *L*-periodic framework in an open neighborhood of p
 (with the same *L*!!!) is congruent.
- *L*-periodical rigidity is known to be a generic property but for *L*-periodical global rigidity this is only known when d = 2 by a recent paper of Kaszanitzky, Schulze, Tanigawa (2016).
- L-periodical 2-rigidity: for every v ∈ V, (G̃ Γv, p̃) is L-periodically rigid. In other words, for every v ∈ V, (G v, ψ, p) is L-periodically rigid.
- *L*-periodical redundant rigidity: for every $e \in E$, $(G e, \psi, p)$ is *L*-periodically rigid. (This is known to be a necessary condition for global rigidity by Kaszanitzky, Schulze and Tanigawa (2016)).

- *L*-periodical global rigidity: every equivalent *L*-periodic framework (with the same *L*!!!) is congruent.
- *L*-periodical rigidity: every equivalent *L*-periodic framework in an open neighborhood of \tilde{p} (with the same *L*!!!) is congruent.
- *L*-periodical rigidity is known to be a generic property but for *L*-periodical global rigidity this is only known when d = 2 by a recent paper of Kaszanitzky, Schulze, Tanigawa (2016).
- L-periodical 2-rigidity: for every v ∈ V, (G̃ Γv, p̃) is L-periodically rigid. In other words, for every v ∈ V, (G v, ψ, p) is L-periodically rigid.
- *L*-periodical redundant rigidity: for every $e \in E$, $(G e, \psi, p)$ is *L*-periodically rigid. (This is known to be a necessary condition for global rigidity by Kaszanitzky, Schulze and Tanigawa (2016)).

For a generically rigid graph G = (V, E), assume that G - v is generically rigid in \mathbb{R}^d and $G - v + K(N_G(v))$ is globally rigid in \mathbb{R}^d for a vertex $v \in V$ with $d(v) \ge d + 1$. Then G is globally rigid in \mathbb{R}^d .

Problem 1: Proved using that global rigidity is a generic property. NOT known for *L*-periodic global rigidity.

Theorem (Tanigawa (2016))

Assume that G is 2-rigid in \mathbb{R}^d Then G is globally rigid in \mathbb{R}^d .

Problem 2: Proved by induction from the first theorem. Starting: when $|V| \le d + 2$, 2-rigid graphs are complete. NOT true for *L*-periodic global rigidity.

For a generically rigid graph G = (V, E), assume that G - v is generically rigid in \mathbb{R}^d and $G - v + K(N_G(v))$ is globally rigid in \mathbb{R}^d for a vertex $v \in V$ with $d(v) \ge d + 1$. Then G is globally rigid in \mathbb{R}^d .

Problem 1: Proved using that global rigidity is a generic property. NOT known for *L*-periodic global rigidity.

Theorem (Tanigawa (2016))

Assume that G is 2-rigid in \mathbb{R}^d Then G is globally rigid in \mathbb{R}^d .

Problem 2: Proved by induction from the first theorem. Starting: when $|V| \le d + 2$, 2-rigid graphs are complete. NOT true for *L*-periodic global rigidity.

For a generically rigid graph G = (V, E), assume that G - v is generically rigid in \mathbb{R}^d and $G - v + K(N_G(v))$ is globally rigid in \mathbb{R}^d for a vertex $v \in V$ with $d(v) \ge d + 1$. Then G is globally rigid in \mathbb{R}^d .

Problem 1: Proved using that global rigidity is a generic property. NOT known for *L*-periodic global rigidity.

Theorem (Tanigawa (2016))

Assume that G is 2-rigid in \mathbb{R}^d Then G is globally rigid in \mathbb{R}^d .

Problem 2: Proved by induction from the first theorem. Starting: when $|V| \le d + 2$, 2-rigid graphs are complete. NOT true for *L*-periodic global rigidity.

For a generically rigid graph G = (V, E), assume that G - v is generically rigid in \mathbb{R}^d and $G - v + K(N_G(v))$ is globally rigid in \mathbb{R}^d for a vertex $v \in V$ with $d(v) \ge d + 1$. Then G is globally rigid in \mathbb{R}^d .

Problem 1: Proved using that global rigidity is a generic property. NOT known for *L*-periodic global rigidity.

Theorem (Tanigawa (2016))

Assume that G is 2-rigid in \mathbb{R}^d Then G is globally rigid in \mathbb{R}^d .

Problem 2: Proved by induction from the first theorem. Starting: when $|V| \le d + 2$, 2-rigid graphs are complete. NOT true for *L*-periodic global rigidity.

First we extend a Lemma by Bezdek and Connelly (2002).

Lemma

Let \widetilde{p} and \widetilde{q} be two equivalent *L*-periodic realizations of \widetilde{G} in \mathbb{R}^d . Then there exists an $(L, 0^d)$ -periodically rigid motion from $(\widetilde{(G)}, (\widetilde{p}, 0^d))$ to $(\widetilde{(G)}, (\widetilde{q}, 0^d))$ in \mathbb{R}^{2d} , as follows. Move a vertex γv (for $v \in V$ and $\gamma \in \Gamma$) on the curve $p_{\gamma,v} : [0, 1] \to \mathbb{R}^{2d}$ defined by

$$p_{\gamma,\nu}(t) = \left(\frac{p_{\gamma,\nu} + q_{\gamma,\nu}}{2} + (\cos(\pi t))\frac{p_{\gamma,\nu} - q_{\gamma,\nu}}{2}, (\sin(\pi t))\frac{p_{\gamma,\nu} - q_{\gamma,\nu}}{2}\right)$$

where $p_{\gamma,\nu} = \widetilde{p}(\gamma \nu)$ and $q_{\gamma,\nu} = \widetilde{q}(\gamma \nu)$.

Theorem

If a Γ -labeled framework (G, ψ, p) is not L-periodically globally rigid in \mathbb{R}^d , then the framework $(G, \psi, (p, 0^d))$ in \mathbb{R}^{2d} is not $(L, 0^d)$ -periodically rigid, where $(L, 0^d) : \Gamma \to \mathbb{R}^{2d}$ maps $\gamma \in \Gamma$ to $(L(\gamma), 0^d)$.

First we extend a Lemma by Bezdek and Connelly (2002).

Lemma

Let \widetilde{p} and \widetilde{q} be two equivalent *L*-periodic realizations of \widetilde{G} in \mathbb{R}^d . Then there exists an $(L, 0^d)$ -periodically rigid motion from $(\widetilde{(G)}, (\widetilde{p}, 0^d))$ to $(\widetilde{(G)}, (\widetilde{q}, 0^d))$ in \mathbb{R}^{2d} , as follows. Move a vertex γv (for $v \in V$ and $\gamma \in \Gamma$) on the curve $p_{\gamma,v} : [0, 1] \to \mathbb{R}^{2d}$ defined by

$$p_{\gamma,\nu}(t) = \left(\frac{p_{\gamma,\nu} + q_{\gamma,\nu}}{2} + (\cos(\pi t))\frac{p_{\gamma,\nu} - q_{\gamma,\nu}}{2}, (\sin(\pi t))\frac{p_{\gamma,\nu} - q_{\gamma,\nu}}{2}\right)$$

where $p_{\gamma,\nu} = \widetilde{p}(\gamma \nu)$ and $q_{\gamma,\nu} = \widetilde{q}(\gamma \nu)$.

Theorem

If a Γ -labeled framework (G, ψ, p) is not *L*-periodically globally rigid in \mathbb{R}^d , then the framework $(G, \psi, (p, 0^d))$ in \mathbb{R}^{2d} is not $(L, 0^d)$ -periodically rigid, where $(L, 0^d) : \Gamma \to \mathbb{R}^{2d}$ maps $\gamma \in \Gamma$ to $(L(\gamma), 0^d)$.

Observation

For an *L*-periodically rigid framework (G, ψ, p) in \mathbb{R}^d with rank *k* periodicity and with $|V(G)| \leq d - k + 1$, $(G, \psi, (p, 0^{D-d}))$ is $(L, 0^{D-d})$ -periodically rigid in \mathbb{R}^D for $D \geq d$ since every $(L, 0^{D-d})$ -periodic realization of (G, ψ) in \mathbb{R}^D has affine span of dimension at most $|V(G)| + k - 1 \leq d$.

Corollary

Let (G, ψ, p) be a Γ -labeled framework in \mathbb{R}^d with rank k periodicity and $L: \Gamma \to \mathbb{R}^d$. Suppose that (G, ψ, p) is L-periodically rigid and $|V(G)| \leq d - k + 1$. Then (G, ψ, p) is also L-periodically globally rigid.

For a generically rigid graph G = (V, E), assume that G - v is generically rigid in \mathbb{R}^d and $G - v + K(N_G(v))$ is globally rigid in \mathbb{R}^d for a vertex $v \in V$. Then G is globally rigid in \mathbb{R}^d with $d(v) \ge d + 1$.

Definition

Let (G, ψ) be Γ -labeled and $v \in V$. Assume every edge incident to v is directed from v in \vec{E} .

- $e_1 = vu, e_2 = vw \in \vec{E} \mapsto e_1 \cdot e_2 = uv$ with label $\psi(vu)^{-1}\psi(vw)$.
- (G_ν, ψ_ν): Γ-labeled graph obtained from (G, ψ) by removing v and inserting e₁ · e₂ for every pair of nonparallel edges e₁, e₂ incident to v.

・ロン ・四 ・ ・ ヨン ・ ヨン

Periodic 2-Rigidity implies periodic global rigidity

Definition

Let (G, ψ) be Γ -labeled and $v \in V$. Assume every edge incident to v is directed from v in \vec{E} .

- $e_1 = vu, e_2 = vw \in \overrightarrow{E} \mapsto e_1 \cdot e_2 = uv$ with label $\psi(vu)^{-1}\psi(vw)$.
- (G_ν, ψ_ν): Γ-labeled graph obtained from (G, ψ) by removing ν and inserting e₁ · e₂ for every pair of nonparallel edges e₁, e₂ incident to ν.

Theorem

Let (G, ψ, p) be a generic Γ -labeled framework in \mathbb{R}^d and $L : \Gamma \to \mathbb{R}^d$ be nonsingular. Suppose $v \in V$ has at least d + 1 neighbors in the covering $(\widetilde{G}, \widetilde{p})$ affinely spanning \mathbb{R}^d . Suppose further that • $(G - v, \psi|_{G-v}, p|_{V(G)-v})$ is L-periodically rigid in \mathbb{R}^d , and • $(G_v, \psi_v, p|_{V(G)-v})$ is L-periodically globally rigid in \mathbb{R}^d .

Then (G, ψ, p) is L-periodically globally rigid in \mathbb{R}^d .

Let (G, ψ, p) be a generic Γ -labeled framework in \mathbb{R}^d and $L : \Gamma \to \mathbb{R}^d$ be nonsingular. Suppose $v \in V$ has at least d + 1 neighbors in the covering $(\widetilde{G}, \widetilde{p})$ affinely spanning \mathbb{R}^d . Suppose further that

- $(G v, \psi|_{G-v}, p|_{V(G)-v})$ is L-periodically rigid in \mathbb{R}^d , and
- $(G_{v}, \psi_{v}, p|_{V(G)-v})$ is L-periodically globally rigid in \mathbb{R}^{d} .

Then (G, ψ, p) is L-periodically globally rigid in \mathbb{R}^d .

The proof is

- algebraic,
- similar to a proof of a recent lemma by Kaszanitzky, Schulze and Tanigawa.

Assume that G is 2-rigid in \mathbb{R}^d Then G is globally rigid in \mathbb{R}^d .

Theorem

A generic L-periodically 2-rigid framework in \mathbb{R}^d , is also L-periodically globally rigid in \mathbb{R}^d . Moreover, any of its generic L-periodic realizations is L-periodically globally rigid.

Proof.

Induction on |V| using the previous results.

Assume that G is 2-rigid in \mathbb{R}^d Then G is globally rigid in \mathbb{R}^d .

Theorem

A generic L-periodically 2-rigid framework in \mathbb{R}^d , is also L-periodically globally rigid in \mathbb{R}^d . Moreover, any of its generic L-periodic realizations is L-periodically globally rigid.

Proof.

Induction on |V| using the previous results.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume that G is 2-rigid in \mathbb{R}^d Then G is globally rigid in \mathbb{R}^d .

Theorem

A generic L-periodically 2-rigid framework in \mathbb{R}^d , is also L-periodically globally rigid in \mathbb{R}^d . Moreover, any of its generic L-periodic realizations is L-periodically globally rigid.

Proof.

Induction on |V| using the previous results.

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H,ψ)
- L-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework $(H e, \psi)$ for every $e \in E$

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H,ψ)
- L-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework $(H e, \psi)$ for every $e \in E$

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H,ψ)
- L-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework $(H e, \psi)$ for every $e \in E$

3

イロト 不得 トイヨト イヨト

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H, ψ)
- L-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework $(H e, \psi)$ for every $e \in E$

3

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H,ψ)
- L-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework $(H e, \psi)$ for every $e \in E$

3

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H, ψ)
- *L*-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework $(H e, \psi)$ for every $e \in E$

3

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H, ψ)
- L-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework $(H e, \psi)$ for every $e \in E$

3

- rigid full dimensional bodies connected by disjoint bars
- can be represented by a multigraph *H* where vertices represent bodies
- corresponding bar-joint framework: take each body as a large complete graph
- rigidity and global rigidity characterized by Tay (1984) and Connelly, Jordán and Whiteley (2013), resp.
- periodic analogue
- represented by a Γ -periodic multigraph \widetilde{H} or Γ -labeled multigraph (H, ψ)
- *L*-periodic rigidity characterized by Tanigawa (2015)
- *L*-periodic bar-redundant rigidity: *L*-periodic rigidity of the body-bar framework (*H* − *e*, ψ) for every *e* ∈ *E*

3

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Let $(G_{\widetilde{H}}, \widetilde{p})$ be a generic *L*-periodic body-bar realization of the multi-graph \widetilde{H} in \mathbb{R}^d , and $L : \Gamma \to \mathbb{R}^d$ be nonsingular. Then $(G_{\widetilde{H}}, \widetilde{p})$ is *L*-periodically globally rigid in \mathbb{R}^d iff $(G_{\widetilde{H}}, \widetilde{p})$ is *L*-periodically bar-redundantly rigid in \mathbb{R}^d .

Proof.

Necessity: by the result of Kaszanitzy, Schulze and Tanigawa (2016). Sufficiency: *L*-periodic bar-redundant rigidity implies *L*-periodic 2-rigidity in the corresponding bar-joint framework.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $(G_{\widetilde{H}}, \widetilde{p})$ be a generic *L*-periodic body-bar realization of the multi-graph \widetilde{H} in \mathbb{R}^d , and $L : \Gamma \to \mathbb{R}^d$ be nonsingular. Then $(G_{\widetilde{H}}, \widetilde{p})$ is *L*-periodically globally rigid in \mathbb{R}^d iff $(G_{\widetilde{H}}, \widetilde{p})$ is *L*-periodically bar-redundantly rigid in \mathbb{R}^d .

Proof.

Necessity: by the result of Kaszanitzy, Schulze and Tanigawa (2016). Sufficiency: *L*-periodic bar-redundant rigidity implies *L*-periodic 2-rigidity in the corresponding bar-joint framework.

< ロ > < 同 > < 回 > < 回 >

Let $(G_{\widetilde{H}}, \widetilde{p})$ be a generic *L*-periodic body-bar realization of the multi-graph \widetilde{H} in \mathbb{R}^d , and $L : \Gamma \to \mathbb{R}^d$ be nonsingular. Then $(G_{\widetilde{H}}, \widetilde{p})$ is *L*-periodically globally rigid in \mathbb{R}^d iff $(G_{\widetilde{H}}, \widetilde{p})$ is *L*-periodically bar-redundantly rigid in \mathbb{R}^d .

Proof.

Necessity: by the result of Kaszanitzy, Schulze and Tanigawa (2016). Sufficiency: *L*-periodic bar-redundant rigidity implies *L*-periodic 2-rigidity in the corresponding bar-joint framework.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Open questions

Symmetric version?

Open questions

Symmetric version?

Flexible or partially flexible lattice? •

- Symmetric version?
- Flexible or partially flexible lattice?
- Periodic body-hinge/molecular frameworks?
 - Note 1: periodic rigidity is also open for these frameworks.
 - Note 2: global rigidity is also open for non-periodic molecular frameworks.

- Symmetric version?
- Flexible or partially flexible lattice?
- Periodic body-hinge/molecular frameworks?
 - Note 1: periodic rigidity is also open for these frameworks.
 - Note 2: global rigidity is also open for non-periodic molecular frameworks.

Open questions

- Symmetric version?
- Flexible or partially flexible lattice?
- Periodic body-hinge/molecular frameworks?
 - Note 1: periodic rigidity is also open for these frameworks.
 - Note 2: global rigidity is also open for non-periodic molecular frameworks

Thank you for your attention!

Csaba Király (ELTE)

Conditions for periodic global rigidity

Lancaster workshop 2017 14 / 14

2

イロト イヨト イヨト イヨト