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Statement of the problem

(X, ‖ · ‖) is a finite dimensional real normed linear space.

Problem: Given a framework (G, p) in X determine whether (G, p)
is infinitesimally rigid (or isostatic) in (X, ‖ · ‖).

Questions to consider

I Which motions are considered trivial?

I What form does the infinitesimal flex condition take?

I Is infinitesimal rigidity a generic property?
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What we know

Euclidean norm

I lots known

General norms

I flex condition, rigidity matrix, symmetry

`p norms, p /∈ {1, 2,∞}
I Laman-type theorem, symmetry

Polyhedral norms

I Laman-type theorem, edge-colouring techniques, symmetry

Cylinder norm

I edge-colouring technique, geometric characterisation

Trace norm

I Maxwell counts, geometric characterisation for n = 2
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Unitarily invariant norms

Let Mn denote the vector space of n× n matrices (over R or C).

A norm on Mn is unitarily invariant if

‖a‖ = ‖uav‖

for all a ∈Mn and all unitary matrices u, v ∈Mn.

Theorem (von Neumann, 1937)

A matrix norm is unitarily invariant if and only if it is obtained by
applying a symmetric norm to the vector of singular values of a
matrix.
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Examples of unitarily invariant norms

The Schatten p-norms on Mn are defined by,

‖a‖cp =

(
n∑

i=1

σpi

) 1
p

, 1 ≤ p <∞,

‖a‖c∞ = max
i
σi,

where σi are the singular values of a.

I c1 = trace norm

I c2 = Frobenius norm (= Euclidean norm of matrix entries)

I c∞ = spectral norm (= operator norm on Euclidean space)
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Rigid motions

A rigid motion of a normed space (X, ‖ · ‖) is a collection of
continuous paths α = {αx : [−1, 1]→ X}x∈X , with the following
properties:

(a) αx(0) = x for all x ∈ X;

(b) αx(t) is differentiable at t = 0 for all x ∈ X; and

(c) ‖αx(t)− αy(t)‖ = ‖x− y‖ for all x, y ∈ X and for all
t ∈ [−1, 1].

We write R(X, ‖ · ‖) for the set of all rigid motions of (X, ‖ · ‖).
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Rigid motions

Lemma
Let (X, ‖ · ‖) be a normed space and let α ∈ R(X, ‖ · ‖). Then,

(i) for each t ∈ [−1, 1] there exists a real-linear isometry
At : X → X and a vector c(t) ∈ X such that

αx(t) = At(x) + c(t), ∀x ∈ X.

(ii) the map c : [−1, 1]→ X is continuous on [−1, 1] and
differentiable at t = 0,

(iii) for every x ∈ X, the map A∗(x) : [−1, 1]→ X, t 7→ At(x), is
continuous on [−1, 1] and differentiable at t = 0, and,

(iv) A0 = I and c(0) = 0.
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Rigid motions

Proposition

For any α ∈ R(Mn, ‖ · ‖), there is a neighbourhood T of 0 in
[−1, 1], and matrices ut, wt ∈ Un and c(t) ∈Mn for each t ∈ T , so
that

(i) αx(t) = utxwt + c(t), ∀x ∈Mn, t ∈ T ;

(ii) c(0) = 0 and u0 = w0 = I;

(iii) the maps t 7→ c(t) and t 7→ utxwt are both differentiable at
t = 0, for any x ∈Mn; and

(iv) the maps t 7→ ut and t 7→ wt are continuous at t = 0.
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Infinitesimal rigid motions

A vector field η : X → X of the form η(x) = α′x(0) where
α ∈ R(X, ‖ · ‖) is referred to as an infinitesimal rigid motion
of (X, ‖ · ‖).

Lemma
Let (X, ‖ · ‖) be a normed space and let η ∈ T (X, ‖ · ‖). Then η is
an affine map.
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Infinitesimal rigid motions

Theorem
If η ∈ T (Mn, ‖ · ‖), then there exist unique matrices a, b, c ∈Mn

with a ∈ Skew0
n, b ∈ Skewn and c ∈Mn so that

η(x) = ax+ xb+ c, ∀x ∈Mn.

Define Ψ : T (Mn, ‖ · ‖)→ Skew0
n⊕Skewn⊕Mn by setting

ΨX(η) = (a, b, c) if and only if η(x) = ax+ xb+ c for all x ∈ X.
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Infinitesimal rigid motions

Lemma
Ψ is a linear isomorphism.

Proof.
Let (a, b, c) be in the codomain of Ψ, and for each x ∈Mn define

αx : [−1, 1]→Mn, αx(t) = etaxetb + tc.

Since a and b are skew-hermitian, eta and etb are unitary for
every t ∈ R, so {αx}x∈Mn is a rigid motion. The induced
infinitesimal rigid motion is the vector field

η : Mn →Mn, x 7→ ax+ xb+ c.

Thus Ψ(η) = (a, b, c) and so Ψ is surjective.
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Infinitesimal rigid motions

Proposition

dim T (Mn, ‖ · ‖) =

{
2n2 − n if K = R,

4n2 − 1 if K = C.

Derek Kitson Lancaster University

Infinitesimal rigidity for unitarily invariant matrix norms



Rigidity in normed spaces Rigidity in (Mn, ‖ · ‖)

Support functionals

A support functional for a unit vector x0 ∈ X is a linear functional
f : X → R with ‖f‖ := sup{|f(x)| : x ∈ X, ‖x‖ = 1} ≤ 1, and
f(x0) = 1.
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Support functionals

Example

Let (G, p) be a bar-joint framework in (Mn, ‖ · ‖cq). Let vw ∈ E,
suppose the norm is smooth at pv − pw and let p0 = pv−pw

‖pv−pw‖cq
.

(a) If q <∞, then for all x ∈Mn,

ϕv,w(x) = trace(x|p0|q−1u∗)

where p0 = u|p0| is the polar decomposition of p0.

(b) If q =∞, then the largest singular value of the matrix p0 has
multiplicity one. Thus p0 attains its norm at a unit vector
ζ ∈ Kn which is unique (up to scalar multiples). For all
x ∈Mn, we have

ϕv,w(x) = 〈xζ, p0ζ〉

where 〈·, ·〉 is the usual Euclidean inner product on Kn.
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Support functionals

The norm ‖ · ‖ is said to be smooth at x ∈ X \ {0} if there exists
exactly one support functional at x

‖x‖ .

Lemma
Let ‖ · ‖ be a unitarily invariant norm on Mn, with corresponding
symmetric norm ‖ · ‖s on Rn, and let x ∈Mn. Then ‖ · ‖ is
smooth at x if and only if ‖ · ‖s is smooth at σ(x).
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Well-positioned frameworks

A bar-joint framework (G, p) is said to be well-positioned in
(X, ‖ · ‖) if the norm ‖ · ‖ is smooth at pv − pw for every edge
vw ∈ E.

Proposition

Let (G, p) be a bar-joint framework in (Mn, ‖ · ‖cq).

(i) If q 6∈ {1,∞}, then (G, p) is well-positioned.

(ii) If q = 1 then (G, p) is well-positioned if and only if pv − pw is
invertible for all vw ∈ E.

(iii) If q =∞ then (G, p) is well-positioned if and only if
σ1(pv − pw) > σ2(pv − pw) for all vw ∈ E.
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The rigidity map

The rigidity map for G = (V,E) and (X, ‖ · ‖) is,

fG : XV → RE , (xv)v∈V 7→ (‖xv − xw‖)vw∈E .

Lemma
Let (G, p) be a bar-joint framework in a normed linear space
(X, ‖ · ‖).

(i) (G, p) is well-positioned in (X, ‖ · ‖) if and only if the rigidity
map fG is differentiable at p.

(ii) If (G, p) is well-positioned in (X, ‖ · ‖) then the differential of
the rigidity map is given by

dfG(p) : XV → RE , (zv)v∈V 7→ (ϕv,w(zv − zw))vw∈E .
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The rigidity map

An infinitesimal flex for (G, p) is a vector u ∈ XV such that

lim
t→0

1

t
(fG(p+ tu)− fG(p)) = 0.

F(G, p) := vector space of all infinitesimal flexes of (G, p).

Note that if (G, p) is well-positioned then F(G, p) = ker dfG(p).
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Full sets

A non-empty subset S ⊆ X is full in (X, ‖ · ‖) if the restriction map

ρS : T (X, ‖ · ‖)→ XS , η 7→ (η(x))x∈S

is injective.

Lemma
Let (X, ‖ · ‖) be a normed space and let ∅ 6= S ⊆ X. If S has full
affine span in X, then S is full in (X, ‖ · ‖).

We say that a bar-joint framework (G, p) is,

(a) full if {pv : v ∈ V } is full in (X, ‖ · ‖).

(b) completely full if (G, p), and every subframework (H, pH) of
(G, p) with |V (H)| ≥ 2 dim(X), is full in (X, ‖ · ‖).
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Trivial infinitesimal flexes

Given a bar-joint framework (G, p), we define

T (G, p) = {ζ : V → X | ζ = η◦p for some η ∈ T (X, ‖ · ‖)} ⊆ XV .

The elements of T (G, p) are referred to as the trivial infinitesimal
flexes of (G, p).

Lemma
If (G, p) is a full bar-joint framework in (X, ‖ · ‖), then

dim T (G, p) = dim T (X, ‖ · ‖).
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k and l values

X k(X) l(X)

Hn(R) 1
2n(n+ 1) n2

Mn(R) n2 2n2 − n

Hn(C) n2 2n2 − 1

Mn(C) 2n2 4n2 − 1

Table: k and l values for admissible matrix spaces.

Derek Kitson Lancaster University

Infinitesimal rigidity for unitarily invariant matrix norms



Rigidity in normed spaces Rigidity in (Mn, ‖ · ‖)

k and l values

X k(X) l(X) X k(X) l(X)

H2(R) 3 4 H3(R) 6 9

M2(R) 4 6 M3(R) 9 15

H2(C) 4 7 H3(C) 9 17

M2(C) 8 15 M3(C) 18 35

Table: k and l values for admissible matrix spaces when n = 2 and n = 3.
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Maxwell counting criteria

A framework (G, p) is infinitesimally rigid if F(G, p) = T (G, p).

Theorem
Let (G, p) be a full and well-positioned bar-joint framework in
(Mn, ‖ · ‖).

(i) If (G, p) is infinitesimally rigid, then |E| ≥ k|V | − l.
(ii) If (G, p) is minimally infinitesimally rigid, then |E| = k|V | − l.
(iii) If (G, p) is minimally infinitesimally rigid and (H, pH) is a full

subframework of (G, p), then |E(H)| ≤ k|V (H)| − l.
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(k, l)-sparsity

Theorem
Let (G, p) be a completely full and well-positioned bar-joint
framework in (Mn, ‖ · ‖). If (G, p) is minimally infinitesimally rigid
then G is (k, l)-tight.
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Conjectures

Let ‖ · ‖ be a unitarily invariant norm on X ∈ {Mn(K), Hn(K)}
and let k = dimX.

(i) If K = R, then there exists p ∈ XV such that (Km, p) is full,
well-positioned and infinitesimally rigid in (X, ‖ · ‖) for all
m ≥ 2k.

(ii) If K = C, then there exists p ∈ XV such that (Km, p) is full,
well-positioned and infinitesimally rigid in (X, ‖ · ‖) for all
m ≥ 2k − 1.
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Conjectures

Thank you
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