
Contextualizing Commitment Protocols∗

Amit K. Chopra
∗

North Carolina State University
Department of Computer Science

akchopra@ncsu.edu

Munindar P. Singh
North Carolina State University

Department of Computer Science
singh@ncsu.edu

ABSTRACT
Commitment protocols are modularized specifications of interac-
tions understood in terms of commitments. Purchase is a classic ex-
ample of a protocol. Although a typical protocol would capture the
essence of the interactions desired, in practice, it should be adapted
depending on the circumstances or context and the agents’ prefer-
ences based on that context. For example, when applying purchase
in different contexts, it may help to allow sending reminders for
payments or returning goods to obtain a refund. We contextualize
a protocol by adapting it via different transformations.

Our contributions are the following: (1) a protocol is transformed
by composing its specification with a transformer specification;
(2) contextualization is characterized operationally by relating the
original and transformed protocols; and (3) contextualization is re-
lated to protocol compliance.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

1. INTRODUCTION
This paper studies commitment protocols (for short, “protocols”),

which are modularized interactions characterized in terms of the
commitments among the interacting agents. Protocols are key in
designing multiagent systems, such as for implementing business
processes. Protocols would be composed and instantiated to real-
ize such systems. Protocols geared for business applications are
increasingly being standardized and published, although existing
approaches do not offer a formal semantics.

Although protocols are modular and reusable, one size does not
fit all. Consider a business example such as a purchase protocol. A
basic purchase protocol would capture the essence of how agents
should interact to effect a purchase. However, it might not be able
to accommodate the many variations needed to handle all the differ-

∗This research was partially supported by the National Science
Foundation under grant DST-0139037 and by DARPA contract
F30603-00-C-0178.
∗Student author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06, May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

ent contexts in which it might be applied. The correct interactions
might depend upon the context where it is applied: the social or
trust relationships between the agents (would the seller insist on
advance payment?), the goods being sold (do they need a prescrip-
tion?), the geographic location (is it legal to sell Schedule C phar-
maceuticals without a prescription?), legal considerations (should
the seller verify the buyer’s age?), and so on. Further variations of
context might be inherited from the rules of an electronic market-
place (the Uniform Commercial Code in the US [8]) or a business
culture, e.g., can goods be returned for a refund with no questions
asked or can goods be returned if they are faulty, and so on. A mer-
chant that knows how to participate in a basic purchase protocol
would need to interact differently in each of the above cases.

Developing protocols from scratch for each of the possible con-
texts would be a difficult undertaking, tedious and error prone at
best. This paper proposes an approach wherein protocols are gen-
erated by taking an existing protocol and transforming it. To this
end, protocols and transformers are specified formally and declar-
atively. Ideally, each transformer is designed for a particular aspect
of context. For example, one transformer might accommodate re-
minders; another might accommodate returns and refunds. In this
way, the task of engineering protocols is greatly simplified.

The main contributions of this paper include the following: (1)
specifying protocols and transformers formally and independently
of each other, (2) formally characterizing transformations based on
how they modify a protocol, and (3) determining an agent’s com-
pliance with a protocol that takes transformations into account.

This paper advances our program of research that treats interac-
tion as a key abstraction for multiagent systems and treats protocols—
as abstractions of interaction—as first-class citizens in contrast to
object classes. Modeling protocols enables sophisticated manage-
ment of interactions and of associated representations such as com-
mitments. Architecturally, an emphasis on interactions is essential
for open systems, because openness arises from making the end
points dynamically changeable. A system being designed is guar-
anteed to be open when the interactions among its participants are
reified, and the participants are described not as specific entities but
in terms of the roles they play in those interactions.
Organization. The rest of the document is organized as follows.
Section 2 presents a purchase protocol which serves as our running
example. Section 3 develops a language for specifying protocols
and a computational model for them. Section 4 presents contexts
and transformers relevant to our running example. Section 5 se-
mantically characterizes transformations and defines compliance.
Section 6 discusses some key literature and directions.

2. RUNNING EXAMPLE
This paper uses purchase as a running example. This section

describes its “base” variant next. Figure 1 shows the base protocol
in an informal graphical notation formalized later.

Commitments provide meaning to agent interaction. During the
execution of a protocol, agents enter into, modify, and satisfy com-
mitments. A commitment C(x, y, p) binds a debtor x to a creditor y
for fulfilling the condition p. A conditional commitment CC(x, y, p,
q) denotes that if condition p is brought about, then the commitment
C(x, y, q) will hold. Following Singh [6], we use the following op-
erations for the creation and manipulation of commitments: create,
discharge, cancel, assign, delegate, and release. Commitment op-
erations do not happen arbitrarily. They are typically governed by
normative policies that characterize the set of circumstances under
which the operations can happen.

CC(c,m,goods,pay)
CC(m,c,pay,goods)

C(c,m,pay) C(m,c,goods)

s

s

s

s

s

s

0

1

2

3

s

6

4
5

c:sendRequest

m:sendOffer

c:sendAccept

m:sendGoods c:sendPayment

c:sendPayment

CC(m,c,pay,goods)

m:sendGoods

Figure 1: The base purchase protocol

The base purchase protocol has two roles: merchant and cus-
tomer abbreviated m and c, respectively. For simplicity, we as-
sume reliable, synchronous communication. Thus, sending a mes-
sage is concurrent with its receipt. The protocol has the follow-
ing steps. (1) The customer begins the protocol by sending a re-
quest for quotes to the merchant. (2) The merchant sends an offer
in response. By sending an offer, the merchant creates the con-
ditional commitment CC(m,c,pay,goods) meaning that if the cus-
tomer pays, then the merchant will send the goods. (3) The cus-
tomer accepts the offer, thereby creating another conditional com-
mitment CC(c,m,goods,pay) meaning that if the merchant sends
the goods, then the customer will pay. (4) If the customer sends
a payment to the merchant, then CC(c,m,goods,pay) is discharged
and CC(m,c,pay,goods) is reduced to C(m,c,goods) meaning that the
merchant is now committed to sending the goods. Conversely, if the
merchant sends goods to the customer, then CC(m,c, pay,goods) is
discharged and CC(c,m,goods,pay) is reduced to C(c,m,pay) mean-
ing that the customer is now committed to paying for the goods.
(5) If the customer has paid in the previous step, then the merchant
sends the goods, thereby discharging its commitment. Conversely,
if the merchant has sent the goods in the previous step, then the
customer sends the payment, thereby discharging its commitment.
In either case, no commitments or conditional commitments hold
in the resulting state, which is indicated as the final state of the
protocol.

3. PROTOCOLS, FORMALLY
We specify protocols declaratively in C+ [2], an action descrip-

tion language based on the nonmonotonic causal logic, which cap-
tures universal causation—every fact that obtains must be caused.

We specify protocols in C+ because it supports elaboration tol-
erance. This means that a specification can be refined merely by
adding to the existing specification; nothing need be removed from

it even if the desired effect is that some inferences are disabled.
Elaboration tolerance is a major motivation behind nonmonotonic
reasoning. For protocols, elaboration tolerance means that certain
interactions can be removed or modified simply by adding axioms
to an existing specification. As Section 4 shows, the parts that are
to be added correspond to protocol transformers.

3.1 The Action Description Language C+
A specification in C+ consists of a set of causal laws. The signa-

ture of a C+ specification is the set σ of constants that occur in it.
σact and σfl represent the sets of actions and fluents, respectively.
Each constant c is assigned a nonempty finite domain Dom(c) of
symbols. An interpretation of σ is an assignment of values c = v
for each c ∈ σ where v ∈ Dom(c). A parameterized constant repre-
sents a family of constants, the members of which are all its ground
instances.

An action description in C+ describes a transition system, a
graph with states as vertices and actions as edges. Here, a state
s is an interpretation of σfl and a transition is a triple 〈s, e, s′〉
where s and s′ are states, and e is an interpretation of σact.

Below, we explain informally the meanings of the kinds of laws
we use. Here a, b . . . represent boolean action literals, and f, g, . . .

represent boolean fluent literals (except in declarations, where they
are treated as names); A,B, . . . and F, G, . . . represent formulas
(combinations using ∧,¬,∨) of actions and fluents, respectively.

SCHEMA 1. a :: exogenousAction.
Schema 1 declares an exogenous action a, which means that

there is a default cause for a to happen or not happen. In other
words, a simply happens or does not happen. We model protocol
actions such as sendRequest and sendOffer as exogenous actions.

SCHEMA 2. a :: action.
Schema 2 declares an action that is not exogenous. Such actions

are termed auxiliary actions. Auxiliary actions must be caused by
protocol actions. Commitment operations are auxiliary actions.

Let PA and AA denote the sets of protocol and auxiliary actions,
respectively. Then PA ∪AA = σact, the set of actions of an action
description. All actions are atomic—they either happen or do not
happen.

SCHEMA 3. f :: inertialFluent.
Schema 3 declares a fluent with the property that its value per-

sists from one state to the next unless changed by some other law.

SCHEMA 4. f :: sdFluent.
Schema 4 declares f as a static fluent, that is, the value of f

depends only on other fluents, not on actions.

SCHEMA 5. nonexecutable a if b.
Schema 5 ensures that a and b do not happen concurrently. We

use axioms of this schema for every pair of distinct protocol ac-
tions, thereby ensuring that no two protocol actions are concurrent.

SCHEMA 6. a causes b if F .
Schema 6 says that in a state where F (the precondition) holds, if

a happens, then b happens concurrently. If F is the formula >, the
law reduces to a causes b. In this case, in a state where a happens,
b happens concurrently.

We restrict the usage of Schema 6 so that a and b are protocol
and auxiliary actions, respectively. This makes sense if we think
of protocol actions causing commitment actions. Also, it does not
make sense for b to be a protocol action as we apply Schema 5 to
restrict protocol actions to be nonconcurrent.

SCHEMA 7. a causes F if G.
Schema 7 says that in a state where G holds, if a happens, then

F holds in the next state. If G is the formula >, the law reduces to
a causes F . In this case, in a state where a happens, F holds in the
next state.

SCHEMA 8. nonexecutable a if F .
Schema 8 specifies that in a state where F holds, a cannot hap-

pen. Axioms of this schema help impose an ordering on the proto-
col actions.

SCHEMA 9. a causes a.
Schema 9 specifies that the action a happens by default if a is a

positive literal. If a is negative literal, then a does not happen by
default.

SCHEMA 10. caused f if f .
Schema 10 says that the fluent f holds by default if f is a positive

literal. If f is a negative literal, then f does not hold by default.

SCHEMA 11. caused f if F .
Schema 11 says that f holds in a state where F holds.

3.2 Protocol Specification
Listing 1 specifies commitments and commitment operations in

C+. Only partial listings are shown due to space limitations. Com-
plete listings for all specifications in this paper are available at
http://research.csc.ncsu.edu/mas/code/. Listing 1 is independent
of any particular protocol, and is incorporated into each protocol.
Commitments and conditional commitments are modeled as iner-
tial fluents (Lines 10–11). Commitment operations are modeled
as simple (not exogenous) actions (Lines 12–13). Causal laws of
Schema 7 are used to model commitment operations (Lines 18–19).
By default, all commitment actions are disabled (Line 27). These
laws are required because of universal causation—they explain sit-
uations in which the commitment actions do not happen.

1 % The l i s t i n g r e f e r r e d t o as ’com−ops ’ from o t h e r l i s t i n g s
2 :− s o r t s
3 r o l e ;
4 c o n d i t i o n .
5 :− v a r i a b l e s
6 x , y , z : : r o l e ;
7 p , q : : c o n d i t i o n .

9 :− c o n s t a n t s
10 ccommitment (r o l e , r o l e , c o n d i t i o n , c o n d i t i o n) ,
11 commitment (r o l e , r o l e , c o n d i t i o n) : : i n e r t i a l F l u e n t ;
12 c r e a t e (r o l e , r o l e , c o n d i t i o n) : : a c t i o n ;
13 d i s c h a r g e (r o l e , r o l e , c o n d i t i o n) : : a c t i o n ;
14 . . .

16 % ’<>’, ’++ ’ , ’& ’ , ’−’ r e p r e s e n t l o g i c a l
17 % i n e q u a l i t y , or , and , and n e g a t i o n , r e s p e c t i v e l y .
18 c r e a t e (x , y , p) c a u s e s commitment (x , y , p) where x<>y .
19 d i s c h a r g e (x , y , p) c a u s e s −commitment (x , y , p) where x<>y .
20 % C r e a t i o n o f c o n d i t i o n a l commitment
21 c c r e a t e (x , y , p , q) c a u s e s ccommitment (x , y , p , q)
22 where x<>y & p<>q .
23 . . .

25 % By d e f a u l t , a l l commitment a c t i o n s are d i s a b l e d ;
26 % t h e y must be caused by p r o t o c o l a c t i o n s .
27 −c r e a t e (x , y , p) c a u s e s −c r e a t e (x , y , p) .
28 . . .

Listing 1: The basic commitment operations captured in C+

Listing 2 specifies the purchase protocol of Figure 1. Note that
it includes Listing 1. Protocol actions are declared on Lines 11–
12 as exogenous actions. They correspond to the labels on the

edges in Figure 1. Fluents that capture the state of the protocol
are declared in Lines 15–16. Line 21–22 capture the modeling of
the sendRequest action. Lines 25–28 show a part of the model-
ing of the sendGoods action. Lines 26–28 capture the discharging
of the merchant’s commitment to send goods. Other protocol ac-
tions are appropriately captured, but are not shown here. Towards
the end of the listing, the initial and final states of the protocol are
defined. The initial state is one where none of the fluents (except
initial) hold. The final state is one where a successful exchange of
goods and payment has happened. Fluents initial and final are de-
clared to be statically determined (Line 18) as their value depends
only on other fluents. Conceptually, initial and final are metaflu-
ents: they are part of the ontology for specifying protocols. The
nonexecutable axioms serve to impose an ordering on actions. For
instance, a sendRequest can happen only in the initial state (Line
22).

1 % I n c l u d e b a s i c commitment o p e r a t i o n s from L i s t i n g 1
2 :− i n c l u d e ’com−ops ’ .

4 :− o b j e c t s
5 merchant , cus tomer : : r o l e ;
6 goodsc , payc , a c c e p t c : : c o n d i t i o n .

8 :− c o n s t a n t s

10 % P r o t o c o l a c t i o n s : parame ter s p e c i f i e s t h e p e r f o r m e r
11 sendReques t (r o l e) , s e n d O f f e r (r o l e) , s endAccep t (r o l e) ,
12 sendGoods (r o l e) , sendPayment (r o l e) : : exogenousAc t ion ;

14 % F l u e n t s t o c h a r a c t e r i z e t h e s t a t e o f t h e p r o t o c o l
15 r e q u e s t (r o l e , r o l e) , o f f e r (r o l e , r o l e) , a c c e p t (r o l e , r o l e) ,
16 goods (r o l e , r o l e) , pay (r o l e , r o l e) : : i n e r t i a l F l u e n t ;

18 i n i t i a l , f i n a l : : s d F l u e n t .

20 % R e q u e s t
21 sendReques t (cus tomer) c a u s e s r e q u e s t (cus tomer , merchan t) .
22 n o n e x e c u t a b l e sendReques t (cus tomer) i f − i n i t i a l .

24 % P a r t i a l mode l ing o f goods
25 sendGoods (merchan t) c a u s e s goods (merchant , cus tomer) .
26 sendGoods (merchan t) c a u s e s c d i s c h a r g e (cus tomer , merchant ,
27 goodsc , payc) i f ccommitment (cus tomer , merchant ,
28 goodsc , payc) .
29 . . .

31 % S i m i l a r axioms f o r Of f e r , Accept , and Payment
32 . . .

34 % By d e f a u l t , i n i n i t i a l s t a t e
35 caused i n i t i a l i f i n i t i a l .

37 % Not i n i n i t i a l s t a t e i f any f l u e n t h o l d s
38 caused − i n i t i a l i f r e q u e s t (x , y) .
39 caused − i n i t i a l i f o f f e r (x , y) .

41 % S i m i l a r axioms r e l a t i n g i n i t i a l and o t h e r f l u e n t s
42 . . .

44 % By d e f a u l t , n o t i n f i n a l s t a t e
45 caused −f i n a l i f − f i n a l .

47 % In f i n a l s t a t e , i f pay and goods
48 caused f i n a l i f pay (cus tomer , merchan t) &
49 goods (merchant , cus tomer) .

Listing 2: The base purchase protocol in C+

The sending of a message is captured by the occurrence of the
corresponding protocol action. Receiving a message is assumed to
be synchronous with its sending. The fluents describe the state of
the protocol. Commitment actions give meaning to protocol actions
in terms of how protocol actions affect commitments. Therefore, it
makes sense to model a commitment action as happening concur-
rently with the protocol action that causes it.

3.3 Transition Systems
As noted earlier, an action description in C+ formally describes

a transition system. The transition system of a protocol is based on
the transition system of its C+ action description with the removal
of redundant transitions and unreachable states.

DEFINITION 1. The set of transitions of a protocol P specified
as an action description D is TP = {〈s, e, s′〉 | 〈s, e, s′〉 ∈ TD

and s 6= s′}, where TD denotes the set of transitions of D.

Thus the transition system of a protocol is different from its ac-
tion description. In the transition system semantics of C+, a non-
action (i.e., the nonoccurrence of an action a ∈ σact, denoted by
the interpretation a = false), is also considered an action. TD

contains transitions where e is interpreted such that every a ∈
σact = false. Effectively, no action happens in such transitions.
TD also contains transitions where e is interpreted such that some
a ∈ σact = true, but the state does not change. (Such transitions
could be produced, for example, by axioms of Schema 7 when the
action a happens in a state where G does not hold.) Both these
types of transitions appear as self-loops around states and are com-
putationally redundant. Definition 1 removes such transitions.

DEFINITION 2. The set of states of a protocol P specified as an
action description D is VP = {s | s ∈ VD and ∃〈s′, e, s′′〉 ∈ TP

such that s = s′ or s = s′′}, where VD denotes the set of states
described by D, and TP denotes the set of transitions of P .

Definition 2 removes isolated vertices (states). Such vertices have
no incoming or outgoing edges.

S
S

S

S

S

0

1

2

3

S45

6
sendGoods(merchant) (G) sendPayment(customer)(P)

sendRequest(customer)

(O)

sendGoods(merchant)sendPayment(customer)(P)

sendOffer(merchant)

(R)

(G)

sendAccept(customer) (A)

Sb

b

b

b

b

b

b

Figure 2: Transition system corresponding to Listing 2

Formally, then, a protocol P is described by 〈TP , VP , VI , VF 〉,
where VI ⊆ VP such that ∀v ∈ VI : v |= initial, and VF ⊆ VP

such that ∀v ∈ VF : v |= final. Figure 2 shows the transition
system corresponding to base purchase (Listing 2). Let’s call this
protocol PB (B for base). Table 1 shows the interpretation of the
states.

Lemma 1 shows that exactly one protocol action occurs in any
transition. We will use this result later.

LEMMA 1. In the transition system of a protocol P with
protocol actions {p1, . . . , pn} and auxiliary actions
{a1, . . . , am}, for every transition 〈s, e, s′〉 ∈ TP , exactly one
pi = true (1 ≤ i ≤ n), in interpretation e.
Proof . The proof follows from the assumptions specified above
about protocol actions and auxiliary actions. By Schema 5, no two
protocol actions are concurrent. Therefore, at most one pi = true
(1 ≤ i ≤ n), in the interpretation e. If some pi = true, we
are done. Else, Definition 1 removes nonaction loops, there must
be auxiliary aj = true (1 ≤ j ≤ m). However, by Schema 6,
auxiliary actions are caused only by protocol actions. Thus some
pi = true in e.

State Fluents

s0 initial
s1 request(customer, merchant)
s2 request(customer, merchant), offer(merchant, customer),

CC(customer, merchant, goodsc, payc)
s3 request(customer, merchant), offer(merchant, customer),

accept(customer, merchant),
CC(customer, merchant, goodsc, payc),
CC(merchant, customer, payc, goodsc)

s4 request(customer, merchant), offer(merchant, customer),
accept(customer, merchant), goods(merchant, customer),
C(c, m, payc)

s5 request(customer, merchant), offer(merchant, customer),
accept(customer, merchant), pay(customer, merchant),
C(m, c, goodsc)

s6 request(customer, merchant), offer(merchant, customer),
accept(customer, merchant), goods(merchant, customer),
pay(customer, merchant), final

Table 1: Interpretation of states in Figure 2: only fluents that
obtain are shown.

4. CONTEXTS AND TRANSFORMERS
Section 3 showed how to specify protocols in C+, and devel-

oped a computational model for them. This section exploits the
elaboration tolerance of C+ to support the independent specifica-
tion of protocols and transformers. A protocol transformer is a C+
specification that encodes a generic way to handle an aspect of con-
text. To apply a transformer to a protocol, we simply append it to
the protocol specification.

A transformer specification may use external constants, i.e., flu-
ents and actions that are not declared in it. External constants must
be declared in a protocol to which the transformer is applied. Such
constants represent part of the interface between the protocol and
the transformer. Below we model a few transformers for the base
purchase protocol (PB).

4.1 The Return-Refund Transformer

EXAMPLE 1. Sending returns and refunds: In some settings, a
customer may return goods bought and obtain a refund (if a pay-
ment was made). Likewise, a merchant may refund the customer’s
payment unilaterally if it is unable to deliver the promised goods.

1 :− c o n s t a n t s

3 s e n d R e t u r n (r o l e) , sendRefund (r o l e) : : exogenousAc t ion ;
4 r e t u r n e d (r o l e , r o l e) , r e f u n d e d (r o l e , r o l e) : : i n e r t i a l F l u e n t .

6 % Captur ing t h e e f f e c t s o f t h e r e t u r n a c t i o n

8 s e n d R e t u r n (cus tomer) c a u s e s r e t u r n e d (cus tomer , merchan t)
9 & −goods (merchant , cus tomer) i f

10 goods (merchant , cus tomer) .
11 s e n d R e t u r n (cus tomer) c a u s e s c r e a t e (merchant , cus tomer ,
12 goodsc) i f pay (cus tomer , merchan t) &
13 goods (merchant , cus tomer) .
14 s e n d R e t u r n (cus tomer) c a u s e s c a n c e l (cus tomer , merchant ,
15 payc) i f commitment (cus tomer , merchant , payc)
16 & goods (merchant , cus tomer) .
17 s e n d R e t u r n (cus tomer) c a u s e s c c r e a t e (merchant , cus tomer ,
18 payc , goodsc) i f commitment (cus tomer , merchant ,
19 payc) & goods (merchant , cus tomer) .
20 s e n d R e t u r n (cus tomer) c a u s e s c c r e a t e (cus tomer , merchant ,
21 goodsc , payc) i f commitment (cus tomer , merchant ,
22 payc) & goods (merchant , cus tomer) .

24 % Send ing goods c a u s e s them t o be n o t r e t u r n e d .

26 sendGoods (merchan t) c a u s e s −r e t u r n e d (cus tomer , merchan t) .

28 % Axioms f o r r e f u n d s
29 . . .

Listing 3: Return-Refund transformer in C+

Listing 3 shows a transformer that adds refunds and returns to
base purchase. The actions and fluents are declared in Lines 3–4.
Lines 8–22 capture the semantics of return. sendReturn(customer)
is successful only if goods have already been sent, and it undoes the
effect of the sending of goods by the merchant (Lines 8–10). The
remaining causal laws capture the effects of performing a return
depending on whether payment has already been sent (Lines 11–
13) or not (Lines 14–22). In addition, sending goods undoes the
effect of returning them (Line 26). This enables cyclic behavior of
sending and returning goods. Refunds (not shown in the listing) are
captured similarly.

1

2

3

4

6

O

A

G P

P G

sendReturn(customer) (T)

sendReturn(customer) (T) sendRefund(merchant) (F)

sendRefund(merchant) (F)

R0S

S

S

S

5 S

S

r

r

r

r

r

Sr

r

Figure 3: Transition system produced by applying the Return-
Refund transformer

To apply this transformer to PB (base purchase), we append it to
the specification of PB . We refer to the resulting protocol as PR

(for returns and refunds). Figure 3 shows the transition system of
PR. R, O, A, G, P mean the same as in Figure 2.

4.2 The Reminder Transformer

EXAMPLE 2. Sending reminders: In some context where agents
are notorious for not fulfilling their commitments on time, it would
be useful for the creditor of a commitment to remind the debtor
about the pending commitment. A customer can remind the mer-
chant to send the goods and conversely, a merchant can remind the
customer to send a payment.

1 :− c o n s t a n t s

3 sendReminder (r o l e) : : exogenousAc t ion ;

5 % Every p r o t o c o l a c t i o n must cause a t r a n s i t i o n i n t o
6 % a new s t a t e . The num o f t h e reminder s e r v e s t o
7 % d i s t i n g u i s h be tween two r e m i n d e r s .

9 r e m i n d e r (r o l e , r o l e , num) : : i n e r t i a l F l u e n t ;

11 % reminderNum k e e p s t r a c k o f t h e number o f r e m i n d e r s .
12 % To save space , we removed t h e l i n e s t h a t say
13 % maxReminders=6

15 reminderNum : : i n e r t i a l F l u e n t (0 . . maxReminders) .

17 % Reminder : i n c r e m e n t reminderNum a f t e r e v e r y reminder .

19 sendReminder (y) c a u s e s r e m i n d e r (x , y , i) & reminderNum= i +1
20 i f commitment (x , y , p) & i =reminderNum where
21 i < maxReminders .

Listing 4: Reminder transformer in C+

Listing 4 shows a transformer that adds reminders to base pur-
chase. Commitments are the only external constants in this trans-
former. Both the customer and the merchant can send reminders
(limited to six maximum) depending on which commitment holds.
The declaration of the fluent reminder(role, role, num) on Line 9
includes a parameter num. Recall that Definition 1 removes self-
loops from the transition system. Therefore, protocol actions must
be specified so that every time a protocol action happens, it causes
a state change. Without the num parameter, reminders after the first
reminder would not cause a state change, and would be removed
by Definition 1.

G

P

1

61

2

3

45

6

0

G P

A

R

O

GP

s

s

s

s

s

s

se

e

e

e

e

e

e

sendReminder(merchant) (M)sendReminder(customer) (C)

M

M

A

B

Figure 4: Transition system produced by applying the Re-
minder transformer

When we apply this transformer to PB (by appending it to PB),
we obtain a protocol PE (for reminders). Because the transition
system obtained is large, Figure 4 shows the simplified transition
system of PE . Every reminder that the merchant sends transitions
the protocol into a new state as shown in block A. We collapse block
A into block B, thereby making it seem that reminders happen in a
self-loop. We do the same for the customer’s reminders. Note that
such simplification is not possible in general. We make this sim-
plification here, because we focus on commitments, and sending
reminders does not change the commitments in any state.

4.3 The Pay-Before-Goods Transformer
This is an example of a transformer that removes some previ-

ously allowed interactions. Recall that base purchase allows send-
ing goods and payment in any order.

EXAMPLE 3. Pay first: In a context where customers are not
trustworthy (but merchants are), merchants requires payment be-
fore delivery of goods.

1 % Goods s e n t o n l y a f t e r payment .

3 n o n e x e c u t a b l e sendGoods (merchan t) i f
4 −pay (cus tomer , merchan t) .

Listing 5: Pay-Before-Goods transformer in C+

Listing 5 removes the path where the merchant sends goods be-
fore payment is received. When we append this transformer to PB ,

S

S
S

S

S

S

0

1

2

3

5

6

R

O

A

P

G

p

p

p

p

p

p

Figure 5: Transition system produced by applying the Pay-
Before-Goods transformer

we obtain the protocol PP (for pay first) as shown in Figure 5. Its
transition system is similar to Figure 2, but with the goods-before-
payment path removed.

4.4 The Discount Transformer
The previous transformers did not add any new commitments to

base purchase; this does.

EXAMPLE 4. As an incentive for the customer to pay and com-
plete the transaction, the merchant promises to give a 10% discount
on the customer’s next purchase if the customer pays.

1 :− o b j e c t s
2 % 10 p e r c e n t d i s c o u n t on n e x t purchase .

4 d i s c o u n t N e x t P u r c h a s e : : c o n d i t i o n .

6 :− c o n s t a n t s

8 s e n d D i s c o u n t O f f e r (r o l e) : : exogenousAc t ion ,
9 d i s c o u n t O f f e r (r o l e , r o l e) : : i n e r t i a l F l u e n t .

11 % D i s c o u n t O f f e r

13 s e n d D i s c o u n t O f f e r (merchan t) c a u s e s d i s c o u n t O f f e r (
14 merchant , cus tomer) .
15 s e n d D i s c o u n t O f f e r (merchan t) c a u s e s c c r e a t e (merchant ,
16 cus tomer , payc , d i s c o u n t N e x t P u r c h a s e) .

18 % D i s c o u n t O f f e r o n l y i f n o t cus tomer has n o t pa id .

20 n o n e x e c u t a b l e s e n d D i s c o u n t O f f e r (merchan t) i f
21 pay (cus tomer , merchan t) ++
22 −o f f e r (merchant , cus tomer) .

Listing 6: Discount transformer in C+

Listing 6 shows the corresponding transformer. A new action
sendDiscountOffer(merchant) is introduced which creates a condi-
tional commitment that if the customer pays, then it receives a 10%
discount on the next purchase. This action can happen only before
pay, and only after offer.

Applying this transformer to PB yields the protocol PD (for dis-
count). In the resulting transition system, the paths in PB remain
and new paths with sendDiscountOffer(merchant) are added. Fig-
ure 6 shows part of the resulting transition system with one such
added path, between s0 and s8. Note that in s8, a final state, the
fluent C(merchant, customer, discountNextPurchase) holds.

5. SEMANTICS OF TRANSFORMATIONS
The base purchase protocol and its transformations described

above offer differing functionality, yet are similar in that they are all
purchase protocols. The notion of protocol subsumption [3] helps

s

s

s

ss

s

0

1

2

3

45

6
P

R

O

A

GP

PG

7

sendDiscountOffer(merchant) (D)

sd

d

d

S
d

8S
d

d

d

d

d

Figure 6: Transition system produced by applying the Discount
transformer

characterize the relationship between a protocol and its transforma-
tions. The following reviews protocol subsumption, and applies it
for understanding transformations.

5.1 Protocol Subsumption
Runs. A run represents a path in the transition system from a initial
state to a final state.

DEFINITION 3. A run of a protocol is a series of transitions
〈s0, e0, s1〉, 〈s1, e1, s2〉, . . .,〈sn−1, en−1, sn〉 such that s0 ∈ S,
the set of initial states, and sn ∈ F , the set of final states.

〈s0, e0, s1, e1, . . . , en−1, sn〉 is an abbreviated representation of
a run. Using Lemma 1, we further abbreviate a run by indicat-
ing only protocol actions instead of complete action interpretations,
e.g., 〈s0, p0, s1, p1, . . . , pn−1, sn〉 where pi ∈ PA, the set of pro-
tocol actions. For example, the set of runs corresponding to Fig-
ure 2 is {〈s0, R, s1, O, s2, A, s3, G, s4, P, s6〉, 〈s0, R, s1, O, s2,

A, s3, P, s5, G, s6〉}.
State Similarity. We introduce state similarity to compare states
occurring in runs of different protocols. A state-similarity function
f maps a state to a set of states, i.e., f : S → 2S. From f , we
induce a binary relation ≈f⊆ S× S, where ≈f= {(s, f(s)) : s ∈
S}. We require f to be such that ≈f is an equivalence relation.
For example, commitments could be used to compare states. Two
states are commitment similar if the same set of commitments hold
in them. State-similarity forms the basis of protocol comparison.
Run Subsumption. Let ≺τ be a temporal ordering relation on
states in a run τ . s ≺τ s′ means that s occurs before s′ in τ .

DEFINITION 4. A run τj subsumes τi under a state-similarity
function f , denoted by τj �f τi if for every state si that occurs
in τi, there exists a state sj that occurs in τj such that sj ≈f si,
and for all s′i that occur in τi, if si ≺τi

s′i then there exists s′j that
occurs in τj such that sj ≺τj

s′j and s′j ≈f s′i.

For the sake of subsumption analysis, we omit the actions of a
run, thus abbreviating a run 〈s0, p0, s1, p1, . . . , pn−1, sn〉 to just
〈s0, s1, . . . , sn〉. Run subsumption is reflexive, transitive, and an-
tisymmetric up to state similarity [3]. Longer runs subsume shorter
runs, provided they have similar states in the same temporal order.
For example, the run 〈sr

0, s
r
1, s

r
2, s

r
3, s

r
4, s

r
3, s

r
4, s

r
6〉 in purchase with

returns and refunds (Figure 3) subsumes under commitment sim-
ilarity, the run 〈sb

0, s
b
1, s

b
2, s

b
3, s

b
4, s

b
6〉 in base purchase (Figure 2,

states with the same subscript being commitment similar). How-
ever, the run 〈sd

0, s
d
1, s

d
2, s

d
3, s

d
4, s

d
7, s

d
8〉 in purchase with discount

(Figure 6) does not subsume under commitment similarity, any
run in base purchase as state sb

6 does not have a corresponding
commitment-similar state in purchase with discount.
Protocol Subsumption. Informally, a more general protocol al-
lows more variations in its runs than a less general one. To help
formalize this notion, we define a span of a protocol as a set of
runs allowed by it. A transition system directly yields a span. We
define the closure of a protocol as a span that is closed under run
subsumption. That is, if a run is in the closure, then all the runs
that subsume it (under some state-similarity function) are also in
the closure. Closures are unique, and provide a firm basis for com-
paring protocols.

DEFINITION 5. The transition-span of a protocol specification
P , denoted by [P], is the set of runs in its transition system.

For example, [PB] = {〈s0, s1, s2, s3, s4, s6〉, 〈s0, s1, s2, s3, s5,

s6〉} is a transition-span of base purchase.

DEFINITION 6. The closure of a protocol P under a state-simi-
larity function f is given by [[P]]f = {τ | ∀τ ′ ∈ [P] : τ �f τ ′}.

DEFINITION 7. A protocol P subsumes a protocol P ′ under a
state-similarity function f , denoted by P [[f]〉P ′, if ∀τ ′ ∈ [[P ′]]f ,
∃τ ∈ [[P]]f , such that τ ′ �f τ .

Considering our example protocols, under commitment-similarity
function f , (1) PB (base purchase) subsumes PR (with returns and
refunds) and vice versa because [[PB]]f = [[PR]]f , (2) PB subsumes
PE (with reminders) and vice versa because [[PB]]f = [[PE]]f , (3)
PB strictly subsumes PP (pay-before-goods) because [[PP]]f ⊂
[[PB]]f , and (4) PD (with discount) strictly subsumes PB because
[[PB]]f ⊂ [[PD]]f . (Comparing across Figures 2, 3, 4, 5, and 6, the
states labeled with the same subscript are commitment similar.)

DEFINITION 8. The set of induced runs of a protocol P under
a state-similarity function f is ([P])f = [[P]]f \ [P].

In other words, the induced runs are not explicitly present in the
transition system but are implicitly present in the specification.

5.2 Types of Transformations
A transformation can be viewed as a function that takes a pro-

tocol as input and produces a different protocol. In simple terms,
a transformation either (1) adds, (2) removes, or (3) adds and re-
moves runs from a protocol. The definitions below characterize
transformations based on how they change the span of a proto-
col. The examples below use commitment similarity as the state-
similarity function.

DEFINITION 9. A transformation is closure expanding with re-
spect to a state-similarity function f if the resulting transition-span
has at least one additional run that does not belong to the closure
of the original protocol.

The transformation from PB (Figure 2) to PD (Figure 6) is clo-
sure expanding since it adds the run 〈sd

0, . . . , s
d
8〉 6∈ [[PB]]f .

LEMMA 2. A protocol resulting from a closure-expanding
transformation with respect to a state-similarity function f strictly
subsumes the original protocol under f .

DEFINITION 10. A transformation is closure preserving with
respect to a state-similarity function f if the transition span of the
resulting protocol is different from that of the original protocol, but
their closures are identical (under f).

No. [P] [[P]]f Transformation
Removes Adds Removes Adds

1 x x x x null
2 x x x X Impossible
3 x x X x Impossible
4 x x X X Impossible
5 x X x x Closure preserving
6 x X x X Closure expanding
7 x X X x Impossible
8 x X X X Impossible
9 X x x x Closure preserving
10 X x x X Impossible
11 X x X x Closure contracting
12 X x X X Impossible
13 X X x x Closure preserving
14 X X x X Closure expanding
15 X X X x Closure contracting
16 X X X X Not characterized

Table 2: Transformation possibilities

The transformations from PB (Figure 2) to PR (Figure 3) and
to PE (Figure 4) are both closure preserving since each transfor-
mation adds runs that were already present in [[PB]]f . A trans-
formation that removes runs from the transition span, but is still
closure-preserving, is one that removes reminders from PE .

LEMMA 3. A protocol resulting from a closure-preserving
transformation with respect to the state-similarity function f

subsumes the original protocol under f , and vice versa.

DEFINITION 11. A transformation is closure contracting if the
resulting transition-span is a proper subset of the transition-span
of the original protocol.

The transformation from PB (Figure 2) to PP (Figure 5) is clo-
sure contracting since it removes the run 〈sb

0, . . . , s
b
4, s

b
6〉 ∈ [PB].

LEMMA 4. A protocol subsumes a protocol resulting from a
closure-contracting transformation under every f .

Table 2 shows that the above-defined types of transformations
represent an exhaustive list; there can be no other type of transfor-
mation. Each row is to be read as “a transformation that Removes
(if ticked) and Adds (if ticked) from [P], and at the same time Re-
moves (if ticked) and Adds (if ticked) from [[P]]f is of type Trans-
formation”. To understand the table, we present the following ob-
servations that follow from the definition of closure. (1) To change
the closure, the transition span must be changed making the trans-
formations in rows 2–4 impossible. (2) A transformation that only
adds runs to the transition span cannot remove runs from the clo-
sure making transformations in rows 7–8 impossible. (3) Similarly,
a transformation that only removes runs from the transition-span
cannot add runs to the closure making rows 10 and 12 impossi-
ble. (4) The transformations of the type in row 16 cannot be gener-
ally characterized in terms of closures—depending on the specific
transformation in consideration, the transformation may be expand-
ing, preserving or contracting, or there may be no subset relation
between the closures of the original and the resulting protocol—
causing them to be labeled ‘not characterized’. We lack the space
to give detailed examples.

5.3 Compliance
How can we use the above characterization of transformations?

One use is in determining compliance. In open systems, checking
whether an agent complies with stated protocols is nontrivial. A
simple approach for verifying compliance is to check an agent’s en-
actment of a protocol against the protocol’s state machine: any de-
viation from the state machine would be a violation. But some devi-
ations may be necessary for variations in context. A commitment-
based approach can allow flexible enactments while enabling verifi-
cation of compliance [9]. Practical settings, however, often require
more structure than general-purpose commitment reasoning allows.
In particular, agreement among the interacting parties (expressed in
a protocol) may be needed to facilitate their interactions. For ex-
ample, in a certain context, the parties involved may find sending
reminders appropriate, but not allowing arbitrary returns. Where
do we get this structure from?

The closure of a protocol specifies which runs it allows. This is
important not just for deviations but also for accommodating agents
who participate in multiple protocols in a potentially interleaved
manner. By changing the similarity function f , we obtain different
closures. Thus, the state-similarity function leads to a configurable
definition of compliance. An appropriate similarity function can be
defined for each domain of interest or institution. Below, enactment
refers to an agent’s interactions.

DEFINITION 12. An agent is compliant with a protocol P in a
domain f as long as any enactment belongs to [[P]]f .

Given Definition 12, we relate transformations to compliance as
follows. Consider a domain f in which agents use protocol P . If
an agent replaces P with another protocol P ′ and acts in a manner
compliant with P ′, then under what conditions can we say that it
is also compliant with P ? To be compliant with both P and P ′, an
agent’s enactment must belong to both [[P]]f and [[P ′]]f .

LEMMA 5. An agent compliant with P ′ in a domain f is
compliant with protocol P if P ′ can be obtained from P using a
closure-preserving transformation with respect to f .

In a domain with commitment-similarity, an agent that is com-
pliant with PR (with returns and refunds) or PE (with reminders)
is compliant with PB (base purchase), but an agent using PP (pay
first) or PD (with discount) is not.

6. DISCUSSION
This paper has formalized protocols and transformers, demon-

strated how they work, and shown some of their useful properties.
When protocols and transformers are treated as software compo-
nents [7], we can think of creating libraries of them, and using
them as off-the-shelf components to create the desired multiagent
systems. The key requirement behind components is that they are
sufficiently rigorously defined that third-party developers can com-
pose them in ways that the original designers might not have an-
ticipated. This requirement is met for protocols by the present ap-
proach.

Some interesting challenges remain. How do we know that a
transformer does not conflict with a protocol? For example, apply-
ing a Goods-Before-Pay transformer (the inverse of the example of
Listing 5) on the Pay-Before-Goods protocol of Figure 5 will re-
sult in a protocol with no runs. Clearly, we can build a transition
system for the transformed protocol and observe that it allows no
runs. However, a characterization based on the specification lan-
guage would be more perspicuous and helpful during design. In
general, what kinds of correctness guarantees can we make regard-
ing a transformer based on the schemas used in it?

Engineering protocols, like any other artifacts, presupposes the
existence of effective tools. Because, in practice, protocols would
be developed in multiple ways, more than one kind of tool is needed.
This paper has concentrated on supporting protocol design from
existing protocols. Others have addressed this problem via a com-
position of existing protocols [10] or as a refinement of part of an
existing protocol [4]. In specification terms, a transformer is not
different from a protocol. Thus the present approach has elements
of composition in a rigorous manner and shows in what cases the
resulting protocols are refinements of the original protocols. An
alternative approach is to support protocol design from first prin-
ciples, i.e., based on requirements analysis of the desired class of
applications, an approach such as Dooley graphs [5] or Tropos [1]
that yields specifications from early requirements would be natural.
It would be interesting to see how the approaches can be combined
so that we can develop a library of protocols and transformers from
first principles, and enable the development of additional protocols
as needed from the components in the library.

7. REFERENCES
[1] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto

Giunchiglia, and John Mylopoulos. Tropos: An
agent-oriented software development methodology. Journal
of Autonomous Agents and Multiagent Systems,
8(3):203–236, May 2004.

[2] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz,
Norman McCain, and Hudson Turner. Nonmonotonic causal
theories. Artificial Intelligence, 153(1-2):49–104, 2004.

[3] Ashok U. Mallya and Munindar P. Singh. An algebra for
commitment protocols. Journal of Autonomous Agents and
Multiagent Systems special issue on Agent Communication,
2006. To appear.

[4] Hamza Mazouzi, Amal El Fallah Seghrouchni, and Serge
Haddad. Open protocol design for complex interactions in
multi-agent systems. In Proceedings of the First
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 517–526, 2002.

[5] H. Van Dyke Parunak. Visualizing agent conversations:
Using enhanced Dooley graphs for agent design and
analysis. In Proceedings of the 2nd International Conference
on Multiagent Systems, pages 275–282. AAAI Press, 1996.

[6] Munindar P. Singh. An ontology for commitments in
multiagent systems: Toward a unification of normative
concepts. Artificial Intelligence and Law, 7:97–113, 1999.

[7] Clemens Szyperski. Components and the way ahead. In
Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, chapter 1, pages 1–20.
Cambridge University Press, 2000.

[8] Uniform commercial code.
http://www.law.cornell.edu/ucc/ucc.table.html.

[9] Mahadevan Venkatraman and Munindar P. Singh. Verifying
compliance with commitment protocols: Enabling open
Web-based multiagent systems. Journal of Autonomous
Agents and Multi-Agent Systems, 2(3):217–236, September
1999.

[10] Benjamin Vitteau and Marc-Philippe Huget. Modularity in
interaction protocols. In Frank Dignum, editor, Advances in
Agent Communication, volume 2922 of Lecture Notes in
Computer Science, pages 291–309, 2004.

