ÿþ<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Tomasz Kania - Lancaster University</title> <LINK REL=StyleSheet HREF="style.css" TYPE="text/css" MEDIA=screen> <meta HTTP-EQUIV="Refresh" CONTENT="0; URL=http://www.maths.lancs.ac.uk/~kania/"> </head> <body> <div id="page"> <div id="header"> <h1><a href="#">Tomasz Kania</a></h1> <div class="description">Lancaster University</div> </div> <div id="mainarea"> <div id="sidebar"> <div class="sidebarheader"></div> <div id="sidebarnav"> <a class="active" href="#">Research interests and papers</a> <a href="eventsandtalks.html">Conferences, events and talks</a> <a href="#">Links</a> <a href="#">Tutoring</a> </div> <div class="sidebarheader">Contact</div> <div class="widget"> t.kania@lancaster.ac.uk <br><br> Department of Mathematics and Statistics<br> Lancaster University<br> Fylde College<br> LA1 4YF Lancaster<br> United Kingdom <br><br> Room B7 <br><br> <strong>Last update: 20/07/2012</strong><br><br> <img src="lion.jpg" alt="sleepy lion" width="200" height="160"/> </div></div> <div id="contentarea"> <br><b><u>A (very) short CV</u></b><br> <br><b>2005 - 2010</b> joint MSc studies on <i>Pure Mathematics</i> at <a href=http://english.us.edu.pl>University of Silesia in Katowice, Poland</a>. Master's Thesis: <i>On the applications of Martin's Axiom</i> (in Polish); supervision <a href=https://www.math.us.edu.pl/ztm/ablaszczyk/indexeng.html>prof. A BBaszczyk</a><br> <br><b>2010 - currently</b> PhD studies at the Department of Mathematics and Statistics, Lancaster University; supervision <a href=http://www.math.ku.dk/~laustsen/>dr. Niels Jakob Laustsen</a>.<br> <br><b>2011</b> Dean s Award for Excellence in Postgraduate Studies (First Year Category). <br><br><b><u>My research interests include (among of variety of other things):</u></b><br><br> Banach space theory and, in particular, Banach spaces of continuous functions.<br> Operator ideals and, in general, left/right/two-sided ideals in Banach algebras<br> Set-theoretic and Boolean approach to functional analysis.<br>Vector measures and their applications to geometry of Banach spaces.<br>C*-algebras, von Neumann algebras and non-commutative Lp spaces.<br> <br><b><u>Recent papers and preprints</u></b><br> <br><b>1. </b><a href="http://www.sciencedirect.com/science/article/pii/S0022123612001127">"Uniqueness of the maximal ideal of the Banach algebra of bounded operators on<br>C([0, É<sub>1</sub>])"</a>, <i>Journal of Functional Analysis</i> <b>262</b> (11), 4831 4850<br> jointly with N.J. Laustsen <a href="http://arxiv.org/abs/1112.4800">arXiv:1112.4800</a> <br><b>2. </b>"The ideal of weakly compactly generated operators acting on a Banach space" jointly with T. Kochanek (submitted) <a href="http://arxiv.org/abs/1206.5424">arXiv:1206.5424</a> <br><b>3. </b>"Maximal left ideals of operators acting on a Banach space", jointly with H.G. Dales, T. Kochanek, P. Koszmider and N.J. Laustsen (in preparation) <br><b>3. </b>"A chain condition for operators from <i>C(K)</i>-spaces", jointly with T. Kochanek (in preparation) </div></div> <div id="footer"> </div> </div> </body> </html>