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Abstract: Global temperature anomaly data underpin all estimates of the magnitude of human-

induced warming. However, these data require choosing a pre-industrial baseline in order to 10 

create the estimates of the Global Mean Surface Temperature (GMST) change since pre-

industrial at the center of all climate science and policy. Currently, this baselining requires 

choosing a specific ‘pre-industrial’ period, and adds considerable uncertainty to GMST estimates 

due to the reliance on the early data record. Here we propose a new more robust method for this 

rescaling that exploits the observed linearity between the global temperature anomaly and the 15 

accumulation of CO2 emissions in the atmosphere. Using linear regression on this relationship, 

we estimate the HadCRUT5A anomaly data requires 0.522±0.037 °C adding in order to measure 

a GMST change since pre-industrial. This linear framework can also be extended to estimate the 

expected level of warming in near real time, giving a human induced warming in 2022 of 

1.441±0.076 °C. This is ~0.2 °C more than is currently estimated and has considerably narrower 20 

uncertainties. Our estimate gives a greater than 5 percent chance that the 1.5 °C policy threshold 

has already been exceeded. 

One-Sentence Summary: In order to measure the amount the earth has warmed we must know 

what the pre-industrial baseline was, and this paper provides a radically better method for doing 

that. 25 
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Main Text:  

Introduction 

Surface temperature anomaly data are typically centred on their 1960-1990 average value and, as 

a result, require pre-industrial baselining if they are to represent an absolute measurement of 

Global Mean Surface Temperature (GMST) change that defines the total human-induced 5 

warming estimate. There are different definitions of this preindustrial baseline in the literature, 

but these are all focused on choosing specific pre-industrial time periods in either temperature 

anomaly or radiative forcing data ([1], see cross chapter Box 1.2). Given the instrumental 

temperature record, researchers and the Intergovernmental Panel on Climate Change (IPCC) 

have made a pragmatic choice to use the 1850-1900 global temperature anomaly as the preferred 10 

pre-industrial baseline condition for GMST estimates, given these are the earliest directly 

observed global temperature data, and the effects of anthropogenic warming are believed to be 

small 1850-1900 [1,2]. 

Although the adoption of the 1850-1900 baseline is understandable, it is known that the 

atmospheric burden of CO2 is rising both before and throughout this period (Figure 1a), as are 15 

anthropogenic carbon emissions driving this increase [3,4]. Several studies have examined the 

anthropogenic contribution to warming prior to 1850 (see [1], Cross Chapter Box 1.2). Radiative 

forcing estimates typically assume a 1750 baseline, and based on modelling approaches, these 

forcings are assessed as adding 0.1 (–0.1 to +0.3) °C to GMST over 1750 to 1850-1900, largely 

associated with anthropogenic emissions of ~15 GtC [1]. Anthropogenic emissions certainly 20 

started significantly earlier than 1750 [5,6] although their importance for temperature has yet to 

be determined. These findings strongly suggests that GMST is likely to be neither zero or 

stationary 1850-1900. Furthermore, the 1850-1900 temperature anomaly data are the most 

uncertain in the global record. As a result, an alternative, more robust pre-industrial baseline 

method is needed, especially now GMST observations have become central to assessing human 25 

induced warming outcomes under the Paris Agreement. 

Here, we adopt a different approach to estimating GMST change since pre-industrial for 

temperature anomaly data that is not based on baselining off of the uncertain early temperature 

record, but instead baselines against more certain CO2 ice core data while exploiting the 

observed linearity between temperature change and cumulative CO2 emissions [7,8], (see [9] - 30 

Figure 5.3.1). This emergent linearity in the behaviour of the Earth system has become central to 

specifying remaining carbon budgets to meet the 1.5 and 2.0 °C targets set out in Article 2 of the 

Paris Agreement [9,10]. However, the utility of this relationship extends beyond simply 

specifying remaining carbon budgets given it can also provide a constraint on the definition of 

the pre-industrial initial condition. This is because, assuming that pre-industrial non-CO2 effects 35 

are negligible, when no anthropogenic CO2 has been emitted, any human induced GMST change 

is, by definition, zero. As a result, in addition to specifying remaining carbon budgets, the 

GMST-accumulated emissions relationship can also be exploited to estimate levels of human-

induced global warming.   

We further extend this approach to estimate the expected value of human induced warming i.e. 40 

the magnitude of GMST change independent of annual variability. This is the metric against 

which compliance with the Paris Agreement temperature targets is assessed, and is currently 

estimated by the IPCC using climate-model attribution studies and statistical trend estimates 

[11].   

 45 
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Methods 

When humans have not added enough CO2 to the atmosphere to measurably increase the 

atmospheric burden then, assuming net pre-industrial non-CO2 effects are also zero at this time, 

any human induced warming should, by definition, be zero. The atmospheric CO2 burden is well 

observed in ice core atmospheric CO2 data, and this allows us to look back significantly beyond 5 

1850, even significantly before the beginning of the industrial era, to establish a robust pre-

industrial baseline for atmospheric CO2 not reliant on somewhat uncertain emissions inventory 

data. We take ice core data covering 1006 – 1700 as our baseline condition and use this to 

specify the post-1700 atmospheric carbon accumulation (ACA; Figure 1a). Post 1850, missing 

years in the ice core series were interpolated linearly. 10 

We then relate the post-1850 ACA to published global temperature anomaly data. Because the 

airborne fraction appears to be somewhat conserved historically [9], we predict this temperature 

anomaly-ACA relationship should be linear given it mirrors the linear Transient Climate 

Response to cumulative Emissions (TCRE; [8]) relationship extensively used to specify net-zero 

compliant carbon budgets [9,10]. Any observed linearity allows us to apply regression methods 15 

to estimate the equivalent pre-1700 baseline condition for the global temperature anomaly data. 

We add this regression-estimated baseline to the global temperature anomaly data to produce 

estimates of GMST change. 

We further use the derived linear relationship between GMST change and ACA to estimate the 

expected value of human-induced warming in any given year based on the corresponding 20 

estimates of ACA and the estimated linear scaling between GMST and ACA. Given the 

timeliness of the release of both the temperature anomaly and atmospheric CO2 concentration 

data, allied to the low variance of the latter, this method provides a robust yet simple near-real 

time method for estimating GMST change suitable to monitoring compliance with the 

international global temperature targets.       25 

 

Results 

Figure 1a shows the atmospheric CO2 concentrations reconstructed from the Law Dome ice 

cores [12] and the Mauna Loa direct air measurements [13]. From this, we estimate a ~700 year 

(1006 to 1700 AD) pre-industrial baseline for atmospheric CO2 to be 280.50±5.72 ppmv, or 30 

595.49±12.15 GtC. All subsequent persistent increases above this level can be assumed to be 

caused by anthropogenic CO2 emissions, hence defining ACA. However, this is not a 

requirement; providing we observe linearity in the paired temperature anomaly verses ACA data 

our method holds. 

Figure 1b shows the relationship between the observed ACA (x) and the HadCRUT5A global 35 

temperature anomaly data of Morice et al., ([14]; y). This appears strongly linear, both 

highlighting that any non-CO2 effects appear largely subsumed within this linearity and lending 

itself to regression methods. Given the stochastic component of the HadCRUT5A data is 

approaching an order of magnitude larger than that of the atmospheric CO2 data (Figure 1a), risk 

of error-in-variables effects appears small. However, the HadCRUT5A data increase in certainty 40 

over time [14], suggesting the need for weighted least squares regression. Using the quoted 95th 

percentile range for the HadCRUT5A data as the measure of its 2σ uncertainty, we weight the 

HadCRUT5A data by 1/σ in the regression y = mx + c, which gives m = 4.916±0.210 °C/TtC and 

c = -0.522±0.037 °C.  
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From these results it appears the HadCRUT5A data require rescaling by +0.522 °C from their 

1961-1990 average to estimate GMST change since our pre-1700 CO2 concentration baseline 

period. In comparison, the mean value of the HadCRUT5A data 1850-1900 is -0.359±0.208 °C, 

suggesting ~0.16 °C of warming is already embedded in the HadCRUT5A data by 1850-1900 in 

line with estimates from radiative forcing modelling studies (Chen et al., 2021). We stress that, 5 

because of the linearity in these paired data, the regression-based estimate for the HadCRUT5A 

correction utilises the entire 1850-2022 paired data series, not simply the most uncertain data 

near the origin. Indeed, perfectly reasonable estimates of the HadCRUT5A offset can be 

obtained from the more certain post-1950 paired data. 

To further evaluate our approach, we compare the regression result in Figure 1b with published 10 

values of the TCRE, for which the IPCC AR6 provides a pooled estimate of 1.65 (1.0 – 2.3) 

°C/TtC ([9], Table 5.7). If, on average, non-CO2 forcings comprise 20 percent of the total [15] 

and the airborne fraction is 0.44 [9], Figure 1b suggests a TCRE of 1.731±0.074 °C/TtC i.e. close 

to the current median expected value. 

In 2022, the anthropogenic contribution to the atmospheric CO2 burden was 0.293 TtC and, 15 

therefore, our expected value of human induced warming in 2022 is (0.293)(4.880) = 

1.441±0.076 °C. The IPCC sixth assessment report employed three statistical methods based on 

climate models, radiative forcing and temperature data to estimate human-induced warming [11]. 

These three approaches have been updated to provide an estimate for 2022 of 1.26 °C (1.0 to 1.6 

°C) [16]. Compared to these estimates, our straightforward statistical analysis gives 0.18 °C 20 

more warming in 2022, which is approximately the additional warming already embedded in the 

1850-1900 temperature anomaly baseline. 

 

Policy Implications 

If the post 1700 human induced warming is employed, rather than that baselined against the 25 

1850-1900 temperature anomaly data, the world is ~0.2 °C closer to breeching the 1.5 and 2.0 °C 

targets than currently thought, and the remaining carbon budgets must be proportionately 

smaller. Furthermore, the 95% prediction interval for the expected value of human induced 

warming in 2022 includes 1.5 °C using our regression method (Figure 1b), and under expected 

human induced warming rates around 0.025 °C per year [17] this will more likely than not be 30 

passed in under 3 years. 

The pre-industrial baseline method for the temperature targets specified under Article 2 of the 

Paris Agreement has never been defined. One could assume that negotiators had the 1850-1900 

baseline in mind given their reliance on IPCC assessed evidence. Therefore, it is not a given that 

our upwards revision of human-induced warming makes us closer to the Paris limits. It could be 35 

argued that the Paris limits also need raising to preserve the level of climate risk the negotiators 

had in mind with 1.5 °C and 2 °C above an 1850-1900 baseline. However, given the regression 

method we are proposing appears to offer a superior baseline correction for global temperature 

anomaly data, certainly some revision of our understanding of the current level of global 

warming in relation to climate impacts and associated temperature targets is now needed.  40 

It is also important to acknowledge our method for estimating GMST change results in a far 

narrower uncertainty range for contemporary warming estimates when compared to current 

IPCC practice. This should significantly aid decision making around this metric, as will the 

ability to generate this metric near real time given the timeliness of both temperature anomaly 
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and atmospheric CO2 concentration data availability. It is also likely an advantage that these 

temperature change estimates are being made within the same framework the climate science 

community is using to estimate remaining carbon budgets, even though for both the effects of 

non-CO2 forcing and changes in the airbourne fraction must not be overlooked. Likewise we 

must remain mindful of any significant reorganisation of the global energy balance that might 5 

also lead to the observed linearity between atmospheric CO2 concentrations and global 

temperature change breaking down. However, the framework articulated here could prove useful 

for detecting any such change given this regression could always be deployed in its recursive 

form as a means of detecting any such changes.  

 10 
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Fig. 1. a. HadCRUT5A global temperature anomaly ( ̶ ; [14]), derived Global Mean Surface 

Temperature (GMST) change ( ̶ ); expected GMST change ( ̶ ), Law Dome ice core (o; [12]) and 

Mauna Loa direct air CO2 (+; [13]) data. b. The relationship between the estimated atmospheric 

carbon accumulation (ACA) and global temperature change. Circles are for the HadCRUT5A 5 

temperature anomaly data shown in a. Lines are weighted least squares regression with and 

without an offset, the latter being our estimate of expected GMST change shown in a. Shaded 

areas are 95th percentile ranges.  


