
ABSTRACT

CHOPRA, AMIT KHUSHWANT. Commitment Alignment: Semantics, Patterns, and De-
cision Procedures for Distributed Computing. (Under the direction of Professor Munindar
P. Singh).

Current service-oriented architectures lack business-level software abstractions. As

a result, existing implementations are unnecessarily rigid. This dissertation takes as its

point of departure the idea that agents who offer and consumer business services enter

into commitments with one another. These commitments give meaning to the interaction

among the agents. Commitments support a semantic notion of compliance and enable

flexible enactment of business processes.

Interoperability refers to the ability of agents to engage in interaction with one

another. In open systems, where agents are autonomous and heterogeneous, ensuring in-

teroperability is critical. Traditionally, interoperability has been formulated in low-level

terms. This dissertation presents commitment alignment as a key form of business-level

interoperability. Agents are aligned if whenever the creditor of a commitment infers the

commitment, the debtor infers it too. A misalignment precludes any possibility of successful

engagement among agents—their interaction would break down.

This dissertation formally characterizes alignment in multiagent settings. It presents

the causes of misalignment, namely, autonomy, distribution, and heterogeneity. Autonomy

means that agents communicate asynchronously; distribution refers to the fact that in dis-

tributed systems, some agents may have more information than others; and heterogeneity

refers to the fact that agents may have incompatible interfaces.

To address autonomy and distribution, we propose a formalization of commitments

that consists of three elements: a semantics of the commitment operations; messaging pat-

terns that implement the commitment operations; and weak constraints on agents’ behaviors

to ensure the propagation of vital information. The constraints result in messages that are

critical to alignment. We prove that under our formalization, no misalignment occurs be-

cause of autonomy or distribution. To address heterogeneity, we propose a language for

agent interfaces, formulate a decision procedure that checks for interface compatibility, and

prove its correctness. By addressing all three causes, we guarantee that no misalignment

occurs.

Commitment Alignment: Semantics, Patterns, and Decision Procedures for

Distributed Computing

by

Amit Khushwant Chopra

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2008

APPROVED BY:

Dr. Rada Y. Chirkova Dr. S. Purushothaman Iyer

Dr. Mladen A. Vouk Dr. Munindar P. Singh
Chair of Advisory Committee

ii

DEDICATION

To my mother

iii

BIOGRAPHY

Amit was born in Mumbai to Asha and Khushwant Chopra. His family moved to

Pune sometime in the late eighties in pursuit of a better life.

Amit obtained his B.E. in Computer Engineering from the Pune Institute of Com-

puter Technology in 1999. Until July 2001, he worked at Persistent Systems (Pune) as a

software engineer. Amit then moved to the United States to pursue graduate studies in

Computer Science at North Carolina State University. In 2006, he took a break from grad-

uate studies and poverty to work at IBM’s WebSphere Technology Institute. In January

2009, Amit will join the University of Trento (Italy) as a postdoctoral researcher.

Amit is interested in distributed computing, agent-oriented software engineering,

and service-oriented architectures. He likes reading novels and short stories, watching films

(strictly in the comfort of his home), swimming, running, and playing cricket, table tennis,

and soccer.

iv

ACKNOWLEDGMENTS

I am deeply indebted to my advisor Munindar Singh. Munindar read countless

drafts, corrected numerous mistakes, and provided astute guidance. As I move on to newer

pastures, I hope I have imbibed some of Munindar’s enthusiasm, work ethic, vision, and

generosity.

I am grateful to Professors Chirkova, Iyer, and Vouk for the time and effort they

expended as my committee members. Over the years, I have benefitted amply from their

questions and suggestions.

I have benefitted greatly from interactions with former and current colleagues at

NC State, especially Nirmit Desai (IBM Research) and Ashok Mallya (eBay). Scott Gerard

and Pankaj Telang have happily served as sounding boards for my ideas. Chris Hazard

provided useful comments on various drafts and presentations.

I have had several interesting discussions on agent interoperability with Matteo

Baldoni, Cristina Baroglio, and Viviana Patti (all at the University of Torino). Michael

Winikoff (University of Otago) and Gal Kaminka (Bar Ilan University) gave me useful

advice, technical and professional. I also had fruitful discussions about my work with Annie

Antón, James Lester, Laurie Williams, and Tao Xie (all at NC State).

A special thanks goes out to the staffs of the Department of Computer Science and

the Office of International Services at NC State. They made all administrative procedures

relatively painless.

Ashok Mallya, Mrudula Neginhal, Vishwas Puttasubbappa, Hemant Ramnani, and

Amit Sharma gave me the gift of unwavering friendship. For that, I’m deeply grateful.

I have been away from my parents for a long time now. My mother, especially,

has felt the pangs of my absence. I owe her much.

Soon I will be leaving the shores of the United States, and I do not know if I will

ever have the opportunity to come live here again. I feel a sense of gratitude towards the

people of the United States—living here has been a singularly liberating experience.

This research was partially supported by the National Science Foundation under

grant IIS-0139037, by DARPA under contract F30603-00-C-0178, by an IBM Faculty Award,

and by a gift from Intel. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views

of the sponsors.

v

TABLE OF CONTENTS

LIST OF TABLES. vii

LIST OF FIGURES . viii

1 Introduction: Commitments . 1
1.1 Trends in Business Processes . 2

1.1.1 Orchestration . 2
1.1.2 Choreography . 4

1.2 Commitment Protocols . 6
1.2.1 Commitments . 7
1.2.2 Protocol Specification . 8
1.2.3 Compliance and Flexibility . 9

1.3 Dissertation Topic: Commitment Alignment 10
1.3.1 Causes of Misalignment . 12
1.3.2 Results . 12

1.4 Organization . 13

2 Commitment Alignment . 14
2.1 Commitments . 14

2.1.1 Reasoning Postulates for Commitments 14
2.1.2 Commitment Operations . 15
2.1.3 Messages . 15
2.1.4 Commitment Strength . 16

2.2 Agents and Communication . 17
2.3 Formalizing Alignment . 18

2.3.1 Quiescence . 18
2.3.2 Integrity . 19
2.3.3 Alignment . 21

3 Handling Autonomy and Distribution . 22
3.1 Introduction . 22

3.1.1 Motivation . 23
3.1.2 Contributions . 26
3.1.3 Organization . 26

3.2 Principles of Alignment . 27
3.3 Formalization of the Principles . 30

3.3.1 Inform . 32
3.3.2 Two-Party Operations . 32
3.3.3 Three-Party Operations . 33

vi

3.3.4 Notifications . 36
3.3.5 Priority . 37

3.4 Correctness Proof . 38
3.5 Discussion . 39

3.5.1 Generality of Approach . 39
3.5.2 Applications . 41
3.5.3 Multiagent Belief Consistency . 42
3.5.4 Service-Oriented Architectures . 43

4 Handling Heterogeneity . 44
4.1 Introduction . 44

4.1.1 Commitments . 46
4.1.2 Commitment-Based Interoperability 46
4.1.3 Contributions and organization . 48

4.2 Technical Framework . 48
4.2.1 Constitutive Specifications . 48
4.2.2 Operational Semantics . 50

4.3 Constitutive Interoperability . 52
4.3.1 Definition . 52
4.3.2 Decision Procedure . 53

4.4 Discussion . 63

5 Discussion . 65
5.1 Commitments and Agent Communication 65
5.2 Software Engineering . 66

5.2.1 Architecture and Patterns . 67
5.2.2 Software Components and Interoperability 69

5.3 Future Work . 70
5.3.1 Metacommitments . 70
5.3.2 Richer Interface Language . 71
5.3.3 Tools and Middleware for Enterprises 71
5.3.4 Pattern Language . 71

vii

LIST OF TABLES

Table 1.1 A commitment protocol. 9

Table 1.2 Comparison of approaches . 10

Table 3.1 Constraints on agent behavior . 35

Table 4.1 Constitutive specifications of a customer and merchant. 49

Table 4.2 Offer . 53

Table 4.3 Offer with antecedent and consequent rules . 54

Table 4.4 Antecedent coverage: merchant uses fewer messages . 59

Table 4.5 No antecedent coverage: customer uses fewer messages . 60

Table 4.6 Offer with jumbled but adequate meanings . 61

Table 4.7 Making an unconditional commitment . 61

Table 4.8 Consequent coverage . 61

Table 4.9 Consequent coverage: case of adequate meaning. 62

Table 5.1 A comparison of commitment-based and existing SOAs . 68

viii

LIST OF FIGURES

Figure 1.1 A merchant’s business process, modeled in BPMN . 3

Figure 1.2 A choreography specified as a state machine . 5

Figure 1.3 An alternative, more flexible choreography . 6

Figure 1.4 Interaction and meaning . 9

Figure 1.5 Flexible enactment . 11

Figure 2.1 Quiescence. 19

Figure 2.2 Notifying about detaches . 20

Figure 3.1 Scenarios (B),(C), and (D) end in misalignment . 24

Figure 3.2 Proposed approach . 28

Figure 3.3 Race between cancel and detach . 30

Figure 3.4 The delegate and assign patterns. 34

Figure 3.5 Detach notifications. 36

Figure 3.6 Discharge notification . 37

Figure 4.1 Program analysis graph for agents in Table 4.2 . 58

Figure 4.2 Program analysis graph for agents in Table 4.3 . 58

Figure 4.3 Program analysis graph for agents in Table 4.4 . 59

Figure 4.4 Program analysis graph for agents in Table 4.5 . 60

Figure 4.5 Program analysis graph for agents in Table 4.8 . 62

Figure 4.6 Program analysis graph for agents in Table 4.9 . 63

1

Chapter 1

Introduction: Commitments

Today, the world is witnessing an explosive growth in the number and richness

of online services. We use such services daily—when we are pay our utility bills, make

airline and hotel reservations, buy and sell things on eBay, manage our bank accounts

. . .the list is endless. The growth is not limited to consumer facing services; more and

more organizations are conducting their procurement and sales processes electronically.

The proliferation of such services belies the complexity of their construction. Most service

enactments involve multiple autonomous and heterogeneous organizations. For example,

booking an airline ticket involves not just the user, the travel agency, and the airline, but

also various credit card companies and banks, each with their own independently designed

information systems. This raises the tremendous challenge of interoperation: how can we

ensure interoperation between such diverse business organizations?

The question of interoperability squarely puts the focus on the modeling of inter-

actions among organizations. In open settings, such as the Web, accommodating flexible

interaction is as much a concern as interoperability. From a business point of view, it makes

sense that an organization offering services on the Web should be able to interact and con-

duct business with the widest possible set of organizations, and be able to take advantage

of opportunities and handle exceptions. However, there is a certain tension between inter-

operability and flexibility. Flexibility means that more interactions are supported, which

makes determining interoperability tougher.

This chapter shows that current approaches focus solely on interoperation and fare

poorly when it comes to accommodating flexibility. We then motivate an approach that

2

supports flexible interactions. Our approach recognizes the lack of business-level abstrac-

tions in current approaches for modeling interactions, and fills that gap. This chapter lays

the groundwork for the results in this dissertation.

1.1 Trends in Business Processes

Traditionally business processes were used to automate the internal operations of

an organization. The operations were modeled as workflows. Workflow management sys-

tems [Georgakopoulos et al., 1995] such as MQSeries, Lotus Notes, FlowMark, and Staffware

were used to enact and manage the flows. This was before the e-business era, and the typ-

ical applications were form processing, office automation, computer-supported cooperative

work, and the paperless office.

As the potential of e-business became apparent, organizations sought not only

to automate their internal operations, but also to automate interactions with their busi-

ness partners. Interoperation posed the biggest challenge: how do heterogeneous software

components representing different organizations interact meaningfully? That gave rise to

approaches such as EDI (Electronic Data Interchange). The EDI standard describes data

formats for documents such as a purchase order. The business organizations participating in

an EDI process agree upon the documents to be transmitted and how they should be used.

Automated supply chains emerged in this stage. The problem with EDI, however, was that

it resulted in preconfigured, highly customized, and inflexible processes. Instead of achiev-

ing interoperation among the participants, EDI resulted in integration of the participants’

information systems—thoroughly less desirable.

Web services emerged to address the problem of heterogeneity in a more elegant

way. A Web service is an application with a published interface that clients can use to

interact with it. Interfaces are the basis of interoperation; a client has simply to act accord-

ing to the interface to avail of the Web service. Two principal approaches for weaving Web

services into business processes emerged: orchestration and choreography.

1.1.1 Orchestration

Orchestration refers to the coordinated invocation of services from a workflow. The

constructs used for coordinating the services are primary those from structured programming—

3

loops, conditional branching, fork, join, and so on. BPEL [2003] is a widely used and

industry-supported language for writing such workflows. OWL-S [Martin et al., 2007] is

another language designed for orchestrating services, with a special emphasis on Semantic

Web. BPMN [2008] is a graphical notation for expressing orchestrations. Orc [Cook and Misra,

2007] is a minimal orchestration language with only three coordination primitives using

which complex orchestrations may be built.

Figure 1.1 shows the workflow of a merchant in BPMN notation. The merchant

receives an order from a customer, following which the merchant invokes the Process Order

service. After the order is processes, the merchant invokes the Check Inventory and Process

Payment services in parallel. If the item ordered is not in the inventory, the merchant checks

again. Otherwise, the item is shipped to the customer. If the payment is processed as well,

the merchant sends a confirmation to the customer and exits the workflow.

Figure 1.1: A merchant’s business process, modeled in BPMN

We make the following observations about orchestration-based approaches.

• An orchestration reflects only one participant’s view of the overall business process.

Figure 1.1, for example, reflects only the merchant’s point of view—how the merchant

4

processes an order. An orchestration is, in fact, the implementation of a particular

participant. Notice how the internal policies of merchant, as indicated by the decision

node representing the inventory check, is mixed with service invocations. Whether

to invoke services concurrently or serially is also an internal policy matter for the

merchant.

• Orchestration is an invocation-based approach. Services are treated on par with com-

putational objects. In Figure 1.1, the merchant invokes the Process Order, Check

Inventory, Process Payment, and Process Shipment services to fulfill an order. Inter-

actions with other participants in the overall business process find no place in an

orchestration. For example, in Figure 1.1, participants that one might reasonably

expect to be involved in an order fulfillment process, such as a bank and a shipper,

find no place. Not just that, even the customer is not explicitly represented. True,

such participants may be behind the services that are invoked. However, a service

is not the same as a participant. Participants have autonomy and can be engaged,

whereas services are merely invoked.

1.1.2 Choreography

A choreography prescribes how the participants in a business process interact by

specifying the flow of messages between them. This is achieved by using control and data

flow constructs, not unlike those used for specifying orchestrations.

A choreography may be understood as the interaction protocol among the par-

ticipants. Typically, a choreography is specified in terms of roles rather the participants

themselves. Participants adopt roles, that is, bind to the roles, in the choreography. This

promotes reusability.

WS-CDL [2005] and ebBP [2006] are the leading industry supported choreogra-

phy standardization efforts. UML [Huget and Odell, 2005] is another leading approach for

specifying choreography. A choreography may also be specified formally: as state ma-

chines [Yellin and Strom, 1997; Benatallah et al., 2004], Petri Nets [Cost et al., 1999], stat-

echarts [Dunn-Davies et al., 2005], processes in the π-calculus [Canal et al., 2003], or via

more declarative approaches [Singh, 2003; van der Aalst and Pesic, 2006].

Figure 1.2 shows a choreography between two roles, merchant (mer) and customer

5

(cus) as a state machine. The transitions are labelled with messages; the prefix mer,cus

indicates a message from the merchant to the customer, and cus,mer indicates a message

from the customer to the merchant. This choreography supports two executions. One

execution represents the scenario where the customer rejects the merchant’s offer. The

other execution represents the scenario where the customer accepts the offer, following

which the merchant and the customer exchange the item and the payment for the item.

Figure 1.2: A choreography specified as a state machine

We make the following observations about choreographies.

• A choreography specifies only the interactions among participants. In doing so, it ab-

stracts away from some of the implementation details of the participants. For example,

Figure 1.2 does not reflect the internal policies based upon which the customer accepts

an offer. Further, a choreography specifies the interactions of all the participants in

a business process.

• Choreography is an interaction-oriented approach. It acknowledges autonomy by giv-

ing first-class status to participants and their interactions.

The trend lately is to use choreographies as modeling abstractions for business

processes as evidenced by the growing number of such specifications [RosettaNet, 1998;

6

HL7; TWIST]. We find this trend encouraging; however, this approach also falls short in

supporting autonomy.

Consider the choreography in Figure 1.3. The dotted paths indicate two addi-

tional executions that are not supported by the choreography in Figure 1.2. The executions

depict the scenarios where the customer sends the payment upon receiving an offer and

after sending accept, respectively. These additional executions are just as sensible as the

original ones. However, in the context of the choreography in Figure 1.2, these executions

are trivially noncompliant. The reason is that checking compliance with choreographies

is purely syntactical—the messages have to flow between the participants exactly as pre-

scribed. Clearly, this curbs the participants’ autonomy and flexibility.

Figure 1.3: An alternative, more flexible choreography

1.2 Commitment Protocols

In contrast with choreography and orchestration-based approaches, commitment

protocols gives primacy to the business meanings of service engagements, which are captured

through the participants’ commitments to one another [Yolum and Singh, 2002],

7

[Chopra and Singh, 2004; Singh et al., 2004; Desai et al., 2005; Winikoff et al., 2005],

[Desai et al., 2007b]. Computationally, each participant is modeled as an agent ; interacting

agents carry out a service engagement by creating and manipulating commitments to one

another.

1.2.1 Commitments

A commitment is of the form C(debtor , creditor , antecedent , consequent), where

debtor and creditor are agents, and antecedent and consequent are propositions. A commit-

ment C(x, y, r, u) means that x is committed to y that if r holds, then it will bring about u.

If r holds, then C(x, y, r, u) is detached, and the commitment C(x, y,⊤, u) holds (⊤ being

the constant for truth). If u holds, then the commitment is discharged and doesn’t hold

any longer. All commitments are conditional ; an unconditional commitment is merely a

special case where the antecedent equals ⊤. Examples 1–3 illustrate these concepts. In the

examples, Bookie is a bookseller, and Alice is a customer.

Example 1 (Commitment) C(Bookie ,Alice, $12,BeatingtheOdds) means that Bookie com-

mits to Alice that if she pays $12, then Bookie will sends her the book Beating the Odds.

Example 2 (Detach) If Alice makes the payment, that is, if $12 holds, then

C(Bookie ,Alice, $12,BeatingtheOdds) is detached. In other words, C(Bookie ,Alice, $12,

BeatingtheOdds) ∧ $12 ⇒ C(Bookie ,Alice,⊤,BeatingtheOdds).

Example 3 (Discharge) If Bookie sends the book, that is, if BeatingtheOdds holds, then

both C(Bookie ,Alice, $12,BeatingtheOdds) and C(Bookie ,Alice,⊤,BeatingtheOdds) are dis-

charged. In other words, BeatingtheOdds ⇒ ¬C(Bookie,Alice, $12,BeatingtheOdds)∧

¬C(Bookie ,Alice,⊤,BeatingtheOdds).

Importantly, commitments can be manipulated, which supports flexibility. The

commitment operations are reproduced below (from [Singh, 1999]). create, cancel, and

release are two-party operations, whereas delegate and assign are three-party opera-

tions.

• create(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to hold.

8

• cancel(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to not hold.

• release(x, y, r, u) is performed by y, and it causes C(x, y, r, u) to not hold.

• delegate(x, y, z, r, u) is performed by x, and it causes C(z, y, r, u) to hold.

• assign(x, y, z, r, u) is performed by y, and it causes C(x, z, r, u) to hold.

We introduce inform(x, y, r) as an operation performed by x to inform y that

the r holds. It is not a commitment operation, but may indirectly affect commitments by

causing detaches and discharges. In relation to Example 2, when Alice informs Bookie of

the payment by performing inform(Alice,Bookie , $12), then the proposition $12 holds, and

causes a detach of C(Bookie ,Alice, $12,BeatingtheOdds). A complete, formal treatment of

commitments is presented in Chapter 2.

A commitment arises in a social or legal context. The context defines the rules

of encounter among the interacting parties, and often serves as an arbiter in disputes and

imposes penalties on parties that violate their commitments. For example, eBay is the

context of all auctions that take place through their service; if a bidder does not honor a

payment obligation for an auction that it has won, eBay may suspend the bidder’s account.

1.2.2 Protocol Specification

Table 1.1 shows the specification of a commitment protocol between a merchant

and a customer (omitting sort and variable declarations). It simply states what the mean-

ings of the messages are in terms of commitments between the merchant and customer.

For instance, the message Offer(mer , cus, price , item) means the creation of the commit-

ment C(mer , cus, price , item), meaning the merchant commits to delivering the item if the

customer pays the price; Reject(cus ,mer , price , item) means a release of the commitment;

Deliver(mer , cus , item) means that the proposition item holds.

Figure 1.4(A) shows an execution of the protocol and Figure 1.4(B) its mean-

ing in terms of commitments. (The figures depicting executions use a notation similar

to UML interaction diagrams. The vertical lines are agent lifelines; time flows downward

along the lifelines; the arrows depict messages between the agents; and any point where

an agent sends or receives a message are annotated with the commitments that hold at

that point. In the Figures, instead of writing create, we write Create. We say that

9

Table 1.1: A commitment protocol

Offer(mer , cus , price , item) means create(mer , cus , price , item)

Accept(cus,mer , price , item) means create(cus,mer , item , price)

Reject(cus,mer , price , item) means release(mer , cus, price , item)

Deliver(mer , cus , item) means inform(mer , cus , item)

Pay(cus,mer , price) means inform(cus ,mer , price)

the Create message realizes the create operation. Likewise, for other operations and

inform.) In the figure, the merchant and customer are played by Bookie and Alice, re-

spectively; cB and cUB are the commitments C(Bookie ,Alice, $12 ,BeatingtheOdds) and

C(Bookie ,Alice,⊤,BeatingtheOdds) respectively; BO is abbreviation for Beating the Odds.

Figure 1.4: Interaction and meaning

1.2.3 Compliance and Flexibility

Service enactments can be judged correct as long as the parties don’t violate their

commitments. This enhances flexibility over traditional approaches by expanding the op-

erational choices for each party [Chopra and Singh, 2006a]. For example, if the customer

substitutes a new way to make a payment or elects to pay first, no harm is done, because the

behavior is correct at the business level. And, the merchant may employ a new shipper; the

10

Table 1.2: Comparison of approaches

Orchestration Choreography Commitment Protocols

Abstraction control & data control & data business

Compliance lexical syntactic semantic

Flexibility low low high

customer may return damaged goods for credit; and so on. Conversely, a customer would

be in violation if he keeps the goods but fails to pay. In this manner, commitments sup-

port business-level compliance and don’t dictate specific operationalizations [Desai et al.,

2005]. By contrast, without business meaning, exercising any such flexibility would result

in noncompliant executions.

Figure 1.5 shows some of the possible enactments based on the protocol in Ta-

ble 1.1. Figure 1.5(B) reflects the execution where the book and payment are exchanged in

Figure 1.2; cA and cUA are C(Alice,Bookie ,BeatingtheOdds , $12) and C(Alice,Bookie ,⊤, $12),

respectively. Figures 1.5(A) and (C) reflect the additional executions supported in Fig-

ure 1.3; Figure 1.5(D) reflects a new execution that we hadn’t considered before, one where

Alice sends an Accept even before receiving an offer. All these executions are compliant

executions in terms of commitments, and thus supported by the protocol in Table 1.1.

Table 1.2 summarizes the three approaches.

1.3 Dissertation Topic: Commitment Alignment

A challenge that arises in distributed systems is that of state alignment. Alignment

is closely related to the problem of consistency in distributed systems. Consistency in a

distributed system is typically achieved by synchronizing the nodes in the system. For

example, as is common in business process implementations, a two-phase commit protocol

is used to synchronize the parties. By alignment, we mean that the agents involved in an

interaction should have a consistent view of their commitments to each other. If agents

cannot even agree about their commitments to each other, one can hardly expect that

they’d be able to engage in business, that is, interoperate with each other.

Informally, we say that agents are aligned, if whenever an agent infers a commit-

11

Figure 1.5: Flexible enactment

ment in which it is the creditor, the debtor of the commitment also infers that commitment.

Let’s consider some examples of misalignment.

Example 4 Bookie sends an Offer to Alice, which means a commitment that if Alice

pays, then Bookie will send the book. Alice sends the payment (message) for the book.

Concurrently, Bookie cancels the offer by sending CancelOffer. Alice observes Bookie’s

cancellation after sending the payment; so she regards it as spurious. Bookie observes

Alice’s payment after sending cancellation, so Bookie considers the payment late. As a

result Alice infers that Bookie is committed to sending her the book, but Bookie does not

infer that. Thus, Bookie and Alice are misalignment.

12

Example 5 Alice commits to Bob that if the sky is clear at 5PM, then she will meet

him at the lake. At 5PM, Bob observes (a message from the environment) that the sky is

clear, and therefore infers that Alice is unconditionally committed to meeting him at the

lake. However, Alice does not know that the sky is clear, and therefore does not infer the

unconditional commitment. Bob and Alice are thus misaligned.

Example 6 For Alice, an Offer message from Bookie counts as a commitment from Bookie

to ship a book in return for payment. Whereas for Bookie, Offer does not count as any

such commitment; but an explicit Accept from Alice does. Thus, when Bookie sends Alice

an Offer message, Alice infers the commitment, but Bookie does not—a misalignment.

1.3.1 Causes of Misalignment

There are three possible causes of misalignment.

Autonomy Agents are autonomous. This means that they are free to send messages. In

turn, this means that communication between them is asynchronous. Thus, in general,

agents observe messages in different orders. If their observations are incompatible, it

may cause a misalignment. This is the cause of misalignment in Example 4.

Distribution In a distributed system, some agents may have more information than others.

This is the cause of misalignment in Example 5: Bob knows that the sky is clear, but

Alice does not.

Heterogeneity Agents may assign incompatible meanings to the messages they are ex-

changing. To be able to successfully interact, the agents must agree on what their

communications count as. Heterogeneity is the cause of misalignment in Example 6.

1.3.2 Results

Our contributions are the following.

1. Commitment alignment is a key form of business-level interoperability. Before engag-

ing in business, parties would want to know if their commitments align suitably. We

formally characterize commitment alignment in multiagent systems.

13

2. We address the challenge of autonomy by defining the semantics of commitment op-

erations. We handle distribution by putting local constraints on the behaviors of

agents. Under the semantics and the constraints together, we prove that autonomy

and asynchrony cause no misalignments.

3. We delineate two criteria that any approach for alignment must meet: autonomy com-

patibility and semanticity. Both autonomy compatibility and semanticity are crucial

in arriving at a general solution for alignment. Our formalization meets both these

criteria.

4. To handle heterogeneity, we formalize the interfaces of agents in terms of commit-

ments, and present a decision procedure which determines if agents’ interfaces are

compatible.

If no misalignment happen due to autonomy and distribution, and if the interfaces

of agents are compatible (for the interface language we use), then no misalignment occurs.

1.4 Organization

Chapter 2 delineates formally the communication model and agents, and charac-

terizes commitment alignment in terms of this model. Chapter 3 presents a solution to

the challenges of autonomy and distribution by formalizing commitment operations and

constraints on agent behavior. More importantly, it proves that the solution guarantees

that no misalignment occurs due to autonomy or distribution. In Chapter 3, we assume

that agents assign identical meanings to messages. In Chapter 4, we drop this assumption,

and address heterogeneity. Here, we present a decision procedure to determine interface

compatibility. Finally, Chapter 5 places this work in a broader context and outlines future

directions.

14

Chapter 2

Commitment Alignment

We present reasoning postulates for commitments, and a general model of asyn-

chronous communication. Finally, we characterize alignment itself.

2.1 Commitments

Below, x,y, etc are variables over agents; p, q, r, etc. are propositional variables;

∨, ∧, ¬, →, ↔ are the usual propositional connectives; ⊤ and ⊥ are the constants for truth

and falsity, respectively; ⊢ is the usual propositional inference symbol. Read ⇒ as implies.

A commitment is of the form C(x, y, r, u). If r holds, then C(x, y, r, u) is detached,

and the commitment C(x, y,⊤, u) holds. If u holds, then the commitment is discharged and

doesn’t hold any longer. All commitments are conditional ; an unconditional commitment

is merely a special case where the antecedent equals ⊤.

2.1.1 Reasoning Postulates for Commitments

Reasoning postulates for commitments are reproduced below [Singh, 2008]. For

brevity, we omit the agents when they can be understood from the context. Further,

when the postulates uniformly use the debtor x and creditor y, we write C(r, u) instead of

C(x, y, r, u).

B1. discharge. u → ¬C(r, u)

B2. detach. C(r ∧ s, u) ∧ r → C(s, u).

15

B3. augment. From C(r, u) ∧ s ⊢ r, infer C(s, u)

B4. l-disjoin. C(r, u) ∧ C(s, u) → C(r ∨ s, u)

B5. r-conjoin. C(r, u) ∧ C(r, v) → C(r, u ∧ v)

B6. consistency. ¬C(r,⊥)

B7. nonvacuity. From r ⊢ u, infer ¬C(r, u)

B8. weaken. C(r, u ∧ v) ∧ ¬u → C(r, u)

Notice that B1 covers the discharge of commitments. B2 generalizes their detach.

Semanticity means that alignment must not fail in the face of reasoning postulates B1–B8.

That is, we must make sure that the effects of the various messages on commitments are

consistent with respect to the above postulates.

2.1.2 Commitment Operations

The commitment operations are reproduced below (from [Singh, 1999]). create,

cancel, and release are two-party operations, whereas delegate and assign are three-

party operations.

• create(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to hold.

• cancel(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to not hold.

• release(x, y, r, u) is performed by y, and it causes C(x, y, r, u) to not hold.

• delegate(x, y, z, r, u) is performed by x, and it causes C(z, y, r, u) to hold.

• assign(x, y, z, r, u) is performed by y, and it causes C(x, z, r, u) to hold.

2.1.3 Messages

Let us define the set of messages that agents can exchange. Let Φ be a set of

atomic propositions. Inform(x, y, p) is a message from x to y, where p is conjunction

over Φ. In the commitment operations, r is a DNF formula over Φ (for example, (φ0 ∧

φ1) ∨ (φ3 ∧ φ4)), and u is a CNF formula over Φ (for example, (φ0 ∨ φ1) ∧ (φ3 ∨ φ4)) .

16

Create(x, y, r, u) and Cancel(x, y, r, u) are messages from x to y; Release(x, y, r, u) from y

to x; Delegate(x, y, z, r, u) from x to z; and Assign(x, y, z, r, u) from y to x.

Suppose c = C(x, y, r, u). Then Create(c) stands for Create(x, y, r, u). We similarly

define Delegate(c, z), Assign(c, z), Release(c, y), and Cancel(c, x).

All atomic propositions are stable, that is, if an atomic proposition holds, it holds

forever. In English, stability corresponds to the perfective aspect, for example, book has

been delivered, payment has been made, and so on [Singh, 2008]. Propositions with explicit

time, such as the book is delivered by 3PM are also stable. Thus each atomic proposition

corresponds to the occurrence of an event : when the proposition holds, the corresponding

event is said to have occurred. A commitment, however, is not a stable proposition. A

commitment may come to not hold because it was discharged, cancelled, or released, leaving

the agents sensitive to race conditions over commitments.

2.1.4 Commitment Strength

We’ll use the following commitments frequently.

• cB = C(Bookie,Alice, $12, BeatingtheOdds)

• cG = C(Bookie,Alice, $12, GamblingT ips)

• c0 = C(Bookie,Alice, $12, BeatingtheOdds ∧ GamblingT ips)

• c1 = C(Bookie,Alice, $12 ∨ coupon,BeatingtheOdds)

• c2 = C(Bookie,Alice, $12 ∧ coupon,BeatingtheOdds)

Intuitively, c0 is a stronger commitment than cB (an additional book for the same

price); c1 is stronger than cB (two ways to obtain a book instead of one); cB is stronger

than c2 (fewer conditions need to be satisfied to obtain a book). Definition 1 captures this

intuition.

Definition 1 C(x, y, r, u) is stronger than C(x, y, s, v), denoted by C(x, y, r, u) � C(x, y, s, v),

iff s ⊢ r and u ⊢ v.

Thus, for example, c0 � cB . If C(x, y, r, u) � C(x, y, s, v) but C(x, y, s, v) 6�

C(x, y, r, u), we say C(x, y, r, u) ≻ C(x, y, s, v). B3 and B8 capture the notion of strength

17

deductively. For example, if c1 holds, then by B3, cB holds as well. Similarly, if c0 holds,

then by B8, cB holds as well—unless BeatingtheOdds holds already in which case according

to B1, cB cannot hold.

2.2 Agents and Communication

Agents communicate by messaging. Below m, m′, m0, . . . are variables over mes-

sages. Assumptions A1–A4 model communication.

A1. Communication is point-to-point. Below m(x, y) indicates a message m from x to y.

A2. An agent observes all and only those messages that it sends or receives. Observa-

tions are ordered serially. All observations pertain to messages. Observations of the

environment are treated as messages from Env .

A3. Messaging is reliable. Messages are neither created nor destroyed by the infrastruc-

ture.

A4. Messaging is ordered. Any two messages sent by an agent to the same recipient are

received in order.

An agent x’s observation sequence 〈m0, . . . ,mn〉x describes the sequence of mes-

sages x observes in a particular execution. Let A be a system of k agents. Then, O =

[O0, . . . , Ok−1] is an observation vector over A, where the Ois are the observation sequences,

one for each of the k agents. Below, o is a variable over observation vectors; ox, etc. are

variables over a particular agent’s observation sequence. A3 and A4 impose validity re-

quirements on vectors.

Definition 2 An observation vector O over A is valid iff ∀x, y ∈ A: (1) if m(x, y) occurs

in Oy, then m(x, y) occurs in Ox; and (2) if m1(x, y) occurs in Oy, and m0(x, y) precedes

m1(x, y) in Ox, then m0(x, y) precedes m1(x, y) in Oy.

Conditions (1) and (2) in Definition 2 capture A3 and A4, respectively. This paper

considers only valid observation vectors.

Think of an agent’s observation sequence as representing the agent’s state at the

granularity of the interaction (i.e., ignoring aspects of the agent’s state not reflected in its

18

observations). Then an observation vector represents the state of the system. OA, the set

of all possible observation vectors for system A, is the set of all possible executions of A.

2.3 Formalizing Alignment

Alignment means that whenever an agent infers a commitment from its observa-

tions in which it is the creditor, then the debtor must also infer the commitment from its

observations. An execution of a multiagent system is a progression of the system from one

(system) state to another. Every time an agent sends or receives a message, the system

progresses to a new state. Although we would like to consider all possible executions of

the system, we need to ensure that we verify alignment only at well-defined milestones;

otherwise, we would falsely claim misalignment. The appropriate milestones are expressed

via quiescence and integrity.

Figure 2.2(B) exemplifies our graphical notation. We represent an execution as a

sequence diagram. Each point where a message is sent or received is annotated with the

commitments inferred immediately after the observation. If C(r, u) holds and C(r, u) �

C(s, v), we only show C(r, u). Each agent’s vertical line may be annotated at the top to

indicate initial conditions of the interaction.

2.3.1 Quiescence

A system state is quiescent if no messages are in transit. In considering only

quiescent states, we ensure the agents are “synced” up when we verify their alignment.

Without quiescence, alignment is generally impossible because some agents may not yet

have observed messages destined for them.

Consider Figure 2.1 where Alice has sent $12 to Bookie but Bookie hasn’t received

the payment. The red line indicates one such point in the interaction. Alice infers that

Bookie is now committed to sending her the book, but Bookie has no clue of an incoming

payment, and so isn’t committed. At quiescence—one such point is indicated by the green

line—Bookie would have received the payment. If even at quiescence, Alice and Bookie

disagree, we have a problem on our hands. Quiescence may only be temporary, because the

agents could be silently computing: it would end when an agent sends a message based on

its internal computations.

19

Figure 2.1: Quiescence

This means that there are no messages in transit in the system. Definition 3 states

that an observation vector is quiescent if and only if every sent message has been received.

Definition 3 An observation vector O ∈ OA is quiescent iff ∀x, y ∈ A, if m(x, y) occurs in

Ox, then m(x, y) occurs in Oy.

2.3.2 Integrity

Consider Figure 2.2(A). Initially, Alice is committed to Bob that if the sky is clear,

then she will meet him at the lake, meaning cL = C(Alice,Bob, clear, lake). We model Bob’s

observation of the sky as a message that Bob receives from the environment Env. Now,

Bob infers the unconditional commitment cUL = C(Alice,Bob,⊤, lake) whereas Alice does

not yet infer cUL (maybe because she is in a basement and cannot look at the sky). Thus,

Bob and Alice would be misaligned. The main problem is that Bob has received some vital

information that Alice might not have.

We wish to exclude observations by an agent where it has received vital infor-

mation that it hasn’t yet propagated to the other relevant parties. In Figure 2.2(B), it

would be premature to consider alignment before Bob notifies Alice of clear . In this sense,

Bob’s notifying Alice of clear is integral with receiving Inform(clear) from Env. Similarly,

in Figure 3.3(B), Bookie sending the Create is integral with receiving Inform($12). We

recognize no intervening observations from the point of view of alignment until all integral

observations have been made; in other words, the intervening observations are not visible.

We now turn to the formalization.

20

Figure 2.2: Notifying about detaches

We now show how to specify integrity constraints on observations. Chapter 3

specifies the integrity constraints relevant to alignment. First though, some preliminaries.

Let Ox be an observation sequence of the form 〈. . . ,m〉x. Then, for any message m′, Ox;m′

is the concatenation of Ox with m′, and is of the form 〈. . . ,m,m′〉x. Let S(Ox) be the set of

propositions that can be inferred from the observation sequence Ox. (Chapter 3 formalizes

S(Ox).) If p 6∈ S(Ox), we say ¬p ∈ S(Ox). The empty condition ε is trivially in S(Ox).

S(Ox) may be thought of as the state of x after observing the messages in Ox.

⌊m[B : A]m′⌋x is an integrity constraint on the observations of agent x. Here, B

and A are the before and after conditions for the trigger m, and m′ is the effect of m if the

before and after conditions are met.

Definition 4 Consider a constraint ⌊m[B : A]m′⌋x. m′ is an enabled effect of m with

respect to an observation sequence o and the constraint iff B ∈ S(o) and A ∈ S(o;m).

An observation sequence Ox is integral with respect to a set of constraints iff for

any prefix o;m of Ox, o;m;M is a prefix of Ox, where M contains an interleaving of the

enabled effects of m with respect to o and the set of constraints.

An observation vector is integral with respect to a set of constraints iff each ob-

servation sequence in it is integral with respect to the set of constraints.

Definition 4 defines enabled messages as those that must be necessarily sent, as

deduced from the integrity constraints. An observation sequence is not integral unless all

enabled messages have been observed. Notice that to be integral, Ox must only contain

the enabled effects (for every prefix); there is no restriction that the enabled effects must

occur immediately after the trigger. This means that x may make extraneous observations

21

between the trigger and its enabled effects; however, those observations are not visible for

the purposes of alignment.

2.3.3 Alignment

Now we formally define alignment—that agents would agree about whatever com-

mitments as might result from any messages they might exchange. Definition 5 formalizes

the notion of alignment by considering all potential observations of all agents.

Definition 5 A multiagent system A is aligned (written [〈A〉]) iff ∀O ∈ OA such that O is

quiescent and integral, ∀x, y ∈ A : C(x, y, r, u) ∈ S(Oy) ⇒ C(x, y, r, u) ∈ S(Ox).

Definition 5 considers the observations of creditors and debtors from the same

integral and quiescent observation vectors. It says that if a creditor infers a commitment

from its observations, then the debtor must infer that commitment from its own observa-

tions. When a debtor infers a commitment, but the creditor does not, no harm is done, and

alignment is unaffected.

22

Chapter 3

Handling Autonomy and

Distribution

Chapter 2 characterized commitment alignment. This chapter proposes the princi-

ples that ensure alignment despite distribution. In other words, if agents compute according

to these principles, alignment is guaranteed. The principles essentially say how the commit-

ments of agents should be computed, and how the agents must act to maintain alignment.

We formalize the principles using the technical framework presented in Chapter 2, and

prove that under the principles (and the communication model introduced in Chapter 2),

any multiagent execution is aligned.

3.1 Introduction

C(debtor , creditor , antecedent , consequent) means the debtor commits to the cred-

itor that if antecedent holds, then the consequent will hold. An important insight in agent

communication is that the interactions among agents may be understood in terms of their

effects on the agents’ commitments. For example, an offer for a copy of the book Beating the

Odds from Bookie to Alice may be interpreted as C(Bookie,Alice, $12, BeatingtheOdds).

In other words, Bookie commits that if Alice pays $12, then Bookie will deliver the book.

Imagine if Alice presumes that Bookie is committed to sending her the book she

paid for, but Bookie is not committed to sending her the book. Their interaction would

break down. In general, a key requirement for successful interaction is that the interacting

23

agents remain aligned with respect to their commitments. Crucially, it turns out that even

well-designed, well-behaved agents may become misaligned simply because of the distributed

nature of the given system. Previous approaches have largely ignored this problem or

addressed it through restrictive, ad hoc assumptions. However, as commitment protocols

expand into real-life distributed settings, a rigorous treatment becomes essential.

We consider realistic, distributed settings where agents communicate via asyn-

chronous messaging. Asynchrony means that an agent is never blocked from sending a

message. In such a system, the messages that the agents send each other may cross on

the wire. Thus, in general, the agents may observe different messages in different orders.

Since messages are understood in terms of their effects on commitments, the agents involved

would become misaligned, i.e., come to conflicting conclusions about which commitments

hold and which do not.

It is crucial to develop a formalization of commitments that ensures alignment

despite asynchrony. First, distributed computing infrastructure is necessarily asynchronous.

Large-scale systems exhibit high latency making synchronous interactions simply intractable

in practice. Second, any formalization that works despite asynchrony also works in “more

synchronous” settings, that is, those imposing additional constraints on agent behavior—for

example, one where agents take turns sending messages. Third, asynchrony is inherently

compatible with agent autonomy simply because an agent is never blocked from sending a

message and, more pertinently, from acting upon its commitments.

In the absence of a formalization that supports reasoning about commitments in

distributed settings, all research in applications of commitments is bound to report results

that are either not general enough or are unduly complex. Such a formalization is currently

missing; this paper seeks to fill this gap.

3.1.1 Motivation

Informally, we say that agents are aligned, if whenever an agent infers a commit-

ment in which it is the creditor, the debtor of the commitment also infers that commitment.

There are two possible causes of misalignment. One, the agents may assign incompatible

meanings to the messages they are exchanging. Two, even when the agents assign identical

meanings to the relevant messages, they may make incompatible observations. Chopra and

Singh [Chopra and Singh, 2008] solve the former for a language similar to ours. This paper

24

addresses the second problem. Let’s consider some examples to highlight the problem.

Example 7 (Figure 3.1(A)). Bookie sends Alice (a message that expresses) an offer that

if she pays $12, then Bookie will deliver to her a copy of the book Beating the Odds. Alice

sends Bookie a rejection of the offer. Upon receipt, Bookie resends the offer.

As is typical in commitment protocols, Bookie’s offer creates a commitment from

Bookie to Alice for the book Beating the Odds in return for $12. In Example 7, both Alice

and Bookie observe the messages in the same order, and therefore remain aligned.

Example 8 (Figure 3.1(B)). Bookie makes Alice an offer. Not seeing a response from Alice,

Bookie resends the offer. Suppose that, in the meantime, Alice sends Bookie a rejection of

the offer. Then the rejection crosses Bookie’s repetition of the offer.

Figure 3.1: Scenarios (B),(C), and (D) end in misalignment

What ought Bookie and Alice to infer about the offer at the end of the exchange

shown in Figure 3.1(B)? After seeing Alice’s rejection of the offer, Bookie may infer that

there no longer exists an offer to Alice. However, having seen an offer message last, Alice

may infer that the offer holds. That is, Alice infers a commitment from Bookie for a

copy of Beating the Odds for $12, whereas Bookie does not infer that commitment. This

misalignment occurs because Alice’s rejection and Bookie’s offer messages crossed in transit.

Note that Figures 7(A) and 7(B) imply a race condition between offer and rejection: their

order (as viewed by Bookie) matters and yet Alice cannot distinguish between the two

orders.

25

Example 9 (Figure 3.1(C)). Bookie makes an offer that Alice accepts and sends the pay-

ment for. In the meantime, Bookie cancels the offer. Bookie’s cancellation and Alice’s

payment cross.

In Example 9, upon sending the payment, Alice infers that Bookie is committed to

sending her a copy of the book. Later, when Alice sees Bookie’s cancel message, she regards

it as spurious. However, Bookie sees the payment only after he has canceled its offer. So

Bookie considers Alice’s payment late. The result is that Alice infers an unconditional

commitment for the book from Bookie, but one that Bookie does not infer. A race between

cancellation and payment causes misalignment.

Example 10 (Figure 3.1(D)) Here, Bookie sends an offer, but in the meantime Alice sends

a rejection.

In the scenario in Example 10, Bookie infers the offer was rejected because that is

the message it last sees, whereas Alice infers the offer exists because that is the message she

last sees. Admittedly, the scenario is pathological: it makes no sense for Alice to reject an

offer that Bookie never made. However, scenarios where messages arrive unexpectedly can

occur when multiple parties are involved, and messages happen to be delayed differently on

different paths. This is analogous to when one receives a group reply to an email before

receiving the original email.

As the above examples demonstrate, asynchrony throws a major challenge in the

face of alignment. Even agents who are perfectly designed and who assign identical mean-

ings to messages may end up misaligned. Another way to cast this problem is in terms of the

commitment operations, which show how to manipulate commitments [Singh, 1999]. Exist-

ing formalizations of the operations, e.g., [Desai et al., 2007b], do not support reasoning in

distributed settings.

Current approaches for alignment fall into two main categories. Some use ac-

knowledgements [McBurney and Parsons, 2003] as a way of serializing the operations in

distributed settings. The idea is that the agents involved would observe the relevant mes-

sages in the same order, and hence make the same inferences. Such approaches are incom-

patible with autonomy. Autonomy compatibility means that no agent should have to wait for

approval from other agents to effect a change in its commitments. In an acknowledgment-

26

based approach, for example, to effect a cancellation or discharge of a commitment, the

debtor would have to seek the creditor’s approval, which completely begs intuition.

Others suggest unique identifiers—there is no comprehensive proposal—for each

commitment, and reference these identifiers from the update operations on commitments

[Flores et al., 2004; Rovatsos, 2007]. Commitment identifiers fail to meet semanticity. Se-

manticity means that the proposal should accommodate general reasoning about commit-

ments. For example, with identifiers, if C(id0, x, y, r, u) and C(id1, x, y, r, v) hold, seman-

tically it still ought to be the case that C(, x, y, r, u ∧ v) holds (‘ ’ is some identifier). To

reason with identifiers, one would need to track dependencies for commitments a la dis-

tributed truth maintenance ([Huhns and Bridgeland, 1991]). Any such approach would be

more complex than the approach presented here, without being more general.

3.1.2 Contributions

Our primary contribution is a formalization consisting of three elements: (1) mes-

saging patterns that communicate the commitment operations; (2) a semantics of the op-

erations that determines each participating agent’s inferences regarding commitments; and

(3) constraints on agent behavior described as messages the agents must send under specific

circumstances. We prove that our formalization eliminates misalignments, and illustrate its

intuitiveness and generality with the help of various examples.

Our contribution also lies in delineating two criteria that any approach for align-

ment must meet: autonomy compatibility and semanticity. Both autonomy compatibility

and semanticity are crucial in arriving at a general solution for alignment. Our formaliza-

tion meets both these criteria. In particular, our formalization does not rely upon using

commitment identifiers as introduced above. However, its generality means that identifiers

may be used as domain modeling artifacts if necessary.

3.1.3 Organization

The structure of this chapter is as follows. Section 3.2 introduces the principles

of our approach. Section 3.3 formalizes the principles; Section 3.4 proves that alignment is

guaranteed for all possible multiagent executions. Section 3.5 discusses related work and

summarizes our contributions.

27

3.2 Principles of Alignment

The misalignments in Figure 3.1 are due to the näıve semantics that upon observing

Create(r, u), an agent infers C(r, u); upon observing Release(r, u) or Cancel(r, u) an agent

infers ¬C(r, u).

We propose five principles that guarantee alignment. These principles are informed

by the nature both of commitments and of distributed systems. Let us first consider three

principles that address the misalignments in Figure 3.1.

Novel Creation. Observing Create(r, u) should have no effect if a stronger commitment

C(s, v) has held before.

Complete Erasure. Observing Release(r, u) should have no effect if a strictly stronger

commitment C(s, v) holds. If no such C(s, v) holds, then each weaker commitment

C(r′, u′) is released. Cancel(r, u) is analogous.

Accommodation. Observing Release(r, u) has the effect that each weaker commitment

C(s, v) is treated as if it has held before. Cancel(r, u) is analogous.

Figure 3.2 shows how these principles restore alignment to the misaligned scenarios

of Figure 3.1. Figure 3.2 shows offer as Create(cB), and reject as Release(cB).

Contrast Figures 3.1(A) and 3.2(A). In both figures, Bookie and Alice remain

aligned at the end. However, in Figure 3.1(A), Bookie and Alice both infer cB , whereas in

Figure 3.2(A), neither of them infers cB . Novel Creation supports Figure 3.2(A): the

first offer causes cB and resending the offer after receiving a reject has no effect.

Contrast Figures 3.1(B) and 3.2(B). In Figure 3.1(B), Alice infers cB , whereas

Bookie does not. In Figure 3.2(B), however, neither Alice nor Bookie infers cB . Upon

receiving the reject, because of Complete Erasure, Bookie considers itself released from

the offer; receiving the same offer again has no effect on Alice because of Novel Creation.

Contrast Figures 3.1(D) and 3.2(C). In Figure 3.1(D), Alice infers cB , whereas

Bookie does not. In Figure 3.2(B), however, neither Alice nor Bookie infers cB . Upon

receiving the reject, because of Complete Erasure, Bookie considers itself released from

the offer; receiving an offer which Alice has already rejected has no effect on Alice because

of Accommodation and Novel Creation acting in concert. Accommodation ensures

28

that Alice’s release of the offer makes it appear as if the offer had been made before, and

hence when Bookie’s actual offer arrives, Novel Creation ensures the offer has no effect.

Figure 3.2: Proposed approach

Novel Creation means that resending a Create of a previous commitment has

no effect. In that case, how can Bookie again offer Alice essentially the same deal that she

has rejected before? Circumstances might have changed, and Bookie might want to see if

Alice will accept the offer this time around.

A possible domain modeling approach is to include identifiers on the conditions

involved so as to distinguish the offers. In practice, we would place such identifiers anyway,

so as to distinguish commitments made to different parties, e.g., to ensure that a different

copy of the book would be delivered to each customer and each customer will pay for her

purchase. Such identifiers do not apply on commitments and do not interfere with reasoning

about commitments. In Example 11, at the end, both Alice and Bookie infer that the id1

commitment holds and the id0 commitment doesn’t.

Example 11 Bookie sends Create(Bookie,Alice, $12(id0), BeatingtheOdds(id0)). Alice

sends Release(Bookie,Alice, $12(id0), BeatingtheOdds(id0)). To offer the “same” deal

again, Bookie sends Create(Bookie,Alice, $12(id1), BeatingtheOdds(id1)).

It is worth nothing that Novel Creation does not say that if a commitment

has held before, then it can never hold again; it only says that a Create message for such

a commitment has no effect. A commitment may come to hold again because a Create

message for a stronger commitment is observed. In real life, it is common practice for a

seller to improve its offers, effectively making stronger commitments, as in Example 12.

29

Example 12 Bookie makes Alice the offer cB . Alice rejects the offer thus releasing Bookie

from cB . However, Bookie is persistent, and it makes Alice the stronger offer c0 (two books

for the same price). This automatically resurrects cB to ensure consistency.

Example 13 Alice rejects Bookie’s improved offer.

When Alice sends Release(c0), Complete Erasure means that this not only

removes c0, but also cB and cG. Notice that partial releases are unsuccessful. Because c0 is

stronger than cB , Release(cB) has no effect—c0 continues to hold.

Notification. This principle ensures that two agent’s states are compared only when both

or neither has received vital information. This leads to two requirements. One, a

creditor must notify relevant debtors of detaches, and a debtor must notify relevant

creditors of discharges. Two, until an agent sends its pending notifications, it doesn’t

have a well-defined visible state. Reducing the visible states proves crucial because

we can define alignment as agreement between the concerned agents at such states.

Figure 2.2(B) shows how alignment is preserved. The bold dot along Bob’s lifeline

indicates that Bob must send the clear notification to Alice. The middle state where Bob

has detached the commitment but not notified Alice is excluded from consideration—it is

not visible for the purposes of alignment. In this manner, we avoid a false negative claim

about alignment. This case is of a creditor notifying the debtor of a detach. The case where

a debtor notifies a creditor of a discharge is similar.

Priority. It is possible that a debtor cancels a commitment concurrently with the creditor

detaching it.

Recall Example 9 where Alice’s payment crosses Bookie’s cancellation. Figure 3.3(A)

annotates the same example with commitments. If Bookie’s cancellation and Alice’s pay-

ment cross, Alice and Bookie become misaligned—Alice infers cU = C(Bookie,Alice,⊤,

BeatingtheOdds) whereas Bookie does not. The reason is that receiving Cancel (cB) has

no effect on Alice because she already infers cU , which is a stronger commitment than cB .

Receiving Alice’s $12 payment has no effect on Bookie because there is no commitment to

detach anymore. (The figures only show the strongest commitments. For example, because

cU entails cB , Figure 3.3 never shows cB in addition to cU .)

30

There is no fundamental reason to prefer the creditor’s or the debtor’s viewpoint.

For each commitment, the parties involved simply have to agree on what takes priority:

cancel over detach, or detach over cancel. Detach priority means that the debtor considers

its cancellation of a commitment to be overridden by the detach of the commitment. Cancel

priority means that the creditor considers its detach of a commitment to be overridden by

the debtor’s cancellation of the commitment. Our theory handles both alternatives, and

shows what the agents must do in each case. Consider a commitment C(r ∧ s, u). Suppose

detach has priority over cancel. If the debtor observes a message that brings about s (a

detach) after it has cancelled C(r ∧ s, u), then it must send Create(r , u). Alternatively,

suppose that cancel has priority over detach. If the creditor has already detached C(r∧s, u)

by sending a message that brings about s, and it then observes a cancellation for C(r∧s, u),

then the creditor must send ReleaseC(r, u).

Figure 3.3: Race between cancel and detach

The protocol that Alice and Bookie are enacting would specify whether cancel or

detach has priority for cB . If detach has priority, then, as Figure 3.3(B) shows, Bookie

considers its cancellation to be overridden by the detach, and creates cU . If cancel has

priority, then, as Figure 3.3(C) shows, Alice considers the detach to be overridden by the

cancellation, and releases Bookie from cU .

3.3 Formalization of the Principles

We introduce stable propositions created(x, y, r, u), released(x, y, r, u), and

cancelled(x, y, r, u), each corresponding to the eponymous commitment operation having

occurred. Our formalization does not require propositions corresponding to the occurrence

31

of delegate and assign. We adopt the postulates B9–B13 in addition to B1–B8.

B9. released (r, u) → created(r, u)

B10. cancelled(r, u) → created (r, u)

B11. created (r, u) and C(r, u) � C(s, v) ⇒ created(s, v)

B12. released (r, u) and C(r, u) � C(s, v) ⇒ released (s, v)

B13. cancelled(r, u) and C(r, u) � C(s, v) ⇒ cancelled(s, v)

Let’s consider some examples to see how B9–B13 work. Suppose created(c0) holds;

by B11, created(cB) and created(cG) hold. Suppose released(c0) holds; by B9, created (c0)

holds too; by B12, released (cB) and released (cG) hold; by B9, created (cB) and created (cG)

hold. Cancelled commitments are treated as analogous to released commitments.

Let’s see how B9–B13 relate to the principles introduced earlier. B12 and B13

relate to Complete Erasure. If a commitment is released or if it is cancelled, all weaker

commitments are released or cancelled, as may be the case. B9 and B10 (together with B12

and B13) portray Accommodation: if a commitment has been cancelled or released, treat

all weaker commitments as if they had held. B11 relates to Novel Creation. It ensures

that once created(r, u) holds, all commitments weaker than C(r, u) are also considered

created.

Now we define the semantics of the operations themselves in terms of S(o), the

set of propositions that can be inferred from the observation sequence o. For any set of

propositions Q, Q∗ is the deductive closure of Q. QΠ is the atomic projection of Q such that

a proposition q belongs to QΠ if and only if two conditions are satisfied: (1) q belongs to Q,

and (2) q is either an atomic proposition, or of the form C(r, u), or of the form created(r, u)

or released (r, u) or cancelled(r, u).

Let S(ox) be the current state of x. The general pattern for computing the state

S(ox;m) is the following. First modify S(ox) by adding or removing propositions relevant

to m. Let S ′(ox;m) be the resulting set . S(ox;m) is (S ′(ox;m)∗)Π, in other words, the

atomic projection of the deductive closure of S ′(ox;m). Let us facilitate this pattern by

introducing the notation Q⊙, the atomic closure of Q, to mean (Q∗)Π.

32

3.3.1 Inform

B14 is the semantics of Inform(r): r holds upon observing it.

B14. S(o; Inform(r)) = (S(o) ∪ {r})⊙

3.3.2 Two-Party Operations

The messages Create(r, u), Release(r, u), and Cancel(r, u) realize the correspond-

ing operations.

B15 and B16 give the semantics of Create(r, u). B15 states that if created(r, u)

or the consequent u already hold, then upon observing Create(r, u), we insert created(r, u),

and compute its atomic closure to obtain the resulting state. In particular, C(r, u) does not

hold in the resulting state. The condition related to consequent u is present because the

consequent of the commitment and the commitment both holding together is inconsistent

according to B1. Hence, if u holds, Create(r, u) has no effect. Conversely, B16 states that

if neither created(r, u) nor u holds in the current state, then upon observing Create(r, u),

we insert C(r, u) and created (r, u), and compute the atomic closure to obtain the resulting

state.

B15. created (r, u) ∈ S(o) or u ∈ S(o) ⇒ S(o;Create(r, u)) = (S(o) ∪ {created (r, u)})⊙

B16. created (r, u) 6∈ S(o) and u 6∈ S(o) ⇒ S(o;Create(r, u)) =

(S(o) ∪ {C(r, u), created (r, u)})⊙

Let ⌈⌈C(r, u)⌉⌉ denote the set {C(s, v)|C(r, u) � C(s, v)}, that is, the set of com-

mitments weaker than C(r, u). According to B17, upon observing Release(r, u), we remove

all commitments weaker than C(r, u), insert released (r, u), and then compute the atomic

closure to obtain the resulting state. B18 analogously gives the semantics of Cancel(r, u).

B17. S(o;Release(r, u)) = ((S(o) \ ⌈⌈C(r, u)⌉⌉) ∪ {released (r, u)})⊙

B18. S(o;Cancel (r, u)) = ((S(o) \ ⌈⌈C(r, u)⌉⌉) ∪ {cancelled (r, u)})⊙

B9–B18 accurately capture Novel Creation, Complete Erasure, and Ac-

commodation.

33

3.3.3 Three-Party Operations

Clearly, any implementation of delegate and assign must involve at least two

messages. Figure 3.4(A) exemplifies the message pattern for delegation. Bookie (the del-

egator) delegates cB to Charlie (the delegatee). Bookie sends Delegate(cB , Charlie) to

Charlie. Let d cB = C(Charlie,Alice, $12, BeatingtheOdds). Upon its receipt, Char-

lie sends Create(d cB) to Alice, thus fully realizing the delegation. Figure 3.4(B) ex-

emplifies the message pattern for assignment. Here, Alice (the assignor) wants to as-

sign cB from Bookie to Bob (the assignee). Alice sends Assign(cB , Bob) to Bookie. Let

a cB = C(Bookie,Bob, $12, BeatingtheOdds). Upon its receipt, Bookie sends Create(a cB)

to Bob, thus fully realizing the assignment.

B19 and B20 state the semantics of Delegate and Assign messages, respectively:

observing either of these messages has no direct effect on the agent.

B19. S(o;Delegate(x, y, z, r, u)) = S(o)

B20. S(o;Assign(x, y, z, r, u)) = S(o)

The computation of S(o) is closed under B14–B20.

In the delegate and assign patterns, the initiating messages—Delegate and Assign,

respectively—are instructions to an agent to create a new commitment. R1 and R2 in

Table 3.1 capture the instructional nature of the delegate and assign messages, respec-

tively, as integrity constraints. Each row in Table 3.1 is in fact, a constraint on agent

behavior, and is of the form ⌊Trigger [Before : After]Effect⌋Agent . For example, R1 is

⌊Delegate(x, y, z, r, u)[ε : ε]Create(z, y, r, u)⌋z . R3–R8 are explained below.

There are a few points of note about delegation and assignment as presented here.

• R1 and R2 have nothing to do with restoring alignment. That the Create must

follow the instruction simply alludes to the atomicity of delegation and assignment as

operations.

• Delegation does not involve a notification from the delegator to the creditor that the

commitment is being delegated. No doubt, such notifications could be practically

valuable; however, our aim here is to delineate the core patterns on top of which

additional patterns, such as those involving a notification to the creditor may be built.

34

For the same reason, assignment does not involve a notification from the assignor to

the assignee.

• The new commitment must be explicitly created by the debtor—the delegatee in

the case of delegation and the debtor in the case of assignment. This reflects upon

a principled approach for manipulating commitments, by reusing the semantics of

Create above.

• If Bookie delegates cB twice to Charlie, then the second time Charlie need not send

a Create : such a message would be useless under Novel Creation. This paper

sacrifices optimization in favor of simplicity.

Considerations of when a commitment operation may successfully occur are be-

yond our scope (for delegation, [Norman and Reed, 2001] offers an interesting discussion).

This papers assumes that all operations are successful. Hence, even though Figure 3.4(A)

shows cB to hold before delegation is initiated, that should not be interpreted as a success

precondition for delegation. Even if Bookie did not infer cB initially, Bookie’s delegate

message to Charlie would still cause Charlie to send the create message to Alice.

Figure 3.4: The delegate and assign patterns

Table 3.1: Constraints on agent behavior

Name Agent Trigger Before After Effect

R1 Delegate z Delegate(x, y, z, r, u) ε ε Create(z, y, r, u)

R2 Assign x Assign(x, y, z, r, u) ε ε Create(x, z, r, u)

R3 Detach1 y Inform(z, y, s) C(x, y, r ∧ s, u) ∧ ¬C(x, y, r, u) ∧ ¬s s Inform(y, x, s)

R4 Detach2 y Create(x, y, r ∧ s, u) ¬C(x, y, r ∧ s, u) ∧ s C(x, y, r ∧ s, u) Inform(y, x, s)

R5 Discharge1 x Inform(z, x, u) C(x, y, r, u) ∧ ¬u u Inform(x, y, u)

R6 Discharge2 x Create(x, y, r, u) ¬C(x, y, r, u) ∧ u′ where u ⊢ u′ ε Inform(x, y, u′)

R7 D-Priority x Inform(z, x, s) cancelled(x, y, r ∧ s, u) ∧ ¬C(x, y, r ∧ s, u)

∧ ¬s

s Create(x, y, r, u)

R8 C-Priority y Cancel(x, y, r ∧ s, u) s ∧ C(x, y, r ∧ s, u) ∧ ¬C(x, y, r′, u′) such

that C(x, y, r′, u′) ≻ C(x, y, r, u)

ε Release(x, y, r, u)

35

36

3.3.4 Notifications

Recall that Notification states that creditors must notify debtors of detaches,

and debtors must notify creditors of discharges. Two cases arise for each kind.

Detach1 (R3). y infers C(x, y, r∧s, u) and ¬C(x, y, r, u)∧¬s, meaning that the commitment

is not detached yet. y then observes Inform(s) from some z. As a result, C(x, y, r∧s, u)

is detached, and y infers C(x, y, r, u). y must now inform x about the detach by sending

Inform(y, x, s).

Detach2 (R4). y infers s and ¬C(x, y, r ∧ s, u), and then observes Create(x, y, r ∧ s, u).

Therefore, y infers C(x, y, r ∧ s, u). C(x, y, r ∧ s, u) is detached upon s; hence, y infers

C(x, y, r, u). y must now inform x about the detach by sending Inform(y, x, s).

Figure 3.5: Detach notifications

Figure 2.2(B) illustrates R3. When Bob receives Inform(clear), R3 kicks in and

ensures Alice is notified, thus preserving alignment. Figure 3.5(A) is another example of R3

at work. Here Alice and Sarah are committed to meeting Bob at the lake if the sky is clear

(cL and cLS , respectively). At some point, Bob figures the sky is clear and therefore infers

that both Alice and Sarah are now unconditionally committed to meet him (cUL and cULS ,

respectively). R3 ensures that both Alice and Sarah are notified that the clear condition

has been met, thus preserving alignment. Figures 3.5(B) illustrates R4. Here, Bob already

infers clear. So when Bob receives Create(cL), Bob infers that Alice is unconditionally

committed (cUL). R4 kicks in and ensures Alice is notified.

Discharge1 (R5). x infers C(x, y, r, u) and ¬u. x then observes Inform(u) from some

z. As a result, C(x, y, r, u) is discharged. x must now inform the creditor y of the

discharge by sending Inform(x, y, u).

37

Discharge2 (R6). x infers u′. x then sends Create(x, y, r, u) such that u ⊢ u′. x will not

infer C(x, y, r, u′) because u′ holds. However, y may not yet infer u′. Therefore, y may

infer C(x, y, r, u′). Hence, x must now send Inform(x, y, u′).

Figure 3.6: Discharge notification

Figure 3.6 illustrates the usage of R5. Alice is committed to both Bob and Sarah

to be at the lake (cL and sL, respectively). When Alice gets to the lake, she discharges those

commitments. R5 kicks in and ensures that both Bob and Sarah are informed accordingly

so that they also consider their respective commitments discharged.

In Figure 3.4(A), after Alice observes the create message from Charlie, suppose

Alice sends Bookie Inform($12) (if she already inferred $12, then upon observing the create,

R4 would apply). This detaches cB . Then R3 kicks in and ensures that Alice also sends

Charlie Inform($12). This should not be taken to mean that Alice sends $12 each to Bookie

and Charlie—the proposition $12 is semantically no different than the proposition clear.

An analogous argument can be made for the scenario in Figure 3.4(B). Suppose that after

Bookie sends the create message, it sends Inform(BeatingtheOdds) to Alice. Now R5 would

ensure that Bookie also sent Inform(BeatingtheOdds) to Bob.

3.3.5 Priority

Below, we formalize the implications of detach priority and cancel priority for a

commitment C(x, y, r ∧ s, u).

Detach Priority (R7). x infers cancelled(x, y, r ∧ s, u) and ¬C(x, y, r ∧ s, u) ∧ ¬s. (Note

that cancelled(x, y, r ∧ s, u) 6⇒ ¬C(x, y, r ∧ s, u). A cancelled commitment may come to

hold again because a stronger commitment was created.) x then observes Inform(s) from

some z. If C(x, y, r ∧ s, u) had not been cancelled, it would have been detached. But y may

38

not know about the cancellation yet. Therefore, the debtor must act as if the commitment

has been detached. Hence, it must now send Create(x, y, r, u).

Cancel Priority (R8). y infers s and C(x, y, r∧s, u). Therefore, it also infers C(x, y, r, u).

y then observes Cancel (x, y, r ∧ s, u). It could be that x sent Cancel (x, y, r ∧ s, u) without

knowing that s holds, and therefore x may not infer C(x, y, r, u). To fix this possible

misalignment, y must now send Release(x, y, r, u). y though does not have to send the

release if a commitment strictly stronger than C(x, y, r, u) holds. Sending the release then

will be ineffective because of Complete Erasure.

Figure 3.3(B) illustrates the case of detach priority to fix the misalignment of

Figure 3.3(A), whereas Figure 3.3(C) illustrates the case of cancel priority.

It could be that in the case of detach priority, Alice cheats by sending the payment

even after receiving the cancel. Analogously, in the case of cancel priority, Bookie could

cheat and get away with it. In settings where the parties are mutually untrustworthy, we

can imagine the use of techniques such as secure mediators to ensure that neither party

deceives the other.

R1–R8 are weak and locally executable constraints on an agent’s behavior because

they only call for an agent to send messages. They involve neither receiving a message nor

synchronizing with another agent.

3.4 Correctness Proof

Now it remains to show that under the assumptions we have made, the formaliza-

tion of commitment operations we have proposed guarantees that any multiagent system is

aligned. Notice that a commitment is strengthened only through a Create or an Inform (as

detach). A commitment is removed or weakened only through a Release or Cancel , or an

Inform (as discharge).

Theorem 1 For any A, A1–A4, B1–B20 and R1–R8 guarantee alignment, that is, [〈A〉].

Proof. A is aligned at the outset, i.e., in the observation vector of empty se-

quences, when no agent has made any observations. Inductively, assume that A is aligned

up to a quiescent, integral observation vector O. Consider two agents, x and y in A.

Now expand O to a quiescent, integral observation vector O′ = O;O∆. There are

two possible threats to alignment: (1) if y infers a new commitment as creditor that its

39

debtor doesn’t; and (2) if y continues to infer a commitment as creditor that it previously

inferred, but its debtor no longer does.

For (1), consider a commitment added by y, i.e., C(x, y, r, u) ∈ S(O′
y) \ S(Oy).

Without loss of generality, assume C(x, y, r, u) is maximally strong, i.e., no other commit-

ment added by y is strictly stronger than C(x, y, r, u). This means O∆
y includes receiving

a detach (Inform) or a create message. For a detach, by integrity, y would have sent a

message to x, which would have landed within O∆
x to ensure quiescence. A create would

have originated from x. In either case, the quiescence of O′ ensures that O′
x ⊢ C(x, y, r, u).

For (2), consider a commitment not added by y but removed by x, i.e., C(x, y, r, u) ∈

S(Oy) and C(x, y, r, u) ∈ S(Ox) \ S(O′
x). Without loss of generality, assume C(x, y, r, u)

is maximally strong, i.e., no other commitment removed by x is strictly stronger than

C(x, y, r, u).

Because C(x, y, r, u) ∈ S(Oy), by our inductive hypothesis, C(x, y, r, u) ∈ S(Ox).

Hence, if C(x, y, r, u) 6∈ S(O′
x), this means O∆

x includes receiving a discharge or release, or

sending a cancel message. The release would be sent by y, thus C(x, y, r, u) 6∈ S(O′
y). The

cancel would be sent to y and the discharge would be propagated to y to ensure integrity.

Therefore, by quiescence, C(x, y, r, u) 6∈ S(O′
y).

3.5 Discussion

We delineated the problem of commitment alignment in multiagent systems and

proposed a solution to it. Our solution consists of three parts: (1) messaging patterns to im-

plement commitment operations in a distributed setting, (2) a semantics of the commitment

operations, and (3) local constraints on agent behavior. We have adopted a general model of

multiagent systems where communication is asynchronous but reliable. Our formalization

of the commitment operations meets both autonomy compatibility and semanticity.

3.5.1 Generality of Approach

Although alignment is recognized as a problem in implementing agents, there

exist no satisfactory proposals that guarantee alignment in a truly asynchronous setting.

Most proposals either use a shared commitment store [McBurney and Parsons, 2003] or

revert to an approach based on commitment identifiers wherein every created commitment

40

is given a new identifier and update operations on commitments reference those identi-

fiers [Flores et al., 2004; Rovatsos, 2007]. We reject the use of commitment identifiers

because identifiers are a syntactic embellishment and, for the sake of generality, we are

interested in a purely semantic solution. To illustrate our point, even if we used identifiers,

if C(id0, x, y, r, u) and C(id1, x, y, r, v) hold, semantically it still ought to be the case that

C(, x, y, r, u ∧ v) holds (’ ’ means some identifier). In the interest of obtaining a purely

semantic solution, we advocate that if identifiers have to be used, then they should be used

as a parameters of the propositional content of commitments as we did in Example 11,

where we used timestamps as identifiers. Reasoning about identifiers may be needed in

some cases, for example, when a merchant combines two orders into one because they are

shipping to the same party and the same address [Wang and Miller, 2005]. Such specialized

reasoning can be built on top our scheme.

The delegate and assign operations deserve special mention. Even if the dele-

gatee ignores the delegate message, there won’t be a misalignment (see B19). Hence, it

would appear that there is no need to impose a restriction that upon receiving the message

the delegatee must send a create message. By contrast, we conceptualize delegation as

an indivisible operation, and we assume that the necessary conditions exist for successful

delegation [Castelfranchi, 1998; Norman and Reed, 2001]. An analogous argument can be

made for assign. Norman and Reed, in particular, distinguish between responsibility for

bringing about a state of affairs versus responsibility for doing an action, and relate the

distinction to that between extensional and whole-hearted satisfaction [Norman and Reed,

2001]. Commitments are tied to responsibility in that, broadly speaking, an agent is re-

sponsible for that to which it is committed. However, unlike Norman and Reed, we only

model commitments to states of affairs, not to actions.

Winikoff [2007] studies how commitments may be implemented in a distributed

setting. However, his solution only allows for a monotonically increasing set of commit-

ments, and does not support discharge, release, and cancel.

McBurney and Parsons [2003] criticize the commitment operations as proposed by

Singh (and as we have adopted here) on grounds that in e-commerce settings, a party should

not be able to unilaterally manipulate a commitment. For example, they find it problematic

that a debtor could unilaterally cancel a commitment without agreement from the creditor.

But that would mean a debtor may never cancel a commitment because the creditor needs

41

to approve the cancel later. Similarly, McBurney and Parsons consider a commitment to

be discharged only when both creditor and debtor agree that it is discharged. Again, a

creditor may never accept that a commitment is discharged. In general, the assumption

that all parties must agree on something for it to have effect is autonomy-incompatible, and

does not reflect real-world scenarios. This is borne out by numerous clauses in the Uniform

Commercial Code article concerning sales [UCC-Sales]. It almost seems that McBurney and

Parsons are arguing backwards: if the parties are aligned after the manipulation of some

commitment, only then the commitment should be considered manipulated.

Our formalization of the commitment operation identifies the fundamental mul-

tiparty messaging patterns. Other business patterns could be built on top. For example,

the delegation pattern we have presented may be thought of as delegation while retaining

responsibility since the delegator remains committed too. A delegation without responsi-

bility pattern would additionally involve a cancellation message from the delegator to the

creditor. Another example is division of labor. Singh et al. describe several such patterns

from an architectural point of view [2008].

3.5.2 Applications

Our approach can benefit areas where commitments are used as the central basis

for semantics. The connection with communication languages [Flores et al., 2004],

[Fornara and Colombetti, 2004] and protocols [Desai et al., 2007b] is the most obvious.

Commitments are central to argumentation [Bentahar et al., 2004; Amgoud et al.,

2002; Prakken, 2005]. Players in a dialogue game are envisaged as having private commit-

ment stores. In most current work, a dialogue protocol, which limits how and when the

players may make moves, also helps to keep the agents aligned. However, dialogue protocols

may be unduly restrictive; for example, it may only allow turn taking. Our results could

lead to more flexible and robust dialogue protocols.

Several researchers [Winikoff, 2007; Bordini et al., 2007] see commitments as an

important high-level abstraction for Agent-Oriented Programming Languages. The key

obstacle to providing commitments as an abstraction was the lack of a formal semantics of

commitments. Now with a semantics suitable for distributed systems, it should be possible

to make progress in that direction.

42

3.5.3 Multiagent Belief Consistency

In general, the problem of commitment alignment may be compared with the

problem of belief consistency in multiagent systems. Commitment and beliefs are fun-

damentally different in that commitments are public artifacts whereas beliefs are private.

Hence, maintaining belief consistency has largely meant that each agent maintains a lo-

cally consistent belief set. The notion of shared beliefs does have some utility in situations

where agents are cooperative and need to coordinate their actions based on their shared

beliefs. Then it becomes important that agents are globally consistent in their shared be-

liefs [Huhns and Bridgeland, 1991]. However, assuming that agents are cooperative is a

limiting assumption; it does not hold for open systems where agents are autonomous and

heterogeneous. For open systems, reasoning about commitment alignment is more relevant

than reasoning about shared beliefs [Singh, 1998].

There is another important distinction between commitment alignment and belief

consistency. Belief consistency is symmetric: if x believes p, and p is a belief shared with y,

then for the system to be consistent, y must believe p too. However, commitment alignment

is asymmetric: if the debtor infers a commitment that the creditor does not, it is not a

misalignment. One may argue for a stricter definition of commitment alignment where

both agents infer exactly the same set of commitments. However, given that alignment

also serves as the basis for commitment-level interoperability [Chopra and Singh, 2008], the

stricter definition would be far too strict. For instance, if Bookie takes the offer to mean

C(Bookie,Alice, $12, copy(BeatingTheOdds) ∧ copy(GamblingT ips)) whereas Alice takes

it to mean C(Bookie,Alice, $12, copy(BeatingTheOdds)), we would like to say that Bookie

and Alice are interoperable.

Paurobally et al. [2003] are motivated by the same challenges as are addressed

in this paper. Their solution to alignment, however, is different from ours in at least

two significant ways. One, they consider the consistency of beliefs across agents, in other

words, belief alignment. Two, they propose synchronization protocols that keep the agents

aligned. They consider two asynchronous communication models: reliable, which is sim-

ilar to our model, and unreliable. The synchronization protocol for the reliable model is

an acknowledgement-based commitment alignment scheme, which we rejected. As for the

model where communication is unreliable, we did not consider it given the ubiquity of

43

reliable messaging middleware. Moreover, the synchronization protocols proposed by Pau-

robally et al. result in the agents behaving in a lock-step fashion. In contrast, our agents

interact asynchronously.

3.5.4 Service-Oriented Architectures

Alignment mechanisms for services mirror those developed for distributed database

systems, wherein the mechanisms typically involves of a commit protocol that serves to

synchronize the participants. WS-Coordination is a generic framework within which such

commit protocols may be defined [OASIS, 2007]. The use of commit protocols is closely tied

with viewing business processes as workflows [Curbera et al., 2003]. Instead, we understand

business processes in terms of the intrinsic meaning of the messages exchanged.

The trend lately is to use business protocols as modeling abstractions for business

processes as evidenced by the growing number of such specifications [RosettaNet, 1998;

TWIST; HL7]. General purpose frameworks around business protocols are also emerg-

ing [WS-CDL, 2005; ebBP, 2006]. State alignment remains a critical challenge for these

frameworks. The move toward protocols is a positive step. Unfortunately, when it comes

to state alignment, the tendency remains to fall back upon synchronization protocols. The

reason this is so is that these frameworks ignore the business meanings of messages.

Molina-Jimenez et al. pose an interesting alignment problem in business conver-

sations [2007]. It could happen that a participant discards a received message because

the message fails to meet some arbitrary application-specific semantic constraint. For

example, if a revenue officer finds Alice’s tax filing to be invalid because she filled out

the wrong form, the officer infers that Alice has yet to discharge her commitment to file

taxes. Such scenarios would ideally be captured in our approach via compensation. Let’s

say C(Alice,Officer ,⊤,fileTaxes(id0)), that is, Alice commits to the revenue officer to file

taxes. Upon receiving the invalid form, the revenue officer considers Alice’s commitment

discharged. However, the officer sends Alice a message indicating that the form was invalid,

which detaches the commitment C(Alice,Officer , invalid, created(Alice,Officer ,⊤,

fileTaxes(id1))).

44

Chapter 4

Handling Heterogeneity

The formalization in Chapter 3 guarantees that agents will not be misaligned

because of concerns arising from the nature of distributed systems. The formalization is

really middleware: it works behind the scenes. Agent designers don’t have to be aware of it.

This chapter considers the interfaces of agents, that is, what individual messages count as for

specific agents. It presents a simple interface specification language, and presents a decision

procedure that checks if interfaces of agents are compatible with respect to commitments.

Before agents engage each other, it is necessary to run this procedure to make sure that no

alignment will arise because of differing interpretation of messages.

4.1 Introduction

Interoperability is a matter of manifest agreement. In other words, the interop-

erability of two or more parties means not only that there is an agreement among the

parties but also that they can act according to the agreement. An agent is a computational

representation of a “real” business principal. Agents interact with each other and their en-

vironment. We restrict attention to arms-length interactions in the form of communications

among agents. These may be naturally realized in the computational infrastructure through

messaging. For concreteness, we refer to the elements of communication as messages.

The scope of the agreement among the agents determines the scope of their in-

teroperability. Communicating agents may thus interoperate at the level of text encoding

(as in ASCII), syntax (as in XML InfoSet), grammar (as in UBL, the universal business

45

language or more simply the specification of a purchase order), messaging (as in SOAP),

terminology (as in the Dublin Core vocabulary), and so on. Effective interoperation among

two or more agents presumes that they are interoperable at all relevant levels.

As agents communicate, they enter into commitments with one another. The

commitments reflect the organizational or social relationships among the agents, and thus

characterize their interactions at a high level. We propose a commitment-based theory

of interoperability. This approach reflects the intuition that the most relevant—and least

implementation dependent—kind of agreement is based on the commitments that the agents

have toward one another. Thus, agents are deemed interoperable if they can enter into and

maintain well-aligned commitments to each other. Commitments represent an essential level

at which to assess and establish interoperability because they yield a notion of compliance

eminently suitable for open settings: the principals may act as they please provided it is

in accordance with their commitments. Ensuring or verifying that agents act according to

their commitments is a different challenge [Venkatraman and Singh, 1999].

Early in the study of software architecture, Parnas proposed that connectors be-

tween components should be treated not as control or data flow constructs but as assump-

tions made by each component about the others [Parnas, 1971]. Arguably, much of the

subsequent work on software architecture and interoperability regressed from Parnas’ in-

sight: it has primarily considered connectors and concomitant assumptions at the level

of flow, e.g., dealing with message order and occurrence [Hohpe and Woolf, 2004]. Such

low-level criteria are largely orthogonal to considerations of business meaning. It is gen-

erally irrelevant whether the parties communicate via a procedure call or a message, and

whether they follow a specific message order (unless the message order has a bearing on the

meaning). Specifically, just because two agents are able to interact according to a specified

choreography (i.e., a description of message ordering and occurrence) doesn’t mean that

their principals agree on the business meaning of the messages they exchange. Thus exist-

ing and emerging standards such as the Web Services Choreography Description Language

(WS-CDL) [2005] apply at too low a level of abstraction.

By contrast, commitments enable naturally expressing the assumptions that agents

make of other agents regarding the business meanings of their interactions. What matters

at the business level is what commitments exist, not what low-level means are used to create

or manipulate a commitment. Of course, checking commitment-level interoperability does

46

not obviate the need for checking the other kinds of interoperability, such as those alluded

to above. But checking other kinds of interoperability is rarely adequate, and we need ways

to define and check commitment-level interoperability, which is what this paper seeks to do.

4.1.1 Commitments

Commitments help us address business level interoperability.

For us, interoperability is concerned with whether the agents involved can enter

into and maintain well-aligned commitments with each other. Stated informally, this means

that if an agent’s state models a commitment of which the agent is the creditor, then the

debtor’s state must also model the same commitment. In other words, the debtor covers

the creditor’s assumption about the commitment. For example, let’s say a customer takes

a quote message to mean that the merchant commits to sending goods if the customer pays

first, whereas the merchant takes it to mean no such commitment. This problem can arise

in foreign exchange transactions as well [Desai et al., 2007a]. The above illustrates commit-

ment misalignment: on receiving the message, the customer’s state models a commitment

in which it is the creditor and the merchant the debtor, but the merchant’s state does not

reflect this commitment. They are thus noninteroperable.

The reverse condition—if a debtor’s state models a commitment, then the cred-

itor’s state must also model the commitment—is of no relevance. An agent may adopt

commitments towards other agents; however, if other agents do not expect it, those com-

mitments are just harmless.

Our proposed definition of interoperability gives primacy to observations of each

agent, i.e., the messages each sends and receives. We model communication between agents

as being asynchronous and make only fundamental assumptions about it.

4.1.2 Commitment-Based Interoperability

We base our study of interoperability on Kant’s distinction between constitutive

and regulative rules, as developed by Searle [1995]. In simple terms, a constitutive rule

specifies what action counts as what. For example, raising your hand may count as bidding

in an outcry auction, or offering to give an answer if you are a student in a class. In this

case, bidding or offering to answer are institutional actions. Similarly, a judge’s specific

47

actions in the right context may count as creating a married couple. By contrast, a regu-

lative rule constrains the performance of an action, e.g., that you cannot bid in an auction

after a winner has been declared. In our approach, commitments are the key institutional

facts, and the loci of institutional actions. Messages perform such actions by creating and

manipulating commitments.

In our framework, message meanings are expressed as constitutive rules. The

meaning of a message is specified in terms of its effects. The meaning may directly refer

to commitments or indirectly affect commitments, as when the message counts as bringing

about a condition of the commitment. For example, a price quote may constitute an offer

to sell, treated as a (conditional) commitment. Each agent is described via its constitu-

tive specification, which serves as an interface describing its assumptions. In essence, the

constitutive specification of an agent tells us the meanings of the messages that the agent

(presumably) respects. The intuition behind constitutive interoperability is that, in order

to interoperate, the agents ought to agree about the institutional reality in which they exist.

In other words, the agents agree on what their communications count as.

Constitutive interoperability is determined from constitutive specifications, that

is, specifications that consist only of constitutive rules. If the interacting agents happen to

apply mutually inconsistent constitutive rules, they would fail to interoperate. The above

example where quote means different things to the customer and the merchant shows a

violation of constitutive interoperability.

Message occurrence (when a particular message must be sent), ordering between

the sends and receives of messages, and data flow among the messages are all regulative rules.

A regulative specification may be viewed as encoding an agent’s policies. For example, the

merchant may have a regulatory rule that the customer must pay first in order for shipment

to proceed. Regulative interoperability is determined from regulative specifications, that is,

specifications that consist of regulative rules.

This paper concentrates on constitutive interoperability. In earlier work, we used

C+ [Giunchiglia et al., 2004], an action description language, to specify and reason about

protocols [Chopra and Singh, 2006a]. Here we employ a simpler language that is adequate

for expressing constitutive rules and for reasoning about interesting cases of constitutive

interoperability.

48

4.1.3 Contributions and organization

Our contributions in this paper are:

• A high-level definition of constitutive interoperability that takes into account the

business meaning of communication, and that supports asynchronous communication.

• A language for constitutive specifications and a decision procedure for determining

the constitutive interoperability of pairs of agents. A benefit of this approach is that

it operates by program analysis rather than by building potentially large transition

systems.

Section 4.2 presents our technical framework. Section 4.3 formalizes constitutive

interoperability and provides a decision procedure for the same. The correctness proof is

also provided. Section 4.4 places this work in the context of the literature.

4.2 Technical Framework

The framework consists of a language for constitutive specifications, an operational

model of asynchronously communicating agents, and the formal semantics of the language

in terms of the model.

4.2.1 Constitutive Specifications

Below, mi range over messages; x, y, . . . range over agents; p, q, . . . range over

propositions or Boolean formulas over them; ⊤ is the constant for truth; α is a propositional

literal or its negation: identify α with ¬¬α. A commitment is a propositional letter. A

commitment C(x, y, p, q) means that x is committed to y to bring about consequent q if

antecedent p comes about.

Let’s define our formal language via the following Backus-Naur Form productions.

L is the starting symbol of our formal language. Below, Φ is a set of atomic propositions, X

is a set of agent names, and Message names a message. We simplify the syntax by eliding

parameters to concentrate on the points of interest here.

• L −→ {Message means Clause }

49

• Clause −→ Conjunction | Commitment

• Commitment −→ C(X ,X , Conjunction , Disjunction)

• Conjunction −→ Φ | Φ ∧ Conjunction

• Disjunction −→ Φ | Φ ∨ Disjunction

As described in the above grammar, we restrict the antecedent and consequent of a

commitment to be a conjunction and disjunction of propositional literals, respectively. This

simplifies the presentation of the decision procedure for interoperability without a loss of ex-

pressiveness. For example (omitting agent names in commitments), m meansC(p ∨ q , r ∧ s)

may be expressed as the four rules m means C(p, r), m means C(p, s), m means C(q , r), and

m means C(q , s). Our grammar places an additional restriction that commitments may not

be nested.

From a technical standpoint, an agent x’s constitutive specification, Cx, is a finite

set of rules, each of the form of Schema 1.

Schema 1 m means p

The idea behind Schema 1 is to capture the counts as relationships that describe

the institutional meanings of messages. In

Schema 1, the head p is a conjunction of propositional letters, and the body m is an action

corresponding to a single message. When p is a commitment, the constitutive rule describes

the creation of a commitment. Table 4.1 shows the constitutive specifications of a customer

and merchant.

Table 4.1: Constitutive specifications of a customer and merchant

customer (c)

Offer(m, c) means C(m, c, pay, goods)

Pay(c,m) means pay

Goods(m, c) means goods

merchant (m)

Offer(m, c) means C(m, c, pay, goods)

Pay(c,m) means pay

Goods(m, c) means goods

50

We require that communicating agents have standard names and that their vocab-

ularies are aligned. Thus we can talk coherently of the commitments in which each agent

features. Specifically, if x and y are agents, and x refers to C(y, x, p, q), then we can compare

this to C(y, x, p, q) as referred to by y. This assumption is not fundamental but simplifies

our exposition.

4.2.2 Operational Semantics

Let x be an agent and Cx its constitutive specification. The formula 〈m0, . . . ,mn〉 x

p means that the state of x after having observed 〈m0, . . . ,mn〉 models the proposition p.

(Below, p ⊢ q means that we can derive q from p. When p and q are propositions, ⊢ is

Boolean consequence.) Thus, x is closed under the following rules of inference.

unit says that a message (by itself) always brings about the head of its defining

constitutive rule.

m means p ∈ Cx

〈m〉 x p
−−−−−−−−−−−−−−−− (unit)

prop states that a proposition (that does not derive any commitments) holds if

brought about by a message.

〈mn〉 x p p 6⊢ C(r, s)

〈m0, . . . ,mn〉 x p
−−−−−−−−−−−−−−−−−−−−−−−−− (prop)

hold states that a message that means a commitment brings it about unless

the consequent of the commitment holds simultaneously. The consequent would cause the

commitment to discharge. Thus a commitment may result only if it has not already and is

not concurrently discharged (see below). A special case of this rule is when the antecedent

is ⊤.

〈m0, . . . ,mn〉 x ¬q 〈mn〉 x C(p, q)

〈m0, . . . ,mn〉 x C(p, q)
−− (hold)

detach explains the consequences of a commitment and its antecedent holding

simultaneously. A stronger commitment, namely, with an antecedent of ⊤ comes to hold.

〈m0, . . . ,mn〉 x p ∧ ¬q ∧ C(p, q) p 6≡ ⊤

〈m0, . . . ,mn〉 x C(⊤, q)
−−− (detach)

sat explains the satisfaction or discharge of a commitment. When the consequent

of a commitment holds, the commitment is discharged and is thus active no more.

51

〈mn〉 x q

〈m0, . . . ,mn〉 x ¬C(p, q)
−−−−−−−−−−−−−−−−−−−−−−−−− (sat)

weaken states that x is closed under propositional derivation given by ⊢, as

mentioned above.

〈m0, . . . ,mn〉 x p p ⊢ q

〈m0, . . . ,mn〉 x q
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (weaken)

neg states that x deals with binary logic.

〈m0, . . . ,mn〉 6x p

〈m0, . . . ,mn〉 x ¬p
−−−−−−−−−−−−−−−−−−−− (neg)

inertia says that if an atomic proposition α holds and is not overturned by the

next messaging action, then α continues to hold.

〈m0, . . . ,mn−1〉 x α 〈mn〉 6x ¬α

〈m0, . . . ,mn〉 x α
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (inertia)

cmt describes the consequence relation between commitments. Of two commit-

ments, the stronger commitment is the one whose antecedent is weaker or consequent is

stronger.

C(x, y, p0, q0) p1 ⊢ p0 q0 ⊢ q1

C(x, y, p1, q1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (cmt)

Thus cmt captures our intuition about covering the assumptions of agents. Let

c0 and c1 be commitments. We say c0 ⊢ c1—read as c0 covers the assumptions of c1—

if and only if they have the same debtor and creditor, c1’s antecedent is stronger than

c0’s, and c1’s consequent is weaker than c0’s. For an example where the antecedent is

stronger, consider a customer c’s commitment c0 = C(c,m, goods, pay) to a merchant m

that c will pay if m sends the goods. Let’s say the merchant assumes the commitment

c1 = C(c,m, goods ∧ receipt, pay) from the customer instead. c0 ⊢ c1 (c0 covers c1) because

the customer’s antecedent is weaker than the merchant’s. For an example where the con-

sequent is weaker, consider the customer’s commitment c0 = C(c,m, goods, pay). Let the

merchant’s assumption be c1 = C(c,m, goods, pay ∨ return). Clearly, c0 ⊢ c1 because now

the merchant’s consequent is weaker than the customer’s.

Lemma 1 x terminates.

Proof. (Sketch) Each inference rule for x either reduces the sequence length or

the depth of the formula being considered.

52

4.3 Constitutive Interoperability

First we present the definition of constitutive interoperability and then a decision

procedure for determining it from agents’ specifications. We present numerous examples

along the way to illuminate the concepts involved.

4.3.1 Definition

Interoperability considers the prospect of interoperation. For this reason, it con-

siders all possible enactments in which the agents may participate. Constitutive interop-

erability means that the agents would agree about whatever commitments as might result

from any messages they might exchange. Thus it considers all potential observations of

all agents, and fails if even one set of potential observations would cause failure of inter-

operation. Definition 6 considers only observations of creditors and debtors from the same

quiescent vectors.

Definition 6 A is C-interoperable (written [〈A〉]) iff

∀OQ ∈ OA : (∀x, y : [Ox, Oy] = OQ :

(Oy y C(x, y, p, q)) → (Ox x C(x, y, p, q)))

The idea is that if y’s observations model, under its constitutive specification, that

y is the creditor of commitment c, then any observations made by the debtor x must model,

under its constitutive specification, that x is the debtor of c.

The above definition considers only quiescent vectors. The motivation for doing

so is to provide an opportunity for the agents to “sync” up. In a distributed systems, the

agents would in general observe different messages. Requiring that they agree upon their

commitments without observing the same messages would in general lead to such a strong

definition that would fail even when our intuition would be that the agents interoperate.

For example, say a merchant sends an offer to a customer that states: if you send

me the payment, I will send you the goods. Say the customer receives this offer and sends

the payment to the merchant. At this point, the customer has no knowledge of when the

payment will arrive at the merchant; the merchant has no knowledge that the payment

has been sent. The customer’s observations legitimize the unconditional commitment on

53

part of the merchant to send it the goods. The merchant’s observations do not. The

above definition is not affected by this apparent discrepancy because it is only a transient

discrepancy. When the payment arrives at the merchant, the commitment as expected by

the customer will be covered by the merchant.

4.3.2 Decision Procedure

We introduce unique labels for the rules in a constitutive specification for easy

reference in the text. For example, in A =

m means p, the label of the rule m means p is A, and we say that A is the rule m means p).

Even though two rules in different constitutive specifications may have the same label, we

use different labels throughout to avoid confusion.

Let A be a constitutive rule. Â and Ă denote the head and body of A, respectively.

Given a set of rules A, Â =
∧

A∈A
Â. To simplify the presentation, we introduce the empty

rule ǫ as a member of every constitutive specification and its head as ⊤.

The intuition behind our decision procedure is to verify that each rule in the con-

stitutive specification of an agent that would cause an agent to have a credit (a commitment

in which the agent is the creditor) should be covered by a rule in the debtor’s constitutive

specification.

Example 14 In Table 4.2, rule Cus1 which encodes the customer’s assumption about an

offer is supported by Mer1 in the merchant’s specification, that is, Mer1 ⊢ Cus1. In fact,

the merchant’s commitment to send a receipt is not an assumption of the customer.

Table 4.2: Offer

customer (c)

Cus1 = Offer means C(m, c, pay, goods)

merchant (m)

Mer 1 = Offer means C(m, c, pay, goods ∧ receipt)

Example 15 With reference to Table 4.2, if the merchant’s specification had Mer2 =

Offer means C(m, c, pay , receipt) instead of Mer1, then Mer2 6⊢ Cus1 and when the Offer

message is exchanged, it will cause a commitment misalignment.

54

There is an additional caveat though: the agents must also agree on the messages

that affect a commitment. This means that the decision procedure must check the agents’

specifications for the respective compatibility of the rules that bring about the antecedent

and consequent of a commitment. Specifically, the debtor should cover the ways in which

the creditor may bring about the antecedent, and the creditor should cover all the ways in

which the debtor may bring about the consequent. In Table 4.2 there are no such rules,

hence the agents vacuously agree.

Example 16 Let’s consider the agents in Table 4.3. Clearly, Mer3 ⊢ Cus2. In addition,

the merchant covers all the ways in which a customer expects to make a payment (Cus3

is covered by Mer4) therefore ensuring that when the customer pays, the merchant under-

stands that. Similarly, the customer understands all the ways the merchant can cause the

goods condition to hold (Mer6 is covered by Cus4).

Table 4.3: Offer with antecedent and consequent rules

customer (c)

Cus2 = Offer means C(m, c, pay, goods)

Cus3 = PayCash means pay

Cus4 = GoodsShip means goods

Cus5 = GoodsExpedited means goods

merchant (m)

Mer3 = Offer means C(m, c, pay, goods)

Mer4 = PayCash means pay

Mer5 = PayCredit means pay

Mer6 = GoodsShip means goods

Example 17 Referring to Table 4.3, suppose that the merchant did not have the rule

Mer4 meaning she only accepts credit cards. Then upon doing PayCash, the customer’s

state would model the commitment C(m, c,⊤, goods) (because of detach); however the

merchant’s state would not model C(m, c,⊤, goods) upon receiving PayCash. Hence, in-

teroperability fails.

Definitions 7 and 8 introduce the machinery necessary to formalize this caveat.

Definition 7 introduces the notion of an antecedent predecessor. Let A = mmeansC(x , y , p, q) ∈

55

C. An antecedent predecessor of A is a subset of C such that the rules in the predecessor

explain the causation of each propositional letter in p. The set of all antecedent predecessors

of an rule A is denoted by PA.

Example 18 In Table 4.3, the commitment in Cus2 has only one propositional letter pay.

An antecedent predecessor of Cus2 is {Cus3}. Mer3 has two antecedent predecessors:

{Mer4} and {Mer5}. Thus, PCus2
= {{Cus3}} and PMer3

= {{Mer 4}, {Mer5}}.

Example 19 In Table 4.2, PCus1
= {}, PMer1

= {}.

No subset of an antecedent predecessor of a rule A should itself be an antecedent

predecessor of A because that means the former contains rules not relevant to the antecedent.

What is not relevant to a commitment will necessarily have no effect on commitment-level

interoperability.

Definition 7 Let A = mmeansC(x , y , p, q) be a rule in C. Then the antecedent predecessors

of A in C denoted by PA is defined as

{∆|∆ ⊆ C : (∆̂ ≡ p and ¬(∃∆′ : ∆̂′ ≡ p and ∆′ ⊂ ∆))}

Recall that the consequent of a commitment is a disjunction of propositional lit-

erals. Bringing any one of those about satisfies the commitment. Unlike the antecedent

predecessor which is a set of rules, a consequent predecessor is a single rule whose head

derives at least one propositional literal in the consequent.

Definition 8 Let A = m means C(x , y , p, q) be a rule in C where q is the disjunction

q0 ∨ . . . ∨ qn of propositional letters. The consequent predecessors of A in C denoted by CA

is defined as

{R|R ∈ C and ∃qi (0 ≤ i ≤ n) : R̂ ⊢ qi}

Example 20 In Table 4.2, CCus1
= {}, CMer1

= {}.

Example 21 Referring to Table 4.3, CCus2
= {Cus4,Cus5}, CMer3

= {Mer6}.

Definition 9 finally puts together all the elements discussed above in defining the

complete coverage of a rule that causes a commitment credit. For such a rule to be com-

pletely covered, the following conditions must be satisfied:

56

1. Rule coverage: The debtor must cover the rule: a credit represents an assumption of

the creditor.

2. Antecedent coverage: The debtor must cover all the ways in which the creditor may

bring about the antecedent of the commitment—these represent the assumptions of

the creditor. Additionally, it means that if the creditor expects to deal in n distinct

messages to bring about the antecedent of a commitment, then the debtor’s cover

cannot involve more than those n messages.

3. Consequent coverage: The creditor must cover all the ways in which the debtor may

bring about the consequent of the commitment—these represent the assumptions of

the debtor. This ensures that any message that can discharge a commitment on the

debtor’s side will also discharge the commitment on the creditor’s side.

Definition 9 Let Cx and Cy be the constitutive specifications of agents x and y, respec-

tively. Let E ∈ Cy be

m means C(x , y , p, q). E is completely covered, denoted by ⌊E⌋ iff E is covered, that is,

∃M ∈ Cx : (M ⊢ E) and the following hold:

• Antecedent coverage: ∀S ∈ PE : ∃V ∈ PM : (
⋃

A∈V
Ă) ⊆ (

⋃
A∈S

Ă)

• Consequent coverage: ∀S ∈ CM : ∃V ∈ CE : S̆ ≡ V̆

In Definition 9 above, each S referred to in the antecedent coverage clause repre-

sents a “way” (assumption) of the creditor that must be covered by the debtor. Similarly,

each S in the consequent coverage clause represents a “way” of the debtor that must be

covered by the creditor.

Definition 10 Let A be a two agent system. A is compatible, denoted by [[A]], iff

∀y ∈ A : ∀E = m means C(x , y , p, q) ∈ Cy : ⌊E⌋

Algorithm 1 is pseudo code for Definition 10.

Figure 4.1 and 4.2 show the program analysis graphs for the agents in Table 4.2

and 4.3, respectively. A program analysis graph is constructed as follows. For each agent,

for each rule E in which a credit is created, create a circle labeled with E. Denote each of

57

Algorithm 1: Algorithm for determining [[A]]

foreach (agent y in a two agent system) do1

foreach (E in y’s specification which means a credit C(x, y, p, q) for y)2

do

if (there exists an M in x’s specification such that M covers E) then3

foreach (way in which y assumes p can hold) do4

if (x covers that way) then5

continue;6

else7

return false;8

foreach (way in which x assumes q can hold) do9

if (y covers that way) then10

continue;11

else12

return false;13

else14

return false;15

return true;16

58

its antecedent predecessors by a dotted box connected to the circle by an arrow labeled P.

Label the box with the rules in that antecedent predecessor. Denote each of its consequent

predecessors by a dotted box connected to the circle by an arrow labeled with C. If a rule

M in the other agent covers E (M ⊢ E), then create a circle labeled M and connect M to

E with an arrow directed towards E. Indicate M ’s antecedent and consequent predecessors

as described for E. If there exists an antecedent predecessor of M that covers one of E,

draw a directed arrow from the former to the latter. Similarly, if there exists a consequent

predecessor of E that covers one of M , draw a directed arrow from the former to the

latter. If at the end of this graph construction, E is not connected to some M , or if one of

E’s antecedent predecessors is not connected to some of M ’s, or if one of M ’s consequent

predecessors is not connected to some of E′s, then the agents are not compatible.

Figure 4.1: Program analysis graph for agents in Table 4.2

Figure 4.2: Program analysis graph for agents in Table 4.3

Example 22 Consider the agents in Table 4.4. Here the merchant ships goods to customers

of legal age only. However, she accepts payment by credit card to be proof of legal age.

The customer, however, provides her birth date as proof of legal age. First, Mer7 ⊢ Cus6.

59

PCus6
= {{Cus7,Cus8}}, PMer7

= {{Mer8}}, and the set of messages involved in {Mer8}

is a subset of the messages involved in {Cus7,Cus8} ({PayCredit} ⊆

{PayCredit, ProvideBirthDate}). Therefore, ⌊Cus6⌋.

Table 4.4: Antecedent coverage: merchant uses fewer messages

customer (c)

Cus6 = Offer means C(m, c, pay ∧ legalAge, goods)

Cus7 = PayCredit means pay

Cus8 = ProvideBirthDate means legalAge

merchant (m)

Mer 7 = Offer means C(m, c, pay ∧ legalAge, goods)

Mer 8 = PayCredit means pay ∧ legalAge

Figure 4.3 shows the program analysis graph for the agents in Table 4.4.

Figure 4.3: Program analysis graph for agents in Table 4.4

Example 23 Referring to Table 4.5, PCus9
= {{Cus10}} and PMer9

= {{Mer 10,Mer11}}.

The messages involved in

{Mer10,Mer11} are not a subset of {Cus10}. Therefore, when customer does PayCredit

(after Offer), she assumes the commitment C(m, c,⊤, goods) whereas the merchant does

not because it does not see PayCredit to mean legalAge: it also expects to observe

ProvideBirthDate. Therefore, antecedent coverage for {Cus10} does not hold. Therefore,

⌊Cus9⌋ does not hold.

60

Table 4.5: No antecedent coverage: customer uses fewer messages

customer (c)

Cus9 = Offer means C(m, c, pay ∧ legalAge, goods)

Cus10 = PayCredit means pay ∧ legalAge

merchant (m)

Mer 9 = Offer means C(m, c, pay ∧ legalAge, goods)

Mer 10 = PayCredit means pay

Mer 11 = ProvideBirthDate means legalAge

Figure 4.4: Program analysis graph for agents in Table 4.5

Figure 4.4 shows the program analysis graph for the agents in Table 4.5.

Example 24 Referring to Table 4.6, ⌊Cus11⌋ holds in spite of the fact that between the

two agents the meanings of PayCredit and ProvideBirthDate are interchanged.

Example 25 A merchant may unconditionally commit to sending the goods. Referring to

Table 4.7, Mer15 ⊢ Cus14, PCus14
= {{Cus15}}, PMer15

= {ǫ} and since causing ǫ requires

no messages, we obtain ⌊Cus14⌋.

Example 26 For the sake of completeness, let’s consider an example that bring consequent

coverage into focus. Referring to Table 4.8, Mer16 ⊢ Cus16, and CCus16
= {Cus17,Cus18}

and CMer16
= {Mer17}. When the merchant sends GoodsShip and discharges her com-

mitment, the customer also understands its receipt to mean discharge of the merchant’s

commitment. Thus, ⌊Cus16⌋ holds.

61

Table 4.6: Offer with jumbled but adequate meanings

customer (c)

Cus11 = Offer means C(m, c, pay ∧ legalAge, goods)

Cus12 = PayCredit means legalAge

Cus13 = ProvideBirthDate means pay

merchant (m)

Mer 12 = Offer means C(m, c, pay ∧ legalAge, goods)

Mer 13 = PayCredit means pay

Mer 14 = ProvideBirthDate means legalAge

Table 4.7: Making an unconditional commitment

customer (c)

Cus14 = Offer means C(m, c, pay, goods)

Cus15 = PayCash means pay

merchant (m)

Mer 15 = Offer means C(m, c,⊤, goods)

Figure 4.5 shows the program analysis graph for the agents in Table 4.8.

Example 27 Also, it is worth considering the agents in Table 4.9. Even though GoodsShip

means different things to the customer and merchant, when they observe the message, it

discharges the merchant’s commitment in both the customer and merchant’s model. Here

too, we have ⌊Cus19⌋.

Figure 4.6 shows the program analysis graph for the agents in Table 4.9.

Table 4.8: Consequent coverage

customer (c)

Cus16 = Offer means C(m, c, pay, goods ∨ refund)

Cus17 = GoodsShip means goods

Cus18 = RefundMoney means refund

merchant (m)

Mer16 = Offer means C(m, c, pay, goods)

Mer17 = GoodsShip means goods

62

Figure 4.5: Program analysis graph for agents in Table 4.8

Table 4.9: Consequent coverage: case of adequate meaning

customer (c)

Cus19 = Offer means C(m, c, pay, goods ∨ refund)

Cus20 = GoodsShip means refund

merchant (m)

Mer18 = Offer means C(m, c, pay, goods)

Mer19 = GoodsShip means goods

Theorem 2 [〈{x, y}〉] if and only if [[{x, y}]].

Proof. (Sketch) The proof is by induction on the length of quiescent vectors.

For quiescent observation vectors of length 1, any commitment that exists must be caused

by rules (in the creditor’s theory) pertaining to a single message. As a result, our deci-

sion procedure would find the rules (in the debtor’s theory) that cover such creditor rules.

Conversely, for any pair of covering rules the message mentioned in their bodies could be

observed to be sent and received. Thus if the decision procedure finds a cover, there would

be an observation vector where that is realized.

Now assume that the theorem holds for quiescent observation vectors of length up

to k. Consider any quiescent observation vector of length k + 1. Any commitment that

holds after a sequence of length k + 1 either held at the end of the first k observations in

that sequence, or is caused by the (k + 1)st observation. In the former case, the inductive

hypothesis applies. In the latter, the rules for the last message apply. The antecedent and

consequent supports for these rules must have already have been accounted for in the first

63

Figure 4.6: Program analysis graph for agents in Table 4.9

k observations. Hence, by induction, the result holds.

4.4 Discussion

Approaches based on verifying compliance at runtime [Alberti et al., 2004],

[Venkatraman and Singh, 1999] are important in the context of open systems since agents

may behave in unpredictable ways; also it is necessary to have independent arbiters in

cases of dispute. Alberti et al. [2007] present SCIFF, an abductive reasoning framework

for reasoning about the policies of services with the purpose of verifying if a goal might

be reached. In that sense, SCIFF is similar to specifying agents in C+ [Giunchiglia et al.,

2004], and running queries in CCalc, which is the reasoning tool that implements C+.

Our work falls within the broader context of normative multiagent systems (for

example, [Boella and van der Torre, 2004]). Our use of constitutive rules to means counts

as is decidedly narrow in that a message only counts as meaning something for a particular

agent, and not in the context of the institution the agent acts in. In this work, we assume

that the agents act in an institution, but may have differing views on the creation of

institutional facts. Such differences in views are the basis of failure of interoperability.

In future work, we will broaden the formalization to include institutions.

Winikoff [2007] studies the distributed enactment of a commitment protocol amongst

agents. Commitments are mapped to BDI plans, and all possible plans are checked to see if

they allow making progress towards desirable goal states. This enables designers to specify

commitment protocols and not have to worry about low-level messaging details, which is

64

highly desirable. Since commitments are already aligned in a commitment protocol, there

is no need to check commitment-level interoperability between the distributed commitment

machines, which is the question we address in this work.

We will extend our algorithm to handle additional commitment operations such

as delegate, cancel, assign, and release. Doing so will enable modeling general multiparty

interactions. Addressing regulative interoperability in more depth is also an important

direction.

65

Chapter 5

Discussion

In Chapter 1, we motivated commitments as an important abstraction for modeling

business processes. Commitments support a semantic notion of compliance, which in turns

enables flexible business process enactment by agents. We then motivated commitment

alignment as a key form of interoperability, failing which interaction among agents would

break down. We also discussed the causes of misalignment: asynchrony, distribution, and

heterogeneity. In Chapter 2, we formally characterized commitment alignment in terms of

the inferences agents make from their observation. In Chapter 3, we addressed autonomy

and distribution. We did that by formalizing commitment operations in distributed settings.

And finally, in Chapter 4, we addressed heterogeneity.

Now, we discuss our work in a broader context, and lay out some future directions.

5.1 Commitments and Agent Communication

Commitments have been studied in the context of distributed problem solving and

coordination. Bratman [1992] points out the importance of a agents committing to activities

for successfully carrying out a shared cooperative activity. Grosz and Kraus [1996] formulate

shared plans for coordinating group action. In their framework, an agent can adopt two

types on intentions, intend-to and intend-that, that commit the agent to an action and

state of affairs respectively. Jennings [1993] presents commitments as a fundamental notion

for efficient coordination in distributed systems. Jennings also mentions conventions which

monitor the commitments and state when a commitment may be reassessed. Jennings

66

further reformulates different models of coordination in terms of commitments. Shoham’s

agent oriented computing paradigm [1993] introduces obligation as a modality required to

describe the mental state of an agent. A common feature of all of the above work is that

they present commitments as a mentalistic notion, purely for the purposes of coordination.

Castelfranchi [1993] first presented commitments as a social relation, that is, as

a relation between agents, with the aim of understanding organizational activity. That

work led to a significant result in agent communication. In the mid nineties, a major

challenge in agent communication was the formalization of communication among agents.

Most approaches formalized communication in terms of mental agency, that is, in terms

of beliefs and intentions (for an example, see [Finin et al., 1994]). Singh [1998] pointed

out a fundamental shortcoming in such formalizations: since the mental states of agents

are private, and therefore not verifiable, it is not possible to ascertain what agents mean

by their communications. Instead, Singh proposed that communication should be given a

social semantics, one based on commitments. For a survey of the state of the art in agent

communication, see [Dignum et al., 2006].

Singh introduced the commitment operations in [1999]. Formalization of com-

mitment operations based on Singh’s presentation are found in [Yolum and Singh, 2002;

Chopra and Singh, 2004; Desai et al., 2007b]. Fornara and Colombetti [2002] propose an

object-oriented formalization of commitments. Singh [2008] delineated the model-theoretic

semantics of commitments.

5.2 Software Engineering

First and foremost, commitment capture the business meaning of interactions as

opposed to low-level operational representations of interaction. In this sense, commitments

are a useful software engineering abstraction. Yolum and Singh [2002] first formalized

commitment protocols, and showed how such protocols enabled flexible execution. Desai et

al. [2005] showed how to construct agents from representations of commitment protocols.

Mallya and Singh [2007] showed how to reason about subsumption among commitment

protocols. Such reasoning is essential to understanding that payment by credit card is

a special kind of payment protocol. Composition of commitment protocols is studied in

[Desai and Singh, 2007].

67

The question of the enactability of a protocol is an important one [Fu et al., 2004;

Desai and Singh, 2008; Carbone et al., 2006]. A protocol is enactable if and only if distri-

bution of the protocol among agents supports exactly those executions that are supported

when the protocol is considered as a whole. For example, the protocol specification may

state that a message m from agent x to y must happen immediately after m′ from z to y.

Clearly, this constraint cannot be enforced in a distributed system: x cannot see m′. Hence,

we would say that such a protocol is not enactable. Since interoperability is at the level of

agents and their interfaces, this dissertation does not consider problems of enactability.

5.2.1 Architecture and Patterns

An architectural style specifies a family of configurations of components and con-

nectors subject to stated constraints [Shaw and Garlan, 1996].

In these terms, existing SOAs are an architectural style whose major components

are (service) provider and consumer, and whose connector is a protocol by which a consumer

invokes a provided service. (For simplicity, we ignore registries, and service publication and

discovery.) A practical SOA includes specialized components and connectors, such as for

resource management and other enterprise functions (identity, billing, and so on), and im-

poses additional constraints so appropriate components interoperate with the management

and enterprise components.

Recently, Singh et al. [2008] have proposed Commitment-Based SOA (CSOA) as

an architectural style whose components are the participants in a service engagement, and

whose connectors are patterns of commitment operations.

Table 5.1 contrasts commitment-based and existing SOAs. Thus, CSOA is not

a unique style but has many flavors depending on the patterns selected. Such flexibility

is necessary to support the nuances of service engagements. The primary constraint on a

sound implementation of CSOA is that at runtime all commitments are eventually handled

in one way or another.

Model-Driven Architecture (MDA) provides a useful way to think of the relation-

ship between CSOA and existing SOAs. In MDA terms, CSOA is a Computation Indepen-

dent Model whereas existing SOAs are Platform Independent Models. In other words, the

move to CSOA would represent the step—often repeated in computer science—of moving

from lower to higher abstractions. Because commitments are computation independent, yet

68

Table 5.1: A comparison of commitment-based and existing SOAs

Elements Existing SOAs Commitment-Based SOA

Components Service provider and consumer Business service provider and con-

sumer agents

Connectors Operations and message patterns

(in, out, in-out, out-in)

Commitment patterns

Invariants Match operation and message sig-

natures

Each party knows only the identity

of parties with whom it features in

a commitment

Model Control and data flow Operations on commitments

lend themselves to rigorous operationalization, CSOA can help bridge the well-recognized

gap between business and IT [Smith and Fingar, 2002].

Others have begun to recognize the importance of high-level abstractions, but their

work still employs operational abstractions. We briefly describe some of these below.

Benatallah et al. propose patterns called business-level interfaces and proto-

cols [2006]. However, their patterns ignore business meanings (like CDL and BPEL), thereby

leading to rigid interoperation. For example, if a message interface specifies that a customer

should make a payment subsequent to the receipt of goods, then a service realizing such

an interface must behave accordingly. It ought not to take any liberties such as reversing

the order of the messages, interposing other messages, or introducing another party such

as a payment agency. But, real-life service engagements typically presume such flexibility.

Limiting flexibility subverts the services vision because it creates avoidable friction in the

web of value.

Kumaran [2004] presents four abstraction layers for enterprise modeling: strategy

(business considerations), operation (business functions conceptualized via tasks and ar-

tifacts), execution (analogous to existing SOAs), and implementation. CSOA would help

extend Kumaran’s operation layer to multienterprise service engagements, and commitment

patterns would provide richer representations that facilitate modeling enterprise operations

perspicuously and reusably.

69

Bhattacharya et al. [2007] propose an artifact-based approach, where an artifact is

a business document such an Order. Each artifact has its own lifecycle. Again, the problem

here is that the lifecycles have no semantic basis, and therefore turn out to be unnecessarily

rigid.

van der Aalst et al. [2003] document patterns commonly used in workflow modeling

such as branching and synchronization; Hohpe and Woolf [2003] describe several enterprise

integration styles and patterns; Barros et al. [2005] describe low-level messaging patterns

used in services. No doubt, all these patterns encode valuable experience and are widely

applicable; however, none of these represent business-level patterns.

Burgess [2005] proposes promises, which are in a pragmatic sense similar to com-

mitments, as a useful abstraction for understanding distributed systems of autonomous

agents.

5.2.2 Software Components and Interoperability

Our solution for addressing heterogeneity is inspired from research in the area of

software components. The interoperability of independently designed components has been

an issue of long standing interest in components research. Interfaces form the basis of inter-

operation in such approaches. Allen and Garlan [1997] formally introduced the idea that the

connectors between components should be formalized as protocols that describe constraints

on messaging. Yellin and Strom [1997] formalized interfaces as finite state machines, with

messages occurring along transitions. Given two components with such interfaces, Yellin

and Strom gave the conditions for compatibility between the interfaces. If the interfaces

were found to be compatible, then the components were deemed interoperable. Yellin and

Strom assume synchronous communication because of undecidability results under asyn-

chronous communication [Brand and Zafiropulo, 1983]. Following Yellin and Strom, there

have been numerous alternative formalizations of component interoperability (for example,

see [de Alfaro and Henzinger, 2001; Canal et al., 2003; Chopra and Singh, 2006b; 2007]).

So far, researchers have approached interoperability from the point of view of co-

ordination: their definitions are couched in terms of operational notions such as choice and

deadlock-freedom of the components. Such formalizations are no doubt relevant and essen-

tial; however, they do not capture the business meaning of interaction. Our commitment-

based approach addresses this shortcoming. It abstracts away from the operational notions

70

of interoperability, and makes commitment alignment the sole criterion. Our vision is that

designers first specify agents in terms of commitments, check for commitment alignment,

and then successively refine the specifications in a model-driven manner so as to obtain

implementations that also meet the more operational notions of interoperability.

Related to the notion of interoperability is that of conformance. Broadly speaking,

conformance is a property preserving substitution relation—the property of interest to us

is interoperability. This saves the hassle of checking interoperability at a system-wide level

every time a component is replaced. Conformance is discussed in [Endriss et al., 2003;

Fournet et al., 2004; Baldoni et al., 2006; Bravetti and Zavattaro, 2007; Castagna et al.,

2008]. In this dissertation, we presented commitment alignment as a key form of inter-

operability; it would be interesting to formalize conformance in terms of commitments.

5.3 Future Work

Here, we outline some of the more promising directions of future work.

5.3.1 Metacommitments

An important direction is to extend the message language presented in Chapter 2 to

handle metacommitments, that is, commitments about commitments. Such commitments

often arise in real situations. For example, Alice commits to Bookie that if Bookie commits

to sending her the book, then Alice will pay, meaning C(Alice,Bookie , created(Bookie ,Alice,⊤,

book), pay). One of the conditions for a successful delegation could be the commitment

C(delegatee , delegator , delegated(delegator , creditor , r, u, delegatee), created (delegatee ,

creditor , r, u)), that is, the delegatee commits to the delegator that it will accept the delega-

tion. Another common kind of metacommitment involves compensation for cancellations.

Often this involves a third party. For example, Bookie may be operating in a marketplace

Pamazon, which makes the commitment to Alice that if Bookie cancels its commitment for

the book after payment has been made, then Bookie will commit to refund Alice, meaning

that C(Pamazon ,Alice, cancelled(Bookie ,Alice,⊤, book), created(Bookie ,Alice,⊤, refund)).

71

5.3.2 Richer Interface Language

The language for agent interfaces presented in Chapter 4 is simple; it does not

support Cancel, Release, Delegate, and Assign. Now that we have solved alignment

in distributed settings, an obvious and important next step is to support all the commitment

operations in the interface specification language.

5.3.3 Tools and Middleware for Enterprises

Our solutions for autonomy and distribution could be packaged into a middleware

that sits beneath agents. To make sure that agents would not get misaligned, the most

designers would have to do is simply run a tool that checks for interface compatibility.

5.3.4 Pattern Language

When it comes to business process modeling, the focus in computing has shifted

undeniably from orchestration to interactions. In fact, industry-supported orchestration

languages such as BPEL have been noted to be completely unnecessary [van der Aalst et al.,

2005]. Interaction has now begun to be treated as a first-class abstraction in high-level

programming languages such as Java [Hu et al., 2008]. A language for encoding commitment

patterns, such as those reported in [Singh et al., 2008], would be highly desirable. The

semantics of the language itself would be rooted in the results of this dissertation.

72

Bibliography

Marco Alberti, Davide Daolio, Paolo Torroni, Marco Gavanelli, Evelina Lamma, and Paola

Mello. Specification and verification of agent interaction protocols in a logic-based system.

In Proceedings of the 19th ACM Symposium on Applied Computing, pages 72–78, 2004.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, Marco

Montali, and Paolo Torroni. Web service contracting: Specification and reasoning with

SCIFF. In Proceedings of the 4th European Semantic Web Conference, pages 68–83, 2007.

Robert Allen and David Garlan. A formal basis for architectural connection. ACM Trans-

actions on Software Engineering and Methodology, 6(3):213–249, 1997.

Leila Amgoud, Nicolas Maudet, and Simon Parsons. An argumentation-based semantics

for agent communication languages. In Proceedings of the 15th European Conference on

Artificial Intelligence, pages 38–42, 2002.

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. A priori confor-

mance verification for guaranteeing interoperability in open environments. In Proceedings

of the 4th International Conference on Service-Oriented Computing, pages 339–351, De-

cember 2006.

Alistair Barros, Marlon Dumas, and Arthur H.M. ter Hofstede. Service interaction patterns.

In Business Process Management, volume 3649 of LNCS, pages 302–318. Springer, 2005.

Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis and management of

web service protocols. In Conceptual Modeling ER 2004, volume 3288 of LNCS, pages

524–541. Springer, 2004.

73

Boualem Benatallah, Fabio Casati, Farouk Toumani, Julien Ponge, and Hamid R. Mo-

tahari Nezhad. Service Mosaic: A model-driven framework for web services life-cycle

management. IEEE Internet Computing, 10(4):55–63, 2006.

Jamal Bentahar, Bernard Moulin, John-Jules Ch. Meyer, and Brahim Chaib-draa. A logical

model for commitment and argument network for agent communication. In Proceedings of

the 3rd International Conference on Autonomous Agents and Multiagent Systems, pages

792–799, 2004.

Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen Su. Towards

formal analysis of artifact-centric business process models. In Business Process Manage-

ment, volume 4714 of LNCS, pages 288–304. Springer, 2007.

Guido Boella and Leendert W. N. van der Torre. Regulative and constitutive norms in

normative multiagent systems. In Principles of Knowledge Representation and Reasoning:

Proceedings of the Ninth International Conference (KR), pages 255–266. AAAI Press,

2004.

Rafael H. Bordini, Mehdi Dastani, and Michael Winikoff. Current issues in multi-agent

systems development. In Engineering Societies in the Agents World VII, volume 4457 of

Lecture Notes in Computer Science, pages 38–61. Springer, 2007.

BPEL. Business process execution language for web services, version 1.1, May 2003. www-

106.ibm.com/developerworks/webservices/library/ws-bpel.

BPMN. Business process modeling notation, v1.1, January 2008. http://www.bpmn.org/.

Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of

the ACM, 30(2):323–342, 1983.

Michael E. Bratman. Shared cooperative activity. The Philosophical Review, 101:327–341,

1992.

Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography con-

formance and contract compliance. In 6th International Symposium on Software Compo-

sition, volume 4829 of LNCS, pages 34–50. Springer, 2007.

74

Mark Burgess. An approach to understanding policy based on autonomy and voluntary

cooperation. In Ambient Networks, volume 3775 of LNCS, pages 97–108. Springer, 2005.

Carlos Canal, Lidia Fuentes, Ernesto Pimentel, Jos M. Troya, and Antonio Vallecillo.

Adding roles to CORBA objects. IEEE Transactions on Software Engineering, 29(3):

242–260, 2003.

Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, and Steve Ross-Talbot.

A theoretical basis of communication-centered concurrent programming, October 2006.

http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf.

Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 261–272, 2008.

Cristiano Castelfranchi. Commitments: From individual intentions to groups and organi-

zations. In Proceedings of the AAAI-93 Workshop on AI and Theories of Groups and

Organizations: Conceptual and Empirical Research, 1993.

Cristiano Castelfranchi. Modelling social action for AI agents. Artificial Intelligence, 103

(1-2):157–182, 1998.

Amit Chopra and Munindar P. Singh. Nonmonotonic commitment machines. In Frank

Dignum, editor, Advances in Agent Communication: Proceedings of the 2003 AAMAS

Workshop on Agent Communication Languages, volume 2922 of LNAI, pages 183–200.

Springer-Verlag, 2004.

Amit K. Chopra and Munindar P. Singh. Constitutive interoperability. In Proceedings of

the 7th International Conference on Autonomous Agents and Multiagent Systems, pages

794–804, 2008.

Amit K. Chopra and Munindar P. Singh. Contextualizing commitment protocols. In Pro-

ceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 1345–1352, 2006a.

Amit K. Chopra and Munindar P. Singh. Producing compliant interactions: Conformance,

coverage, and interoperability. In Declarative Agent Languages and Technologies IV:

75

Selected, Revised, and Invited Papers, volume 4327 of LNAI, pages 1–15, Heidelberg,

2006b. Springer.

Amit K. Chopra and Munindar P. Singh. Interoperation in protocol enactment. In Declar-

ative Agent Languages and Technologies V: Selected, Revised, and Invited Papers, LNAI,

Heidelberg, 2007. Springer.

William Cook and Jayadev Misra. Computation orchestration: A basis for wide-area com-

puting. Software and Systems Modeling, 6(1):83–110, March 2007.

R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling agent conversations with

colored petri nets. In Working Notes of the Workshop on Specifying and Implementing

Conversation Policies, pages 59–66, Seattle, Washington, May 1999.

Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weerawarana.

The next step in web services. Communications of the ACM, 46(10):29–34, 2003.

Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the

Joint 8th European Software Engineering Conference (ESEC) and 9th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (FSE-9), pages 109–120, 2001.

Nirmit Desai and Munindar P. Singh. On the enactability of business protocols. In Proceed-

ings of the 23rd Conference on Artificial Intelligence (AAAI), pages 1126–1131, Menlo

Park, July 2008. AAAI Press.

Nirmit Desai and Munindar P. Singh. A modular action description language for protocol

composition. In Proceedings of the 22nd Conference on Artificial Intelligence, pages 962–

967, 2007.

Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interaction

protocols as design abstractions for business processes. IEEE Transactions on Software

Engineering, 31(12):1015–1027, December 2005.

Nirmit Desai, Amit K. Chopra, Matthew Arrott, Bill Specht, and Munindar P. Singh.

Engineering foreign exchange processes via commitment protocols. In Proceedings of the

4th IEEE International Conference on Services Computing, pages 514–521, Los Alamitos,

2007a. IEEE Computer Society Press.

76

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Representing and reasoning about

commitments in business processes. In Proceedings of the 22nd Conference on Artificial

Intelligence, pages 1328–1333, 2007b.

Frank Dignum, Rogier M. van Eijk, and Roberto Flores, editors. Agent Communication II,

volume 3859 of LNCS. Springer, 2006.

Hywel R. Dunn-Davies, Jim Cunningham, and Shamimabi Paurobally. Propositional state-

charts for agent interaction protocols. Electronic Notes in Theoretical Computer Science,

134:55–75, 2005.

ebBP. Electronic business extensible markup language business process specification schema

v2.0.4, December 2006. docs.oasis-open.org/ebxml-bp/2.0.4/OS/.

Ulrich Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. Protocol conformance

for logic-based agents. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pages 679–684, 2003.

Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML as an agent com-

munication language. In Proceedings of the International Conference on Information and

Knowledge Management, pages 456–463. ACM Press, 1994.

Roberto A. Flores, Philippe Pasquier, and Brahim Chaib-draa. Conversational seman-

tics with social commitments. In Rogier M. van Eijk, Marc-Philippe Huget, and Frank

Dignum, editors, Agent Communication, volume 3396 of Lecture Notes in Computer Sci-

ence, pages 18–32. Springer, 2004. ISBN 3-540-25015-8.

Nicoletta Fornara and Marco Colombetti. A commitment-based approach to agent commu-

nication. Applied Artificial Intelligence, 18(9-10):853–866, 2004.

Nicoletta Fornara and Marco Colombetti. Operational specification of a commitment-based

agent communication language. In Proceedings of the 1st International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pages 535–542. ACM Press,

July 2002.

77

Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-free confor-

mance. In Proceedings of the 16th International Conference on Computer Aided Verifi-

cation (CAV), volume 3114 of LNCS, pages 242–254. Springer, 2004.

Xiang Fu, Tevfik Bultan, and Jianwen Su. Conversation protocols: a formalism for specifi-

cation and verification of reactive electronic services. Theoretical Computer Science, 328

(1-2):19–37, 2004.

Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of workflow man-

agement: From process modeling to workflow automation infrastructure. Distributed and

Parallel Databases, 3(2):119–152, April 1995.

Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson

Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1-2):49–104, 2004.

Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. Artificial

Intelligence, 86(2):269–357, October 1996.

HL7. HL7 reference information model, version 1.19. www.hl7.org/ Library/ data-model/

RIM/ C30119/ Graphics/ RIM billboard.pdf, 2002.

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., 2003.

ISBN 0321200683.

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Signature Series. Addison-Wesley, Boston, 2004.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming

in java. In 22nd European Conference on Object-Oriented Programming, pages 516–541,

2008.

Marc-Philippe Huget and James Odell. Representing agent interaction protocols with agent

UML. In Agent-Oriented Software Engineering V, volume 3382 of LNCS, pages 16–30.

Springer, 2005.

Michael Huhns and David M. Bridgeland. Multiagent truth maintenance. IEEE Transac-

tions on Systems, Man, and Cybernetics, 21(6):1437–1445, 1991.

78

N. R. Jennings. Commitments and conventions: The foundation of coordination in multi-

agent systems. Knowledge Engineering Review, 2(3):223–250, 1993.

Santhosh Kumaran. Model-driven enterprise. In Proceedings of the Global Enterprise Ap-

plication Integration Summit (EAI), pages 166–180, 2004.

Ashok U. Mallya and Munindar P. Singh. An algebra for commitment protocols. Journal

of Autonomous Agents and Multi-Agent Systems, 14(2):143–163, April 2007.

David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo Paolucci, Katia

Sycara, Deborah L. Mcguinness, Evren Sirin, and Naveen Srinivasan. Bringing semantics

to web services with owl-s. World Wide Web, 10(3):243–277, September 2007.

Peter McBurney and Simon Parsons. Posit spaces: a performative model of e-commerce.

In Proceedings of the 2nd International Joint Conference on Autonomous agents and

Multiagent Systems, pages 624–631, 2003.

Carlos Molina-Jimenez, Santosh Shrivastava, and Nick Cook. Implementing business conver-

sations with consistency guarantees using message-oriented middleware. In Proceedings of

the 11th IEEE International Enterprise Distributed Object Computing Conference, pages

51–62, 2007.

Timothy J. Norman and Chris Reed. Delegation and responsibility. In ATAL ’00: Pro-

ceedings of the 7th International Workshop on Intelligent Agents VII. Agent Theories

Architectures and Languages, pages 136–149, 2001.

OASIS. Oasis web services coordination version 1.1, July 2007. http://docs.oasis-

open.org/ws-tx/wscoor/2006/06.

David Lorge Parnas. Information distribution aspects of design methodology. In Proceedings

of the International Federation for Information Processing Congress, volume TA-3, pages

26–30, Amsterdam, 1971. North Holland.

Shamimabi Paurobally, Jim Cunningham, and Nicholas R. Jennings. Ensuring consistency

in the joint beliefs of interacting agents. In Proceedings of the 2nd International Joint

Conference on Autonomous Agents and Multiagent Systems, pages 662–669, 2003.

79

Henry Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of

Logic and Computation, 15(6):1009–1040, 2005.

RosettaNet. Home page, 1998. www.rosettanet.org.

Michael Rovatsos. Dynamic semantics for agent communication languages. In Proceedings

of the 6th international Joint Conference on Autonomous Agents and Multiagent Systems,

pages 1–8, 2007.

John R. Searle. The Construction of Social Reality. Free Press, New York, 1995.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice-Hall, Upper Saddle River, NJ, 1996.

Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

Munindar P. Singh. Semantical considerations on dialectical and practical commitments.

In Proceedings of the 23rd Conference on Artificial Intelligence, pages 176–181, 2008.

Munindar P. Singh. Distributed enactment of multiagent workflows: Temporal logic for

service composition. In Proceedings of the 2nd International Joint Conference on Au-

tonomous Agents and MultiAgent Systems (AAMAS), pages 907–914, New York, July

2003. ACM Press.

Munindar P. Singh. An ontology for commitments in multiagent systems: Toward a unifi-

cation of normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

Munindar P. Singh. Agent communication languages: Rethinking the principles. IEEE

Computer, 31(12):40–47, December 1998.

Munindar P. Singh, Amit K. Chopra, Nirmit Desai, and Ashok U. Mallya. Protocols for

processes: Programming in the large for open systems. ACM SIGPLAN Notices, 39(12):

73–83, December 2004.

Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. Commitment-based SOA. TR

2007-19, North Carolina State University, January 2008.

Howard Smith and Peter Fingar. Business Process Management: The Third Wave. Megan-

Kiffer Press, Tampa, 2002.

80

TWIST. Transaction workflow innovation standards team, February 2006.

http://www.twiststandards.org.

UCC-Sales. Uniform commercial code - Article 2.

http://www.law.cornell.edu/ucc/2/overview.html.

Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards a truly declarative service

flow language. In Proceedings of the 3rd International Workshop on Web Services and

Formal Methods, volume 4184 of LNCS, pages 1–23. Springer, 2006.

Wil M. P. van der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow patterns. Distributed Parallel Databases, 14(1):5–51, 2003.

W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W. Verbeek, and

P. Wohed. Life after bpel? In Formal Techniques for Computer Systems and Business

Processes, volume 3670 of LNCS, pages 35–50. Springer, 2005.

Mahadevan Venkatraman and Munindar P. Singh. Verifying compliance with commitment

protocols: Enabling open Web-based multiagent systems. Autonomous Agents and Multi-

Agent Systems, 2(3):217–236, September 1999.

Guijun Wang and S. Miller. Intelligent aggregation of purchase orders in e-procurement. In

Proceedings of the Ninth International Enterprise Distributed Object Computing Confer-

ence, pages 27–36, 2005.

Michael Winikoff. Implementing commitment-based interactions. In Proceedings of the 6th

International Joint Conference on Autonomous Agents and Multiagent Systems, pages

1–8, 2007.

Michael Winikoff, Wei Liu, and James Harland. Enhancing commitment machines. In Pro-

ceedings of the 2nd International Workshop on Declarative Agent Languages and Tech-

nologies (DALT), volume 3476 of LNAI, pages 198–220, Berlin, 2005. Springer-Verlag.

WS-CDL. Web services choreography description language version 1.0, November 2005.

www.w3.org/TR/ws-cdl-10/.

Daniel M. Yellin and Robert E. Strom. Protocol specifications and component adaptors.

ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

81

Pınar Yolum and Munindar P. Singh. Flexible protocol specification and execution: Apply-

ing event calculus planning using commitments. In Proceedings of the 1st International

Joint Conference on Autonomous Agents and MultiAgent Systems, pages 527–534. ACM

Press, July 2002.

	LIST OF TABLES
	LIST OF FIGURES
	Introduction: Commitments
	Trends in Business Processes
	Orchestration
	Choreography

	Commitment Protocols
	Commitments
	Protocol Specification
	Compliance and Flexibility

	Dissertation Topic: Commitment Alignment
	Causes of Misalignment
	Results

	Organization

	Commitment Alignment
	Commitments
	Reasoning Postulates for Commitments
	Commitment Operations
	Messages
	Commitment Strength

	Agents and Communication
	Formalizing Alignment
	Quiescence
	Integrity
	Alignment

	Handling Autonomy and Distribution
	Introduction
	Motivation
	Contributions
	Organization

	Principles of Alignment
	Formalization of the Principles
	Inform
	Two-Party Operations
	Three-Party Operations
	Notifications
	Priority

	Correctness Proof
	Discussion
	Generality of Approach
	Applications
	Multiagent Belief Consistency
	Service-Oriented Architectures

	Handling Heterogeneity
	Introduction
	Commitments
	Commitment-Based Interoperability
	Contributions and organization

	Technical Framework
	Constitutive Specifications
	Operational Semantics

	Constitutive Interoperability
	Definition
	Decision Procedure

	Discussion

	Discussion
	Commitments and Agent Communication
	Software Engineering
	Architecture and Patterns
	Software Components and Interoperability

	Future Work
	Metacommitments
	Richer Interface Language
	Tools and Middleware for Enterprises
	Pattern Language

