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Introduction Periodic frameworks

Definitions

A graph G̃ = (Ṽ , Ẽ) is k-periodic if there is a subgroup Γ of Aut(G̃)
isomorphic to Zk acting without loops on each vertex of G.

Γ-labeled graph: (G = (V ,E), ψ) with reference orientation
−→
E and

ψ :
−→
E → Γ. (Here: NO loops.)

G 7→ G̃ : Ṽ = {γvi : vi ∈ V , γ ∈ Γ}, Ẽ = {{γvi , ψ(vivj)γvj} :

(vi , vj) ∈
−→
E , γ ∈ Γ}.

For a nonsingular homomorphism L : Γ→ Rd and p : Ṽ → Rd ,
(G̃, p̃) is an L-periodic framework if

p̃(v) + L(γ) = p̃(γv) for all γ ∈ Γ and all v ∈ Ṽ . (1)

By (1): it is enough to realize G (with p : V → Rd ) and L.
Generic periodic framework: if the coordinates of p are generic.
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A graph G̃ = (Ṽ , Ẽ) is k-periodic if there is a subgroup Γ of Aut(G̃)
isomorphic to Zk acting without loops on each vertex of G.

Γ-labeled graph: (G = (V ,E), ψ) with reference orientation
−→
E and

ψ :
−→
E → Γ. (Here: NO loops.)
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A graph G̃ = (Ṽ , Ẽ) is k-periodic if there is a subgroup Γ of Aut(G̃)
isomorphic to Zk acting without loops on each vertex of G.

Γ-labeled graph: (G = (V ,E), ψ) with reference orientation
−→
E and

ψ :
−→
E → Γ. (Here: NO loops.)
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Introduction Periodic rigidity

Definitions

L-periodical global rigidity: every equivalent L-periodic framework
(with the same L!!!) is congruent.
L-periodical rigidity: every equivalent L-periodic framework in an
open neighborhood of p̃ (with the same L!!!) is congruent.
L-periodical rigidity is known to be a generic property but for
L-periodical global rigidity this is only known when d = 2 by a
recent paper of Kaszanitzky, Schulze, Tanigawa (2016).

L-periodical 2-rigidity: for every v ∈ Ṽ , (G̃− Γv , p̃) is L-periodically
rigid. In other words, for every v ∈ V , (G − v , ψ,p) is
L-periodically rigid.
L-periodical redundant rigidity: for every e ∈ E , (G − e, ψ,p) is
L-periodically rigid. (This is known to be a necessary condition for
global rigidity by Kaszanitzky, Schulze and Tanigawa (2016)).
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Introduction Sufficient conditions for global rigidity

Theorem (Tanigawa (2016))

For a generically rigid graph G = (V ,E), assume that G − v is
generically rigid in Rd and G − v + K (NG(v)) is globally rigid in Rd for
a vertex v ∈ V with d(v) ≥ d + 1. Then G is globally rigid in Rd .

Problem 1: Proved using that global rigidity is a generic property. NOT
known for L-periodic global rigidity.

Theorem (Tanigawa (2016))

Assume that G is 2-rigid in Rd Then G is globally rigid in Rd .

Problem 2: Proved by induction from the first theorem. Starting: when
|V | ≤ d + 2, 2-rigid graphs are complete. NOT true for L-periodic
global rigidity.
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Results Rigidity implies global rigidity for small graphs

First we extend a Lemma by Bezdek and Connelly (2002).

Lemma

Let p̃ and q̃ be two equivalent L-periodic realizations of G̃ in Rd . Then
there exists an (L,0d )-periodically rigid motion from (̃(G), (p̃,0d )) to
(̃(G), (q̃,0d )) in R2d , as follows. Move a vertex γv (for v ∈ V and
γ ∈ Γ) on the curve pγ,v : [0,1]→ R2d defined by

pγ,v (t) =

(
pγ,v + qγ,v

2
+ (cos(πt))

pγ,v − qγ,v
2

, (sin(πt))
pγ,v − qγ,v

2

)
where pγ,v = p̃(γv) and qγ,v = q̃(γv).

Theorem

If a Γ-labeled framework (G, ψ,p) is not L-periodically globally rigid in
Rd , then the framework (G, ψ, (p,0d )) in R2d is not (L,0d )-periodically
rigid, where (L,0d ) : Γ→ R2d maps γ ∈ Γ to (L(γ),0d ).
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Results Rigidity implies global rigidity for small graphs

Observation

For an L-periodically rigid framework (G, ψ, p) in Rd with rank k
periodicity and with |V (G)| ≤ d − k + 1, (G, ψ, (p,0D−d )) is
(L,0D−d )-periodically rigid in RD for D ≥ d since every
(L,0D−d )-periodic realization of (G, ψ) in RD has affine span of
dimension at most |V (G)|+ k − 1 ≤ d .

Corollary

Let (G, ψ,p) be a Γ-labeled framework in Rd with rank k periodicity and
L : Γ→ Rd . Suppose that (G, ψ,p) is L-periodically rigid and
|V (G)| ≤ d − k + 1. Then (G, ψ, p) is also L-periodically globally rigid.
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Results Periodic 2-Rigidity implies periodic global rigidity

Theorem (Tanigawa (2016))

For a generically rigid graph G = (V ,E), assume that G − v is
generically rigid in Rd and G − v + K (NG(v)) is globally rigid in Rd for
a vertex v ∈ V. Then G is globally rigid in Rd with d(v) ≥ d + 1.

Definition
Let (G, ψ) be Γ-labeled and v ∈ V . Assume every edge incident to v is
directed from v in

−→
E .

e1 = vu,e2 = vw ∈
−→
E 7→e1 · e2 = uv with label ψ(vu)−1ψ(vw).

(Gv , ψv ): Γ-labeled graph obtained from (G, ψ) by removing v and
inserting e1 · e2 for every pair of nonparallel edges e1,e2 incident
to v .
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to v .

Theorem

Let (G, ψ,p) be a generic Γ-labeled framework in Rd and L : Γ→ Rd

be nonsingular. Suppose v ∈ V has at least d + 1 neighbors in the
covering (G̃, p̃) affinely spanning Rd . Suppose further that

(G − v , ψ|G−v ,p|V (G)−v ) is L-periodically rigid in Rd , and

(Gv , ψv ,p|V (G)−v ) is L-periodically globally rigid in Rd .

Then (G, ψ,p) is L-periodically globally rigid in Rd .
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Results Periodic 2-Rigidity implies periodic global rigidity

Theorem

Let (G, ψ,p) be a generic Γ-labeled framework in Rd and L : Γ→ Rd

be nonsingular. Suppose v ∈ V has at least d + 1 neighbors in the
covering (G̃, p̃) affinely spanning Rd . Suppose further that

(G − v , ψ|G−v ,p|V (G)−v ) is L-periodically rigid in Rd , and

(Gv , ψv ,p|V (G)−v ) is L-periodically globally rigid in Rd .

Then (G, ψ,p) is L-periodically globally rigid in Rd .

The proof is
algebraic,
similar to a proof of a recent lemma by Kaszanitzky, Schulze and
Tanigawa.
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Results Periodic 2-Rigidity implies periodic global rigidity

Theorem (Tanigawa (2016))

Assume that G is 2-rigid in Rd Then G is globally rigid in Rd .

Theorem

A generic L-periodically 2-rigid framework in Rd , is also L-periodically
globally rigid in Rd . Moreover, any of its generic L-periodic realizations
is L-periodically globally rigid.

Proof.
Induction on |V | using the previous results.
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Periodic body-bar frameworks Introduction

(Periodic) body-bar frameworks

rigid full dimensional bodies connected by disjoint bars
can be represented by a multigraph H where vertices represent
bodies
corresponding bar-joint framework: take each body as a large
complete graph
rigidity and global rigidity characterized by Tay (1984) and
Connelly, Jordán and Whiteley (2013), resp.
periodic analogue
represented by a Γ-periodic multigraph H̃ or Γ-labeled multigraph
(H, ψ)

L-periodic rigidity characterized by Tanigawa (2015)
L-periodic bar-redundant rigidity: L-periodic rigidity of the
body-bar framework (H − e, ψ) for every e ∈ E
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Periodic body-bar frameworks Characterization of global rigidity

Theorem

Let (GH̃ , p̃) be a generic L-periodic body-bar realization of the
multi-graph H̃ in Rd , and L : Γ→ Rd be nonsingular. Then (GH̃ , p̃) is
L-periodically globally rigid in Rd iff (GH̃ , p̃) is L-periodically
bar-redundantly rigid in Rd .

Proof.
Necessity: by the result of Kaszanitzy, Schulze and Tanigawa (2016).
Sufficiency: L-periodic bar-redundant rigidity implies L-periodic
2-rigidity in the corresponding bar-joint framework.
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Concluding remarks Open questions

Open questions

Symmetric version?
Flexible or partially flexible lattice?
Periodic body-hinge/molecular frameworks?

Note 1: periodic rigidity is also open for these frameworks.
Note 2: global rigidity is also open for non-periodic molecular
frameworks.
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Concluding remarks Open questions

Thank you for your attention!
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