Lancaster University

Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson

Lancaster University

Bond-node structures: Rigidity, combinatorics and materials science 9th June 2017

Image: A math a math

Derek Kitson

Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X, \|\cdot\|)$.

メロト メロト メヨト メ

Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson

Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X, \|\cdot\|)$.

Questions to consider

Which motions are considered trivial?

Derek Kitson

Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X, \|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?

Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X, \|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?
- Is infinitesimal rigidity a generic property?

Iots known

Derek Kitson

Lancaster University

Iots known

General norms

flex condition, rigidity matrix, symmetry

Lancaster University

・ロン ・日子・ ・ ヨン

Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson

Iots known

General norms

- flex condition, rigidity matrix, symmetry
- ℓ^p norms, $p \notin \{1,2,\infty\}$
 - Laman-type theorem, symmetry

・ロト ・回 ・ ・ ヨト

Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson

Iots known

General norms

- flex condition, rigidity matrix, symmetry
- ℓ^p norms, $p \notin \{1,2,\infty\}$
 - Laman-type theorem, symmetry

Polyhedral norms

Laman-type theorem, edge-colouring techniques, symmetry

Iots known

General norms

- flex condition, rigidity matrix, symmetry
- ℓ^p norms, $p \notin \{1,2,\infty\}$
 - Laman-type theorem, symmetry

Polyhedral norms

Laman-type theorem, edge-colouring techniques, symmetry

Cylinder norm

edge-colouring technique, geometric characterisation

Iots known

General norms

- flex condition, rigidity matrix, symmetry
- ℓ^p norms, $p \notin \{1,2,\infty\}$
 - Laman-type theorem, symmetry

Polyhedral norms

Laman-type theorem, edge-colouring techniques, symmetry

Cylinder norm

edge-colouring technique, geometric characterisation

Trace norm

• Maxwell counts, geometric characterisation for n=2

Let M_n denote the vector space of $n \times n$ matrices (over \mathbb{R} or \mathbb{C}).

A norm on M_n is unitarily invariant if

 $\|a\| = \|uav\|$

for all $a \in M_n$ and all unitary matrices $u, v \in M_n$.

Theorem (von Neumann, 1937)

A matrix norm is unitarily invariant if and only if it is obtained by applying a symmetric norm to the vector of singular values of a matrix.

A B > A B >

The Schatten *p*-norms on M_n are defined by,

$$\|a\|_{c_p} = \left(\sum_{i=1}^n \sigma_i^p\right)^{\frac{1}{p}}, \quad 1 \le p < \infty,$$

$$||a||_{c_{\infty}} = \max_{i} \sigma_{i},$$

where σ_i are the singular values of a.

- ▶ c_2 = Frobenius norm (= Euclidean norm of matrix entries)
- $c_{\infty} =$ spectral norm (= operator norm on Euclidean space)

Derek Kitson

Lancaster University

メロト メロト メヨト メ

Lancaster University

・ロト ・回ト ・ヨト ・

A rigid motion of a normed space $(X, \|\cdot\|)$ is a collection of continuous paths $\alpha = \{\alpha_x : [-1, 1] \to X\}_{x \in X}$, with the following properties:

(a)
$$\alpha_x(0) = x$$
 for all $x \in X$;
(b) $\alpha_x(t)$ is differentiable at $t = 0$ for all $x \in X$; and
(c) $\|\alpha_x(t) - \alpha_y(t)\| = \|x - y\|$ for all $x, y \in X$ and for all $t \in [-1, 1]$.

We write $\mathcal{R}(X, \|\cdot\|)$ for the set of all rigid motions of $(X, \|\cdot\|)$.

Rigid motions

Lancaster University

Lemma

Let $(X, \|\cdot\|)$ be a normed space and let $\alpha \in \mathcal{R}(X, \|\cdot\|)$. Then,

(i) for each $t \in [-1, 1]$ there exists a real-linear isometry $A_t : X \to X$ and a vector $c(t) \in X$ such that

$$\alpha_x(t) = A_t(x) + c(t), \quad \forall x \in X.$$

- (ii) the map $c: [-1,1] \to X$ is continuous on [-1,1] and differentiable at t = 0,
- (iii) for every x ∈ X, the map A_{*}(x) : [-1,1] → X, t ↦ A_t(x), is continuous on [-1,1] and differentiable at t = 0, and,
 (iv) A₀ = I and c(0) = 0.

• • • • • • • • • • • • • •

Derek Kitson

Rigid motions

Derek Kitson

Proposition

For any $\alpha \in \mathcal{R}(M_n, \|\cdot\|)$, there is a neighbourhood T of 0 in [-1, 1], and matrices $u_t, w_t \in U_n$ and $c(t) \in M_n$ for each $t \in T$, so that

(iv) the maps
$$t \mapsto u_t$$
 and $t \mapsto w_t$ are continuous at $t = 0$.

Image: A math a math

A vector field $\eta: X \to X$ of the form $\eta(x) = \alpha'_x(0)$ where $\alpha \in \mathcal{R}(X, \|\cdot\|)$ is referred to as an infinitesimal rigid motion of $(X, \|\cdot\|)$.

Lemma

Derek Kitson

Let $(X, \|\cdot\|)$ be a normed space and let $\eta \in \mathcal{T}(X, \|\cdot\|)$. Then η is an affine map.

Theorem

If $\eta \in \mathcal{T}(M_n, \|\cdot\|)$, then there exist unique matrices $a, b, c \in M_n$ with $a \in \operatorname{Skew}_n^0$, $b \in \operatorname{Skew}_n$ and $c \in M_n$ so that

$$\eta(x) = ax + xb + c, \quad \forall x \in M_n.$$

Define $\Psi : \mathcal{T}(M_n, \|\cdot\|) \to \operatorname{Skew}_n^0 \oplus \operatorname{Skew}_n \oplus M_n$ by setting $\Psi_X(\eta) = (a, b, c)$ if and only if $\eta(x) = ax + xb + c$ for all $x \in X$.

Lancaster University

Image: A math a math

Derek Kitson

Lancaster University

Lemma

Ψ is a linear isomorphism.

Proof.

Let (a, b, c) be in the codomain of Ψ , and for each $x \in M_n$ define

$$\alpha_x: [-1,1] \to M_n, \quad \alpha_x(t) = e^{ta} x e^{tb} + tc.$$

Since a and b are skew-hermitian, e^{ta} and e^{tb} are unitary for every $t \in \mathbb{R}$, so $\{\alpha_x\}_{x \in \mathcal{M}_n}$ is a rigid motion. The induced infinitesimal rigid motion is the vector field

$$\eta: M_n \to M_n, \quad x \mapsto ax + xb + c.$$

Image: A math a math

Thus $\Psi(\eta) = (a, b, c)$ and so Ψ is surjective.

Infinitesimal rigid motions

Proposition

$$\dim \mathcal{T}(M_n, \|\cdot\|) = \begin{cases} 2n^2 - n & \text{if } \mathbb{K} = \mathbb{R}, \\ 4n^2 - 1 & \text{if } \mathbb{K} = \mathbb{C}. \end{cases}$$

Lancaster University

Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson

A support functional for a unit vector $x_0 \in X$ is a linear functional $f: X \to \mathbb{R}$ with $||f|| := \sup\{|f(x)| : x \in X, ||x|| = 1\} \le 1$, and $f(x_0) = 1$.

Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson

Example

Let (G, p) be a bar-joint framework in $(M_n, \|\cdot\|_{c_q})$. Let $vw \in E$, suppose the norm is smooth at $p_v - p_w$ and let $p_0 = \frac{p_v - p_w}{\|p_v - p_w\|_{c_q}}$. (a) If $q < \infty$, then for all $x \in M_n$,

$$\varphi_{v,w}(x) = \operatorname{trace}(x|p_0|^{q-1}u^*)$$

where $p_0 = u|p_0|$ is the polar decomposition of p_0 .

(b) If $q = \infty$, then the largest singular value of the matrix p_0 has multiplicity one. Thus p_0 attains its norm at a unit vector $\zeta \in \mathbb{K}^n$ which is unique (up to scalar multiples). For all $x \in \mathcal{M}_n$, we have

$$\varphi_{v,w}(x) = \langle x\zeta, p_0\zeta \rangle$$

where $\langle \cdot, \cdot \rangle$ is the usual Euclidean inner product on \mathbb{K}^n .

Derek Kitson

Lancaster University

Support functionals

The norm $\|\cdot\|$ is said to be smooth at $x \in X \setminus \{0\}$ if there exists exactly one support functional at $\frac{x}{\|x\|}$.

Lemma

Let $\|\cdot\|$ be a unitarily invariant norm on M_n , with corresponding symmetric norm $\|\cdot\|_s$ on \mathbb{R}^n , and let $x \in M_n$. Then $\|\cdot\|$ is smooth at x if and only if $\|\cdot\|_s$ is smooth at $\sigma(x)$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Well-positioned frameworks

A bar-joint framework (G, p) is said to be *well-positioned* in $(X, \|\cdot\|)$ if the norm $\|\cdot\|$ is smooth at $p_v - p_w$ for every edge $vw \in E$.

Proposition

Let (G, p) be a bar-joint framework in $(M_n, \|\cdot\|_{c_q})$.

(i) If $q \notin \{1, \infty\}$, then (G, p) is well-positioned.

- (ii) If q = 1 then (G, p) is well-positioned if and only if $p_v p_w$ is invertible for all $vw \in E$.
- (iii) If $q = \infty$ then (G, p) is well-positioned if and only if $\sigma_1(p_v p_w) > \sigma_2(p_v p_w)$ for all $vw \in E$.

• • • • • • • • • • • • • •

The rigidity map for G = (V, E) and $(X, \|\cdot\|)$ is,

$$f_G: X^V \to \mathbb{R}^E, \quad (x_v)_{v \in V} \mapsto (||x_v - x_w||)_{vw \in E}.$$

Lemma

Let (G,p) be a bar-joint framework in a normed linear space $(X,\|\cdot\|).$

- (i) (G, p) is well-positioned in $(X, \|\cdot\|)$ if and only if the rigidity map f_G is differentiable at p.
- (ii) If (G, p) is well-positioned in $(X, \|\cdot\|)$ then the differential of the rigidity map is given by

$$df_G(p): X^V \to \mathbb{R}^E, \quad (z_v)_{v \in V} \mapsto (\varphi_{v,w}(z_v - z_w))_{vw \in E}.$$

The rigidity map

Derek Kitson

An infinitesimal flex for (G, p) is a vector $u \in X^V$ such that

$$\lim_{t \to 0} \frac{1}{t} \left(f_G(p + tu) - f_G(p) \right) = 0.$$

 $\mathcal{F}(G,p) \coloneqq$ vector space of all infinitesimal flexes of (G,p).

Note that if (G, p) is well-positioned then $\mathcal{F}(G, p) = \ker df_G(p)$.

・ロト ・回ト ・ヨト ・

Full sets

A non-empty subset $S \subseteq X$ is full in $(X, \|\cdot\|)$ if the restriction map

$$\rho_S : \mathcal{T}(X, \|\cdot\|) \to X^S, \quad \eta \mapsto (\eta(x))_{x \in S}$$

is injective.

Lemma

Let $(X, \|\cdot\|)$ be a normed space and let $\emptyset \neq S \subseteq X$. If S has full affine span in X, then S is full in $(X, \|\cdot\|)$.

A non-empty subset $S \subseteq X$ is full in $(X, \|\cdot\|)$ if the restriction map

$$\rho_S : \mathcal{T}(X, \|\cdot\|) \to X^S, \quad \eta \mapsto (\eta(x))_{x \in S}$$

is injective.

Lemma

Let $(X, \|\cdot\|)$ be a normed space and let $\emptyset \neq S \subseteq X$. If S has full affine span in X, then S is full in $(X, \|\cdot\|)$.

We say that a bar-joint framework (G, p) is,
(a) full if {p_v: v ∈ V} is full in (X, || · ||).
(b) completely full if (G, p), and every subframework (H, p_H) of (G, p) with |V(H)| ≥ 2 dim(X), is full in (X, || · ||).

Lancaster University

Given a bar-joint framework (G, p), we define

 $\mathcal{T}(G,p) = \{\zeta \colon V \to X \mid \zeta = \eta \circ p \text{ for some } \eta \in \mathcal{T}(X, \|\cdot\|)\} \subseteq X^V.$

The elements of $\mathcal{T}(G, p)$ are referred to as the trivial infinitesimal flexes of (G, p).

Lemma If (G, p) is a full bar-joint framework in $(X, \|\cdot\|)$, then

 $\dim \mathcal{T}(G, p) = \dim \mathcal{T}(X, \|\cdot\|).$

Derek Kitson

・ロト ・回ト ・ヨト ・

Lancaster University

\boldsymbol{k} and \boldsymbol{l} values

X	k(X)	l(X)	
$\mathcal{H}_n(\mathbb{R})$	$\frac{1}{2}n(n+1)$	n^2	
$\mathcal{M}_n(\mathbb{R})$	n^2	$2n^2 - n$	
$\mathcal{H}_n(\mathbb{C})$	n^2	$2n^2 - 1$	
$\mathcal{M}_n(\mathbb{C})$	$2n^{2}$	$4n^2 - 1$	

Table: k and l values for admissible matrix spaces.

k and l values

Lancaster University

X	k(X)	l(X)	X	k(X)	l(X)
$\mathcal{H}_2(\mathbb{R})$	3	4	$\mathcal{H}_3(\mathbb{R})$	6	9
$\mathcal{M}_2(\mathbb{R})$	4	6	$\mathcal{M}_3(\mathbb{R})$	9	15
$\mathcal{H}_2(\mathbb{C})$	4	7	$\mathcal{H}_3(\mathbb{C})$	9	17
$\mathcal{M}_2(\mathbb{C})$	8	15	$\mathcal{M}_3(\mathbb{C})$	18	35

Table: k and l values for admissible matrix spaces when n = 2 and n = 3.

Derek Kitson

A framework (G, p) is infinitesimally rigid if $\mathcal{F}(G, p) = \mathcal{T}(G, p)$.

Theorem

Derek Kitson

Let (G, p) be a full and well-positioned bar-joint framework in $(M_n, \|\cdot\|)$.

- (i) If (G,p) is infinitesimally rigid, then $|E| \ge k|V| l$.
- (ii) If (G, p) is minimally infinitesimally rigid, then |E| = k|V| l.
- (iii) If (G, p) is minimally infinitesimally rigid and (H, p_H) is a full subframework of (G, p), then $|E(H)| \le k|V(H)| l$.

(k, l)-sparsity

Derek Kitson

Theorem

Let (G, p) be a completely full and well-positioned bar-joint framework in $(M_n, \|\cdot\|)$. If (G, p) is minimally infinitesimally rigid then G is (k, l)-tight.

Image: A math a math

Conjectures

Derek Kitson

Let $\|\cdot\|$ be a unitarily invariant norm on $X \in \{M_n(\mathbb{K}), H_n(\mathbb{K})\}$ and let $k = \dim X$.

- (i) If $\mathbb{K} = \mathbb{R}$, then there exists $p \in X^V$ such that (K_m, p) is full, well-positioned and infinitesimally rigid in $(X, \|\cdot\|)$ for all $m \ge 2k$.
- (ii) If $\mathbb{K} = \mathbb{C}$, then there exists $p \in X^V$ such that (K_m, p) is full, well-positioned and infinitesimally rigid in $(X, \|\cdot\|)$ for all $m \ge 2k 1$.

Image: A math a math

Conjectures

Thank you

Derek Kitson

Lancaster University