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Abstract

Foreign exchange (FX) markets see a transaction volume

of over $2 trillion per day. A number of standard ways of

conducting business have been developed in the FX indus-

try. However, current FX specifications are informal and

their business semantics unclear. The resulting implemen-

tations tend to be complex and compliance with the stan-

dards unverifiable. This results in potential loss of value

due to incompatible business processes and possible trades

not consummated.

This paper validates a formal, protocol-based approach

by specifying foreign exchange processes as standardized

by the TWIST consortium. The proposed approach formal-

izes a small, core set of foreign exchange interaction pro-

tocols on which the desired processes can be based. The

core protocols can be composed to yield a large variety of

possible processes. Each protocol is rigorously defined in

terms of the commitments undertaken and manipulated by

the parties involved. By contrast, traditional approaches as

used in the current TWIST specification lead to redundancy

in specification and difficulty in understanding the import

of the interactions involved. In addition, our approach dis-

covered interesting business scenarios that traditional ap-

proaches would have missed.

1 Introduction

With daily total traded cash volume to the tune of $2.3

trillion, FX markets are huge [20] (over double the US stock

market). Owing to the growth in international business and

the globalization of enterprises, FX trading has increased by

more than 30% in the last year and has more than doubled

since 2001 [3]. Electronic trades—a major factor behind
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this growth—are expected to account for more than 75% of

all global FX trades by the year 2010 [2].

To support such growth in electronic trading, it is cru-

cial to standardize key messages and workflows. TWIST

(Transaction Workflow Innovation Standards Team) Pro-

cess Innovations is a not-for-profit industry group of cor-

porate treasurers, fund managers, banks, system suppliers,

electronic trading platform and market infrastructure ven-

dors, and professional services firms. TWIST has collab-

orated with industry partners and standards organizations

such as FPL (FIX Protocol Ltd.) [9] and ISDA (Interna-

tional Swaps and Derivatives Association) [12] to define

standard good practice processes throughout the transaction

processing life cycle for wholesale FX trades [19].

Current FX standards specifications describe business

processes informally in the form of natural language de-

scriptions accompanied by sequence diagrams representing

typical scenarios. FX processes (as in other businesses)

typically have several dimensions of variation, e.g., trading

with or without credit checks and trading with or without a

trading service. Owing to their informal nature, existing FX

specifications treat each scenario as a separate case despite

commonalities, making it harder to determine the relation-

ships among such variations and whether they can be com-

bined to serve a particular need. As a result, a large num-

ber of processes are explicitly specified. Managing and—

equally importantly—understanding such large sets of stan-

dards is difficult.

Interaction-oriented approaches represent a growing

trend in business process modeling [17, 21, 10, 23]. Roset-

taNet’s Partner Interface Processes (PIPs) support billions

of dollars of business each year [15]. PIPs are interaction-

oriented, but informally specified and limited to two-party

request-response interactions.

By contrast, this paper advocates a formal approach to

modeling interactions [6, 8]. Interactions among parties are

treated as first-class modeling abstractions. The formal se-

mantics enables the reuse, refinement, and composition of

the core interaction patterns. To emphasize the contrac-



tual semantics involved in such processes, commitments

among the parties are explicitly modeled. The messages

are formalized in terms of how they affect the commitments

among the partners.

The goal in this paper is to identify a set of core interac-

tion patterns and formalize them as protocols. Such proto-

cols can be composed with each other in a variety of ways

to derive the large set of possible combinations. Thus, a

large set of processes can be engineered using a small set

of modular protocols. More importantly, new business sce-

narios are discovered while composing protocols. This ex-

ercise helps identify ambiguities and gaps in the specifica-

tion. Given the sheer scale, variety, and critical nature of FX

transactions, the impact of such an engineering approach

can be enormous.

This paper (1) validates the protocols approach [7] via

an extensive knowledge engineering exercise, and (2) de-

velops a methodology for creating protocols. We show that

such informal standards specifications (TWIST and others)

are ambiguous and incomplete. Moreover, they do not ad-

equately support modularity and composition—we found

that 28 TWIST processes can be specified in terms of 12

core protocols. Moreover, this 12 core protocols can be used

to specify novel processes not described in the specification.

Section 2 outlines TWIST processes for price discovery.

Section 3 models the commitments in price discovery and

points out some of its shortcomings. Section 4 shows how

the TWIST processes may be obtained by composing ele-

mentary protocols.

2 Price Discovery Processes

This section describes the price discovery processes

from the TWIST specification [19, Sec. 7.2]. Figure 1 de-

scribes bilateral price discovery processes 7.2.1 and 7.2.2.

A Taker is trying to discover the price of a currency in an-

other currency; the taker Maker provides the price. The

Maker indicates in the priceResponse if an execution con-

firmation is required. Here, executionConfirmation means

the quoted and accepted prices are agreed upon and the deal

is reached. If confirmation is required (7.2.2), the quoted

price is not binding to the Maker even if the Taker accepts it.

Otherwise (7.2.1), the Maker is bound to trade at the quoted

price if the Taker accepts it. In either case, the Taker may

not reveal whether the requested currency is to be bought or

sold, forcing the Taker to respond with both bid and offer

quotes, thereby revealing the spread. The Taker can choose

the direction of the trade when he accepts any of the quotes.

In addition to the messages shown in the figures, the

Taker may cancel a request by sending cancelPriceRequest,

or reject quotes by sending nothingDone. Also, the Maker
may cancel a quoted price by sending cancelPrice. A

priceResponse may also indicate a refusal to quote a price,

and an executionConfirmation may also indicate failure to

execute the deal.

Figure 1. Bilateral RFQ (7.2.1 and 7.2.2)

Figure 2 describes multilateral price discovery wherein

the Taker uses the trading service to discover the best price.

The trading service may interact with multiple Makers to

find a price for the Taker. To the Makers, this scenario is

identical to the bilateral case. To the Taker, the only dif-

ference is that it receives responses from multiple Makers.

3 Protocols for Price Discovery

This section discusses the limitations of semiformal

specifications (such as the current TWIST documents [19])

in terms of semantics, verifiability, and precision. It then

formally specifies TWIST processes 7.2.1 and 7.2.2.
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Figure 2. Multilateral RFQ (7.2.3)

3.1 Commitments in Price Discovery

A commitment cc(x, y, p, q) obligates a debtor x to a

creditor y for fulfilling the condition q if p holds [16]. Here

p is the precondition and q is the condition of the commit-

ment. When the precondition is true, the commitment is

termed a base commitment, else a conditional commitment.

Commitments can be manipulated: create, discharge, to-

Base (change to a base commitment), delegate (changing

the debtor), assign (changing the creditor), release (credi-

tor releasing the debtor from the commitment), and cancel

(debtor canceling the commitment). Consider, for example,

a scenario where a buyer and a seller are exchanging goods

for payment. A conditional commitment cc(buyer, seller,

goods, payment) denotes an obligation from the buyer to

the seller that if the goods are delivered, the buyer will pay.

In the event that the precondition goods holds, the condi-

tional commitment changes to a base commitment cc(buyer,

seller, true, payment). In the event that payment holds, the

buyer’s commitment is discharged and does not hold any-

more. Commitments do not imply temporal ordering, e.g.,

payment may happen before goods, thus, discharging the

commitment.

Protocols declaratively specify choreography of the mes-

sages exchanged among roles. They give messages a con-

tractual semantics by defining how they affect the partic-

ipants’ commitments. For example, a message signifying

shipment may cause the precondition goods, thereby caus-

ing the commitment to change to a base commitment. As

a conversation progresses, commitments among the parties

change to represent its evolving contractual state. Unless

the precise meaning of the messages in terms of how they

affect the extant commitments is specified, ambiguities may

ensue about the participants’ obligations.

Assuming that the Taker is selling currency cur1 to the

Maker, Figure 3 depicts various interpretations of the mes-

sages in process 7.2.1. The boxes denote states consisting of

the commitments holding: these are newly created commit-

ments and commitments from previous states (for brevity,

Figure 3. Possible interpretations of some
TWIST messages in terms of commitments

only the new commitments are written out in detail). The

Maker is denoted by M and the Taker by T. All the cases

result in a state in which both parties have committed to

each other for payment. However, there are subtle seman-

tic differences in terms of how the risks and benefits of the

participants evolve [22]. Also, nested commitments as in

(c), (d), (e), and (f) allow more flexibility than the unnested

commitments as in (a) and (b) (as we shall see shortly).

In (a), the Maker and the Taker commit to each other

to paying via priceResponse and priceAcceptance, respec-

tively. However, priceAcceptanceAck is superfluous in the
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sense that it does not affect the commitments. The fi-

nal state is safe: regardless of the temporal ordering, pay-

ment is guaranteed if the commitments are not violated. In

(b), priceResponse provides a nonbinding price. Whereas

priceAcceptance has the same meaning as in (a), priceAc-

ceptanceAck means that the Maker commits to the deal.

In (c), priceResponse creates a nested commitment: the

Maker commits to the Taker to committing to paying if the

Taker commits to paying. The condition and the precondi-

tions being commitments enables their delegation, assign-

ment, and so on. For instance, the parties need not make

payments themselves but may delegate the commitments to

their banks. Without nesting, such flexibility would be lost.

Precondition CC1 is caused by priceAccept, and priceAc-

ceptanceAck is superfluous as in (a). The final state is safe

as the Taker has committed and the Maker must commit to

satisfying the nested commitment. In (d), the only differ-

ence from (c) is that priceAcceptanceAck is not superfluous

and creates CC2.

In (e), the difference is that priceAcceptance causes a

counter nested commitment instead of causing the precon-

dition of CC0. Like in (c) and (a), priceAcceptanceAck is

superfluous. In (f), the only difference is that the acknowl-

edgment causes CC2—the condition of CC0.

The semantic differences among these variations high-

light the importance of specifying such processes formally

via commitments. Similar interpretations exist for TWIST

process 7.2.2. A benefit of the present formalization exer-

cise is that it helps identify the possible points of confu-

sion and disagreement, which would otherwise have been

glossed over in the documentation.

3.2 Gaps in Price Discovery

Although the typical scenarios are well-understood, an

exhaustive set of possibilities can be covered rigorously

only with formal methods. Our formalization exercise un-

covered the following cases that are not clearly addressed in

the specification. For example, does nothingDone terminate

the conversation or merely reject a specific priceResponse?

Also, can two price responses in a conversation have dif-

ferent confirmation requirements? Can the time until which

the quote is valid be different for different quotes? Even

more troublesome, what if cancelPrice and priceAccep-

tance cross? If the confirmation was not required, should

the Maker be allowed to cancel a quoted price? Maybe in

such a case, the Maker would use priceAcceptanceAck to

indicate failure, but that is not obvious.

What if the Maker confirms execution but the Taker does

not acknowledge it? Or what if the confirmation is not re-

quired and the Taker accepts a price but the Maker does not

acknowledge it? The commitments should be specified in

such a way that any unresponsive party is seen as violating

a commitment.

Answering such questions is critical; if they are not an-

swered, then it reflects gaps in the specification. Our ap-

proach may not supply the answers to these questions, but

helps uncover such questions via formal specification and

verification techniques. This is the critical value of formal

methods.

3.3 Specifying Protocols in C+

Following Desai et al. [6], this paper specifies proto-

cols in C+, which is an action description language that

gives primacy to causation [11]. C+ supports elaboration

tolerance enabling refinement of a specification merely by

adding to the existing specification even if the desired effect

is to disable some inferences. For protocols, elaboration

tolerance means that certain interactions can be added, re-

moved, or modified simply by adding axioms to an existing

specification.

A C+ specification describes a transition system consist-

ing of states and transition between them. A specification

consists of a set of causal laws. A fluent is a proposition

(true or false) whose value may change from state to state.

Actions performed by agents cause the value of fluents to

change. An inertial fluent continue to hold unless an ac-

tion changes its value. The C+ semantics ensures that all

and only the caused fluents hold at any state. The general

concepts relating to protocols are specified in C+ as an on-

tology (Listing 1), to be included with specifications of in-

dividual protocols. The operator ++ denotes logical OR

and <> denotes object inequality.

In C+, an exogenous action is one that simply happens or

not—the specification does not explain its cause. Messages

are modeled as exogenous actions (line 9). The elaboration

tolerance of C+ allows placing constraints on the order of

action occurrences. Inertial fluents (line 8) record the ef-

fects of all message occurrences (line 26). A static fluent

initial ensures that the start state of a protocol is void of any

fluents or commitments (lines 15, 21–24). Static fluents are

not inertial; in each state the value of static fluents is deter-

mined by the value of other fluents in that state.

Commitments are modeled as inertial fluents (line 12)

and their preconditions and conditions are modeled as ac-

tions (line 10) that are disabled by default (line 29). Also,

occurrences of conditions are recorded in inertial fluents

(line 11 and line 28). For simplicity, Listing 1 only de-

scribes create, discharge, cancel, and toBase (lines 13–14).

Whereas discharge and toBase are caused when the appro-

priate conditions hold, other operations are caused directly

by the actions of the parties.

Causing the conditions and preconditions of a commit-

ment causes appropriate operations: discharge and toBase,

respectively, provided the commitment is active or being
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created simultaneously (lines 31–35). If a commitment

is discharged, it is deemed fulfilled and ceases to hold

(line 37). If toBase is caused, the original commitment

ceases to exist, and a base level commitment is created, only

if the original commitment is not being discharged or can-

celed simultaneously (lines 42–45). A commitment is as-

serted if create is caused and that commitment is not being

simultaneously discharged, converted to base, being can-

celed, and the commitment does not already exist (lines 47–

48). All commitment operations are disabled by default

(lines 50–53). These laws collectively ensure correct be-

havior of commitment operations in the face of concurrent

actions.

Listing 1. Protocol ontology� �
1 :− s o r t s Role ; S l o t ; Message ; Commitment ; C o n d i t i o n .

3 :− v a r i a b l e s
4 msg1 : : Message ; p , q : : C o n d i t i o n ;
5 cc1 : : Commitment ; db1 , c r 1 : : Role .

7 :− c o n s t a n t s
8 f l ( Message ) : : i n e r t i a l F l u e n t ;
9 a c t ( Message ) : : exogenous Ac t ion ;

10 cond ( C o n d i t i o n ) : : a c t i o n ;
11 f l c o n d ( C o n d i t i o n ) : : i n e r t i a l F l u e n t ;
12 comm( Commitment ) : : i n e r t i a l F l u e n t ;
13 c r e a t e ( Commitment ) , d i s c h a r g e ( Commitment ) ,
14 toBas e ( Commitment ) , c a n c e l ( Commitment} : : a c t i o n ;
15 i n i t i a l : : s d F l u e n t .

17 :− o b j e c t s
18 T : : C o n d i t i o n ;
19 CC( Role , Role , Cond i t ion , C o n d i t i o n ) : : Commitment .

21 caus ed i n i t i a l i f i n i t i a l .
22 caus ed − i n i t i a l i f comm( cc1 ) .
23 caus ed − i n i t i a l i f f l ( msg1 ) .
24 caus ed − i n i t i a l i f f l c o n d ( p ) .

26 a c t ( msg1 ) c a u s e s f l ( msg1 ) .

28 cond ( p ) c a u s e s f l c o n d ( p ) .
29 −cond ( p ) c a u s e s −cond ( p ) .

31 caus ed d i s c h a r g e (CC( db1 , cr1 , p , q ) ) i f cond ( q ) &
32 (comm(CC( db1 , cr1 , p , q ) ) ++ c r e a t e (CC( db1 , cr1 , p , q ) ) ) .

34 caus ed toBas e (CC( db1 , cr1 , p , q ) ) i f cond ( p ) & p<>T &
35 (comm(CC( db1 , cr1 , p , q ) ) ++ c r e a t e (CC( db1 , cr1 , p , q ) ) ) .

37 d i s c h a r g e ( cc1 ) c a u s e s −comm( cc1 ) .

39 c a n c e l ( cc1 ) & −d i s c h a r g e ( cc1 ) c a u s e s −comm( cc1 ) .

41 toBas e ( cc1 ) & −d i s c h a r g e ( cc1 )
42 & −c a n c e l ( cc1 ) c a u s e s −comm( cc1 ) .

44 toBas e (CC( db1 , cr1 , p , q ) ) & −d i s c h a r g e (CC( db1 , cr1 , p , q ) )
45 & −c a n c e l ( db1 , cr1 , p , q ) ) c a u s e s comm(CC( db1 , cr1 , T , q ) ) .

47 caus ed comm( cc1 ) i f c r e a t e ( cc1 ) & −( d i s c h a r g e ( cc1 )
48 ++ toBas e ( cc1 ) ++ c a n c e l ( cc1 ) ) & −comm( cc1 ) .

50 −c r e a t e ( cc1 ) c a u s e s −c r e a t e ( cc1 ) .
51 −t oBas e ( cc1 ) c a u s e s −t oBas e ( cc1 ) .
52 −c a n c e l ( cc1 ) c a u s e s −c a n c e l ( cc1 ) .
53 −d i s c h a r g e ( cc1 ) c a u s e s −d i s c h a r g e ( cc1 ) .

� �

Messages, as exogenous actions, can happen on any tran-

sition by default. Protocols typically specify a set of restric-

tions on such messages and rules for their effect on commit-

ments. As there are commonalities in processes 7.2.1 and

7.2.2, a common bilateral price discovery protocol BPD can

be specified to cover all possibilities. Listing 2 specifies a

rule governing the priceResponse message.

The parameters are declared variables of their respec-

tive sorts. For each sort, relevant objects are declared, e.g.,

DONE and FAILED to indicate the result (res, res1, res2) in

priceResponse and also in executionConfirmation. The vari-

ables resID, reqID, and others denote unique IDs for price

response and request, respectively. Also, execConfReq can

be YES or NO indicating whether or not a confirmation is

required. The variable ttl indicates the valid time for the

quoted rate as given in rate. As the request can be for two-

way trades, the rate would typically include both a bid and

an offer rate. We show one rate for simplicity. The dir in

priceAcceptance indicates the direction: whether the Taker

is buying or selling currency cur1. The amounts involved

in the currency pair cur1 and cur2 are amt1 and amt2, re-

spectively. A disjunctive clause [\/a | f(a)] with variable a

ground to distinct objects ai is equivalent to
∨

i
f(ai).

Listing 2. Specifying a rule for price response
� �

1 n o n e x e c u t a b l e a c t ( p r i c e R e s p o n s e (m, t , res ID , reqID ,
2 re s , execConfReq , t t l , r a t e ) )
3 i f
4 −[\/ cu r1 \ / cu r2 \ / amt1 |
5 f l ( p r i c e R e q u e s t ( t ,m, reqID , cur1 , cur2 , amt1 ) ) ]
6 ++
7 (
8 ( f l ( no th ingDone ( t , m, r e s I D a ) ) ++
9 f l ( p r i c e A c c e p t a n c e ( t ,m, res IDb , d i r ) )

10 )
11 &
12 −( f l ( e x e c u t i o n C o n f i r m a t i o n (m, t , res IDb , FAILED ) ) &
13 f l ( e x e c u t i o n C o n f i r m a t i o n A c k ( t ,m, re s IDb ) )
14 )
15 )
16 ++
17 a c t ( p r i c e R e s p o n s e (m, t , res ID , reqID , re s 2 ,
18 execConfReq2 , t t l 2 , r a t e 2 ) )
19 ++
20 f l ( p r i c e R e s p o n s e (m, t , res ID , reqID , re s ,
21 execConfReq , t t l , r a t e ) )
22 where
23 re s<>r e s 2 ++ execConfReq<>execConfReq2
24 ++ t t l <>t t l 2 ++ r a t e <>r a t e 2 .

� �

The rule restricts occurrences of priceResponse if (a) no

priceRequest with a matching reqID has happened, or (b)

either a nothingDone has happened or a response has been

already accepted, and the confirmation on that acceptance

has not yet failed and any failure has not yet been acknowl-

edged, or (c) a priceResponse with the same ID but a differ-

ent result, confirmation requirement, ttl, or rate is happen-

ing simultaneously, or (d) a priceResponse with identical

parameters has happened before. Here, (b) refers to confir-

mation as a priceResponse cannot happen again after it has

been accepted, but can happen again if executionConfirma-

tion for the accepted price fails and an acknowledgment for
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this failure is sent (7.2.2, fourth, fifth, and sixth messages).

Notice how lines 20–21, for instance, force us to answer the

question of whether two priceResponses can have differ-

ent confirmation requirements and ttl. The present formal-

ization restricts a priceResponse only if one with the exact

same parameters has already happened.

Listing 3 shows a specification of the nested commit-

ment created as a result of a priceResponse. For brevity,

only the case of confirmation not required is covered. A

priceResponse creates the nested commitment (lines 1–3)

as in cases (c), (d), (e), and (f) described in Section 3.1.

However, to allow arbitrary levels of nesting, we substitute

the inner commitments with placeholder conditions that are

caused when the inner commitments are created. For exam-

ple, lines 5–8 cause the precondition of the nested condi-

tion if the Taker has accepted to buying cur1 within ttl and

commits to paying for it in the other currency. Similarly,

lines 10–12 cause the condition of the nested commitment

if the Taker has accepted to buy and the Maker commits to

paying in the currency being bought. Similar rules would

handle the case when the Taker is selling cur1.

Listing 3. Specifying a nested commitment� �
1 caus ed c r e a t e ( cc (m, t , p r i c e R e s p o n s e P r e c o n d ( r e s I D ) ,
2 p r i ceRes pons eCond ( r e s I D ) ) ) i f
3 a c t ( p r i c e R e s p o n s e (m, t , res ID , reqID ,DONE,NO, t t l , r a t e ) ) .

5 caus ed cond ( p r i c e R e s p o n s e P r e c o n d ( r e s I D ) ) i f
6 f l ( p r i c e A c c e p t a n c e ( t ,m, res ID , TakerBuys ) ) &
7 − f l ( t t l E x p i r e d ( r e s I D ) ) &
8 c r e a t e ( cc ( t , m, T , pay ( res ID , amt2 ) ) ) .

10 caus ed cond ( p r i ceRes pons eCond ( r e s I D ) ) i f
11 f l ( p r i c e A c c e p t a n c e ( t ,m, res ID , TakerBuys ) ) &
12 c r e a t e ( cc (m, t , T , pay ( res ID , amt1 ) ) ) .

� �

Messages such as priceAcceptance and priceAccep-

tanceAck would cause the creation of the inner commit-

ments depending on the interpretation adopted from Fig-

ure 3. Here, we interpret the meanings as in case (f). Also,

a higher level of nesting can be modeled by having commit-

ments as the conditions of the inner commitments. Rules

for other messages and commitments can be specified sim-

ilarly. Complete specifications are posted [1].

3.4 Querying the Specifications

The ability to query the formal specifications is cru-

cial for discovering gaps, errors, and ambiguities. Protocol

specifications can be compiled and queried via the causal

calculator tool CCALC [18]. In essence, CCALC tries to

find a model (a path in the transition system) that satisfies

the constraints of the specification, given a query. The fol-

lowing describes several important queries that can help un-

cover problems in the price discovery specifications.

Listing 4 specifies a query to see if it can ever happen that

one of the parties has a base commitment to another party

but there is no counter commitment that either currently ex-

ists or has been fulfilled. Note that unfulfilled conditional

commitments are safe, but the same does not hold for base

commitments. Thus, such a query should have no model in

any protocol related to exchanges of any kind.

In Listing 4, pi and qi are variables of sort Condition. The

label identifies this query and maxstep specifies the length

of the history to be considered for search. Line 4 premises

the query on the fact that initial holds in the starting state.

The solver is asked to find the models for the formula of

lines 5–10. A failure to find a model for this query is a nec-

essary but not a sufficient condition to ensure commitment

safety: a counter commitment may exist (resulting in a fail-

ure to find a model), but it may not be a commitment with

the right condition.

Listing 4. Querying for commitment safety� �
1 :− que ry
2 l a b e l : : 1 ;
3 maxs tep : : 0 . . i n f i n i t y ;
4 0 : i n i t i a l ;
5 maxs tep : (comm( cc ( t ,m, T , p1 ) ) &
6 −[\/ q1 | comm( cc (m, t , T , q1 ) ) ++ f l c o n d ( q1 ) ]
7 ) ++
8 (comm( cc (m, t , T , p2 ) ) &
9 −[\/ q2 | comm( cc ( t , m, T , q2 ) ) ++ f l c o n d ( q2 ) ]

10 ) .
� �

Listing 5 specifies a query to see if the protocol does

what is intended: get the deal done and end in a good state.

The query formula represents the state at the end of case (f)

with the case of Taker buying cur1. As fluents are inertial,

such state queries are easy to formulate—it does not mat-

ter when the priceAcceptance happened, as long as it has

happened in the history and the Taker has indicated to buy.

Listing 5. Querying for successful execution� �
1 :− que ry
2 l a b e l : : 2 ; maxs tep : : 0 . . i n f i n i t y ; 0 : i n i t i a l ;
3 maxs tep : comm( cc ( t ,m, T , p r i ceAccep tance Con d ( r e s I D ) ) ) &
4 comm( cc (m, t , T , pay ( res ID , amt1 ) ) ) &
5 f l ( p r i c e A c c e p t a n c e ( t ,m, res ID , TakerBuys ) ) .
� �

4 Composition of Protocols

Given a repository of modular protocol specifications for

the core FX interaction patterns, it is natural to compose

these modules to derive varieties of composite foreign ex-

change protocols as needed. The ability to reuse and com-

pose existing protocols not only simplifies and improves

engineering, but also provides new insights about the busi-

ness processes. For example, the messages in TWIST pro-

cess 7.2.3 are not new; they have already been described in

processes 7.2.1 and 7.2.2. The technique of protocol com-

position introduced by Desai et al. [7, 8] enables defining

process 7.2.3 in terms of processes 7.2.1 and 7.2.2.
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Say, a bilateral price discovery protocol (BPD ) is avail-

able. Figure 4 shows how multilateral price discovery

(MPD ) is specified by unioning two copies of BPD and

stating constraints (known as composition axioms):

Ax1. MPD.Taker = BPD1.Taker

Ax2. MPD.Maker = BPD2.Maker

Ax3. MPD.TradeEx = BPD1.Maker, BPD2.Taker

Ax4. BPD1.priceRequest.cur1 ; BPD2.priceRequest.cur1

Ax5. BPD1.priceRequest.cur2 ; BPD2.priceRequest.cur2

Ax6. BPD1.priceRequest.amt1 ; BPD2.priceRequest.amt1

Ax7. BPD2.priceResponse.execConfReq ;

BPD1.priceResponse.execConfReq

Ax8. BPD2.priceResponse.rate ; BPD1.priceResponse.rate

Figure 4. MPD by composing BPD with itself

Role definition axioms (first three in the above) define

a new role on the left in the composite protocol in terms

of the roles of the component protocols on the right. As a

result, the roles of the component protocols are renamed to

be the new role. In this example, the trading exchange role

mediates between the traditional taker and multiple makers.

Data flow axioms (next five in the above) specify that the

parameter on the right gets its value from the parameter on

the left. Thus, the message on the right cannot happen until

all the parameters it needs have been bound (i.e., the suit-

able messages have happened). In this example, data flow

axioms specify the constraint that the currency pair and the

amount for which the trading exchange requests the maker

must be identical to those received from the taker. Also,

the confirmation requirement and the rate indicated by the

maker to the trading exchange should be propagated to the

taker. Thus, the trading exchange reduces to a simple medi-

ator. A new rule per axiom is added to the theory to effect

the binding of the parameters and the temporal ordering of

the messages. The result of the composition would be the

formal specification MPD of process 7.2.3, as posted [1].

Note that the resultant protocol MPD can be added to the

protocol repository, and thus reused just like the core pro-

tocols. For example, Table 1 uses MPD (which is BPD ⊕

Specification pattern Protocols for pattern

7.2.1 BPD

7.2.2 BPD
7.2.3 BPD ⊕ BPD

7.2.4 (order) Order
7.2.5 (order, cancel) Order

7.2.6 (credit check) BPD ⊕ Credit

7.2.7 (credit check–multi) BPD ⊕ BPD ⊕ Credit
7.2.8 (price stream) ESP

7.2.9 (price stream–multi) ESP ⊕ ESP

Table 1. Mapping TWIST Sec. 7.2 processes

BPD ) with Credit to derive process 7.2.7. Additional kinds

of composition axioms [7] are not needed here.

Various interesting business scenarios are possible de-

pending on the composition axioms specified. Consider for

example that Ax8 were not specified. This would mean that

the trading exchange could act as a secondary price maker

and manipulate the bid-offer spread received from the pri-

mary maker. If Ax7 were not specified, it would mean

that the trading exchange could take risks of its own, and

not require confirmation from the taker independent of the

confirmation requirement indicated by the primary maker.

Further, if Ax6 were not specified, the trading exchange

could either fill the requested amount from multiple mak-

ers or fill multiple taker requests from a single maker deal.

Thus, composition axioms act as elegant, vivid specifica-

tions of configuration parameters. Modifying the axioms

enables us to model vastly different business requirements.

These possibilities are lost when informal specifications are

constructed. The current text-based TWIST specification is

ambiguous about these possibilities. Highlighting such pos-

sibilities is an important contribution of this paper.

Chapter 7 of the TWIST specification describes 28 inter-

actions patterns. The above methodology helps model such

patterns in terms of 12 core formally specified protocols

and their compositions. More importantly, as demonstrated

above, combinations beyond those described in the speci-

fication can be derived via novel compositions of the core

protocols. Table 1 lists some of the patterns from TWIST

Sec. 7.2, and shows how they can be modeled in terms of

protocols. Here ⊕ denotes the composition of the operand

protocols. Four protocols BPD, Order, Credit, and ESP are

enough to model nine patterns. Table 1 also points to inter-

action possibilities not covered by the TWIST specification.

For example, each of the processes 7.2.4, 7.2.5, 7.2.8, and

7.2.9 may be composed with credit checks, if needed.
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5 Discussion

The idea of modeling business processes based on con-

versation protocols is gaining interest. WS-CDL, a lan-

guage for specifying such conversations among web ser-

vices is being standardized by W3C [13]. Fu et al. specify

conversation protocols as guarded automata [10]; studies of

formal verification of conversations include [10, 14]. Zaha

et al. propose focusing on the global view of interaction

among services in an SOA to see if all the constraints of the

global interaction can be enforced locally [23]. However,

as Section 3.1 demonstrates, a contractual semantics is es-

sential to characterize business interactions unambiguously.

Other approaches to a contractual semantics, e.g., that of

Davulcu et al. [5], lack the flexibility of commitments.

Singh et al. outline a vision for commitment-oriented

modeling for engineering large-scale business processes

[17]. Winikoff provides a set of guidelines for designing

and implementing interactions based on commitments [21].

Desai et al. offer intuitions behind composition of com-

mitment protocols [7]. The above works, however, are not

sufficiently formalized to support verification as an integral

engineering activity. The present paper builds on our re-

cent formal approach for commitment protocols and their

composition in C+ [4, 6, 8]. The C+ representation can be

verified via the CCALC tool.

The above approaches, however, lack validation with re-

spect to a practical case study. This is a key distinguishing

feature of the present effort.

Conclusions. The broadest contribution of this paper

is a methodology for the specification and engineering of

business processes, applicable to domains where standard-

ized business interactions are desirable. This methodology

builds on a commitment-based representation of protocols,

which captures business relationships among autonomous

participants. The exercise of developing this representation

identifies gaps and ambiguities in designers’ understanding.

Further, the resulting formal refactoring of the specifica-

tions is not only more compact, but also enables supporting

a rich variety of business scenarios via composition, thus

expanding the expressiveness of the representations.

At first sight, formal specifications might appear to de-

mand more effort than sequence diagrams. However, for-

mal specifications substitute not only for the diagrams but

also for the informal descriptions that accompany them.

Rigor and precision are indispensable, especially when di-

verse implementations have to interoperate in critical busi-

ness processes. Further, high-level specifications can be

validated with respect to requirements, thus yielding pay-

offs in correctness and increased confidence.

Future work includes the development of graphical tools

to simplify the specification and verification of protocols

and their compositions.
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