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ABSTRACT
The overarching vision of social machines is to facilitate so-
cial processes by having computers provide administrative
support. We conceive of a social machine as a sociotech-
nical system (STS): a software-supported system in which
autonomous principals such as humans and organizations
interact to exchange information and services. Existing ap-
proaches for social machines emphasize the technical aspects
and inadequately support the meanings of social processes,
leaving them informally realized in human interactions. We
posit that a fundamental rethinking is needed to incorporate
accountability, essential for addressing the openness of the
Web and the autonomy of its principals.

We introduce Interaction-Oriented Software Engineering
(IOSE) as a paradigm expressly suited to capturing the so-
cial basis of STSs. Motivated by promoting openness and
autonomy, IOSE focuses not on implementation but on so-
cial protocols, specifying how social relationships, character-
izing the accountability of the concerned parties, progress as
they interact. Motivated by providing computational sup-
port, IOSE adopts the accountability representation to cap-
ture the meaning of a social machine’s states and transitions.

We demonstrate IOSE via examples drawn from health-
care. We reinterpret the classical software engineering (SE)
principles for the STS setting and show how IOSE is better
suited than traditional software engineering for supporting
social processes. The contribution of this paper is a new
paradigm for STSs, evaluated via conceptual analysis.

1. INTRODUCTION
We take as our point of departure the vision of a social

machine, conceived of in the early days of the Web [2], and
which has been gaining prominence. The underlying idea is
that a social machine represents a collective of humans and
computers (or algorithms) working collaboratively on some
problem [3,18,31]. In a nutshell, a social machine comprises
humans and computers; it seeks to flexibly support social
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processes that underlie an open society via administrative
assistance from computers [2, pp. 172–175].

In the recent literature, the distinguishing features of a so-
cial machine are a large numbers of users, social interaction
among them, and how the data generated by their interac-
tions helps solve the problem at hand. A typical social ma-
chine comprises Twitter and its users and serves purposes
such as earthquake notification and prediction [33], traffic
routing [27], and journalism [21].

We define a sociotechnical system (STS) as a system of
principals—social entities such as people—interacting with
each other with support from technical components for com-
puting and communication. A social machine is thus an
STS. A crucial limitation of current approaches lies in the
fact that they leave the social and technical components, in
effect, disconnected from each other. Specifically, the techni-
cal component is an implementation of some generic“lowest-
common denominator” functionality such as text messaging
or photo sharing. And, the social component is epiphenome-
nal: left purely to what the users make of their interactions.
Not surprisingly, such lack of structure interferes with inter-
operability and thus subverts the vision of social machines
interacting with one another to support complex social pro-
cesses. Just as metadata and semantics are invaluable in
linking data and services so too are they essential for sup-
porting social processes.

To construct the big picture and formulate an effective so-
lution, it helps to understand recent research on cybersecu-
rity. Whereas traditional research on cybersecurity has been
concerned with securing technical resources, such as comput-
ing and storage devices and communication networks, it has
become clear that the most insidious challenges of cyberse-
curity arise at the human and social levels. To this end, it
is important to recognize that any use of computing can be
understood as a sociotechnical system. The social aspects
of cybersecurity are integral concerns for social machines.
For example, we would want to ensure that a social machine
does not (depending upon its purpose) produce disinforma-
tion, malicious advice, or improper resource allocations.

In effect, what unites the concerns of social machines and
the social aspects of cybersecurity is accommodating open-
ness and autonomy. The problem in each case is of gover-
nance of an STS [37]. The central idea that we develop is
that of, first, placing interaction front and center and, sec-
ond, of modeling interaction in terms not of the technical
but of the social elements of an STS. This idea brings us to
the conception of accountability as a way of characterizing
“good behavior”for each of the principals involved. Account-



ability here is directed from one principal to another and
reflects the legitimate expectations the second principal has
of the first. Thus, accountability is a relationship between
two principals who are notional peers and characterizes the
social machine we are considering.

In this spirit, we introduce an alternative paradigm called
IOSE (pronounced ee-oh-zay, as in Italian) for Interaction-
Oriented Software Engineering. IOSE is expressly suited to
capturing the social basis of STSs. To promote openness and
autonomy, IOSE focuses not on implementation but on so-
cial protocols, which specify how social relationships among
the concerned principals progress through their interactions.
To sustain improved computational support, IOSE posits
that the meanings of social interactions be represented for-
mally. These meanings on the one hand characterize the
social relationships of the principals and on the other hand
the state of the social machine being specified. Although
IOSE as a paradigm is not limited to particular social re-
lationships, for concreteness, our examples consider a few
well-established types of social relationships, such as com-
mitting to perform an action, dialectically committing to
the truth of some assertion, prohibiting another from per-
forming an action such as divulging private information, and
establishing an interpersonal relationship such as friendship.

As we conceive of it, first, to specify a social machine is
to specify its intended social protocol. A protocol in our
vision specifies all and only the relevant social expectations
and the concomitant accountability of the principals partic-
ipating in a social machine. That is, any expectation that
makes a difference in a social machine must arise in the pro-
tocol. No operational detail must feature in the protocol
unless it is part of some expectation. Second, to participate
in the social machine is to enact that social protocol. In
general, each social entity that participates in a social ma-
chine may apply its own software implementation to assist
in its participation. The implementation would capture the
policies by which its principal acts in a social machine. We
can judge the correctness of such a software implementation
with respect to the protocol in which it would participate.

An important consequence of adopting a protocol as a
specification is that whereas a protocol provides a standard
of correctness, it does not enforce compliant behavior. As
an autonomous party, a principal may violate a protocol. In
general, well-designed social machines (protocols) would be
resilient against certain kinds of violations. For example, a
protocol may incorporate means such as reputation, social
censure, or economic penalties to sanction violators.

Contributions. We make the following contributions.

• Gap analysis. We analyze the foundational architectural
model at the heart of traditional SE to demonstrate its
inadequacy for supporting secure collaboration through
social machines. In a nutshell, traditional SE neither ac-
commodates autonomy nor provides a computational ba-
sis for accountability.

• IOSE as the solution. We show via conceptual analysis
(using examples that typify a wide variety of settings)
how IOSE accommodates autonomy and accountability
via social expectations and thereby is equipped to sup-
port the engineering of social machines. We reinterpret
in IOSE the classical SE principles of modularity, encap-
sulation, abstraction, and separation of concerns, yielding
guidelines for any methodology for social machines. We

evaluate prominent methodologies vis à vis these princi-
ples, showing where they fall short, thereby establishing
the novelty of IOSE.

• Benefits. We show that an explicit treatment of social
protocols and accountability promotes properties such as
openness and innovation that motivate social machines.

We demonstrate the concepts, principles, and benefits of
IOSE via a public health scenario.

Organization. This paper is organized as follows. Sec-
tion 2 explains the limitations of traditional SE. Section 3
lays out the IOSE concepts and how systems are engineered
following IOSE. Section 4 introduces the fundamental prin-
ciples of IOSE. Section 5 evaluates existing approaches vis
à vis IOSE. Section 6 relates IOSE to extant and envisioned
social machines. Section 7 summarizes our contributions
and Section 8 lays out an agenda of future research.

2. CURRENT SOFTWARE ENGINEERING
To avoid terminological confusion, we use the term SE-

machine to refer to a software machine in the sense cur-
rently used in SE. The limitations of SE arise from the fact
that it seeks to specify and deploy an SE-machine [48] that
when implemented and installed, would satisfy stakeholder
requirements. As we explain below, an SE-machine unrea-
sonably limits principal autonomy and imposes an arbitrary
standard of correctness that is disconnected from the expec-
tations of the principals.

2.1 SE-Machines
SE seeks to produce a specification of software conceptu-

alized as an SE-machine that would be a component in the
system. For illustration, let us sketch van Lamsweerde’s [43]
influential account of SE. The system as is is the system with
limitations identified. SE seeks to engineer the system to be,
whose objectives are to avoid those limitations. The idea is
to come up with a set of services, constraints, and assump-
tions under which the stated objectives would be met—some
by the software to be as part of the system to be; some via
responsibilities assigned to components in the environment,
namely, people, devices, and existing software. The software
to be is an SE-machine that maps inputs from its environ-
ment to outputs or effects in the environment by monitoring
and setting appropriate variables. Figure 1a [43] depicts the
SE-machine-environment configuration. To users in the en-
vironment, an SE-machine provides computational services
via a user interface or API. The SE-machine mediates the
interactions between its users and is thus a conceptually cen-
tral entity even when it has a distributed implementation.

More generally, given a set of requirements, SE seeks to
produce an SE-machine (i.e., software to be) specification
that along with domain assumptions satisfies the require-
ments [48]. Existing requirements-based approaches, though
differing in their details, instantiate the same concepts: SE-
machine, environment, system as is, and system to be. In
Tropos [5] and i* [46], the environment is a set of actors and
the SE-machine a lone system actor. For example, Tropos
would create a system actor for an entire healthcare system
that would capture a consistent subset of the goals of all
stakeholders. KAOS [15] would create a set of software com-
ponents with designer-assigned individual goals. The com-
ponents represent a possibly distributed SE-machine [48,
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(a) Current software engineering is machine-oriented [43]:
Given STS requirements, design an SE-machine to control
the environment. The SE-machine is conceptually monolithic,
even though it may be implemented as a distributed system.
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(b) IOSE: Given STS requirements, design a social protocol.
Principals enact the protocol via their respective SE-machines,
which communicate by messaging. A principal’s SE-machine
interfaces with the environment, exactly as depicted in Fig-
ure 1a, and helps a principal participate in a social protocol.

Figure 1: IOSE introduces social protocols as the way for specifying decentralized social machines. In doing so, it goes beyond
the machine-oriented conception of traditional SE.

p. 23]. Even though the components may be distributed, the
idea that a single entity’s perspective dominates is at odds
with autonomy in our present setting of social machines.

2.2 Limitations of Machine Orientation
Let us apply the above conceptual model of systems to

a healthcare scenario, specifically, immunization. Immu-
nization stakeholders include government agencies, insur-
ance companies, parents, physicians, healthcare practices,
schools, universities, and the subjects themselves. The stake-
holders would have requirements concerning universal cov-
erage in the target population, schedules, safety of subjects
and the general populace, exemptions, handling and admin-
istration of vaccines, record-keeping, costs, and so on.

Because of their relevance to public health, immunization
requests must be dealt with promptly. Consider a single re-
quirement, SchedWeek: physicians must schedule a parent’s
request for an immunization consultation within a week if a
slot is available. (For brevity, we disregard auxiliary require-
ments such as that a physician be able to configure a daily
schedule.) Suppose an SE-machine, MFCFS, meets Sched-
Week by implementing the first-come first-served (FCFS)
policy. In doing so, MFCFS displays implementation bias
[48] and limits its user’s (the principal’s) autonomy: a physi-
cian who wants to meet SchedWeek but via another policy
cannot do so, except by bypassing the SE-machine.

Implementation bias arises even if the SE-machine were
the most flexible correct solution for a requirement. MFCFS

is such a solution for the requirement SchedWeekFCFS: phy-
sicians must meet SchedWeek and on an FCFS basis. Here,
the SE-machine represents a procedural idealization of work
[40]: principals must respect the SE-machine, which regi-
ments their interaction, limiting autonomy and obscuring
accountability. For example, a physician may want to break
the formal SchedWeekFCFS requirement to contribute to
emergency relief efforts after a natural disaster, which con-
flicts with both SchedWeekFCFS and SchedWeek. Tradi-
tional SE forces a formal ideal based on SE-machines, which
may be overridden by users, possibly based on some infor-
mal ideal. Thus the machine may be subverted and there is
no computational support for accountability.

The above analysis for a single requirement can be gen-
eralized to the entire set of immunization-related require-
ments. Following traditional SE, one would end up with an
SE-machine that serves as the immunization software “plat-
form” that provides a set of services, which would be acces-
sible to users, possibly over the Web, depending upon the

role they play in the social machine (e.g., school or parent).
Such a platform would restrict the autonomy of its users and
would at best represent a procedural idealization of work.

It is not that traditional SE does not concern itself with
sociotechnical notions—approaches such as KAOS and Tro-
pos clearly do. Our claim is more specific: current SE spec-
ifies, not the STS, but SE-machines that would reside in an
STS. This formulation interferes with autonomy and open-
ness and thereby restricts the innovation that motivates so-
cial machines. By contrast, IOSE specifies the STS itself in
terms of the relevant social expectations.

3. IOSE CONCEPTS
In contrast to traditional SE, IOSE captures an ideal based

on social expectations, which it gives computational status
and whose progress principals can potentially track as they
interact. Principals are accountable for such expectations,
though free to violate them. Violating expectations is cru-
cial for innovation. We elaborate below.

3.1 Social Protocols
In IOSE, the social expectations that hold in a social ma-

chine represent its social state. A (social) protocol for an
STS specifies how its social state progresses as its principals
interact. Traditionally, the protocols are informal and often
take the form of a business contract or regulations that prin-
cipals would have to comply with upon adopting different
roles to conduct a social engagement. For example, North
Carolina has regulations covering immunization that sub-
jects, schools, universities, physicians, parents (or guardians
for minors), and the health commission (as a representative
of the State) must follow.

A social protocol as defined above serves three purposes.
One, it makes explicit the social expectations of the prin-
cipals in an engagement while giving them the flexibility
to follow their individual goals. For example, schools are
expected by the health commission to verify immunization,
maintain records, and transfer records to other schools upon
request. Two, the protocol identifies who is accountable to
whom for what expectation. For instance, schools are ac-
countable to the health commission for informing parents
that immunization records for their children must be pro-
vided within 30 days of joining. Parents are accountable to
the school for providing the records. Three, the protocol
frees principals to implement their SE-machines, imposing
only a standard of compliance. For example, a parent may



apply his or her own policy on whether to provide the child’s
immunization records within the 30-day window and, if so,
whether to do so on a specific day in that window. The par-
ent may in fact purposefully fail to comply. The protocol
may specify penalties in case of noncompliance.

Accordingly, a key idea of IOSE is to specify a social ma-
chine via a protocol: one or more roles, their interactions,
and the social meanings [8] of those interactions. The social
meanings are specified in terms of social expectations. Fig-
ure 1b describes how IOSE applies. Principals adopt these
roles to instantiate or participate in the desired social ma-
chine. The principals communicate with each other within
the scope of the social machine, subject to the meanings de-
fined in the protocol. As the principals interact, the state of
the social machine progresses according to the protocol.

3.2 Compliance and Innovation
Figure 2 illustrates the broad IOSE method and artifacts.

Stakeholders specify a protocol that meets their require-
ments. The protocol imposes requirements on any princi-
pal who would adopt any of its roles. Being autonomous,
principals have their own requirements, and may respect or
disregard protocol-imposed requirements. A principal’s re-
quirements would be implemented in its SE-machine.

Capturing social machine requirements as protocols is cru-
cial in avoiding implementation bias. Although a principal
may choose to acquire an off-the-shelf implementation of its
chosen roles, the principals are decoupled with respect to
their decisions on their implementations. Notice that the
violation of a protocol requirement is not necessarily a bad
thing. Sometimes proper performance requires stepping out-
side the bounds of the given contract or regulation. Such
good violations can be thought of as sources of innovation:
if effective principals repeatedly violate a social machine’s
protocol, then that is motivation to reformulate the pro-
tocol to reduce such violations. For example, a physician
may exempt a child from immunization based on the pres-
ence of a contraindication that is not on the list of official
contraindications and thus save a child’s life. Later, that
contraindication may be added to the official list.

Stakeholder Stakeholder Requirement

Principal Social Protocol

SE-Machine Principal Requirement

provides

specifies
meets

adopts role in

providesspecifies

meets

(ideally)
satisfies

Figure 2: IOSE concepts underlying a social machine.

3.3 Normative Social Expectations
We introduce social protocols that specify social relation-

ships via normative expectations such as commitments, au-
thorizations, and prohibitions [36].

To this end, we extend the commitment protocols ap-
proach, which focuses on practical commitments [45]. A

practical commitment captures an elementary social expec-
tation between a debtor and a creditor [35]. Specifically, the
commitment C(x, y, r, u) says that the debtor x commits to
the creditor y that if the antecedent r comes to hold, then
x will bring about the consequent u. The commitment rep-
resents the creditor’s expectation of the debtor (that if r,
then u); the debtor is accountable to the creditor for it.
C(x, y,>, u) represents an unconditional commitment. The
social nature of commitments owes to the fact that they
progress due to, not the principals’ internal reasoning, but
their interactions. Commitment protocols specify the mean-
ings of messages in terms of how they affect commitments.

In contrast to a practical commitment, a dialectical com-
mitment D(x, y, r, u) represents a claim made by x to y that
if r holds, then u holds; it represents y’s expectation of x
that x’s claim is true [42]. An authorization A(x, y, r, u) says
that x is authorized by y to bring about u if r holds; it rep-
resents x’s expectation of y that if r holds, then x will be
able to perform u. A prohibition P(x, y, r, u) says that x is
prohibited by y to bring about u if r holds; it represents y’s
expectation of x that if r holds, then u will not hold.

Table 1 shows a snippet of a social protocol for immuniza-
tions. It shows three messages with their meanings. Regis-
tering as a school (s) with the commission (c) means that the
school practically commits to the commission that if a par-
ent (p) registers a child (ch) with the school, then the school
will request immunizations-related information for the child.
Further, it means that the commission is authorized to au-
dit the school. A parent registering a child with a school
means that the parent commits practically to producing ei-
ther the immunization records upon request by the school
or an exemption provided by a physician (ph). An exemp-
tion amounts to a dialectical commitment of the physician
to the parent that the child has contraindications that make
immunization unsafe for the child. Finally, when a physi-
cian registers with the commission, he or she is prohibited
by the commission from giving immunization information to
agencies (ax) not on a list of (authorized) parties.

Table 1: A partial social protocol for immunization.

Message Meaning

regSch(s, c) C(s, c, regCh(p, s, ch), reqImm(s, p, ch))
∧ A(c, s,>, audit(c, s, ch))

regCh(p, s, ch) C(p, s, reqImm(s, p, ch), prodImm(p, s, ch)
∨ exemCh(ph, p, ch))

exemCh(ph, p, ch) D(ph, p,>, hasContra(ch))
regPh(ph, c) P(c, ph, reqInfo(ax, ph) ∧ ¬listed(ax),

giveImmInfo(ph, ax))

Now we can consider possible enactments of the protocol
in Table 1 in which principals adopt protocol roles and in-
teract with each other. Table 2 introduces a situation where
Alessia plays parent, Unity plays school, Health Commission
(HCom) plays commission, and Bianca plays physician.

Figure 3 depicts a potential enactment (adopting the ex-
pectations defined in Table 2) and shows how the social state
progresses with communication between the principals.

Specifically, the subject of immunization, that is, the child,
is Paul. LI (short for Lancaster Insurance) is prohibited from
receiving immunization information. Due to prior interac-
tions, the initial state (top left) includes Unity’s commit-



Table 2: Expectation instances in an enactment of Ta-
ble 1’s immunization social protocol. Here p (parent), s
(school), c (commission), ph (physician), ch (child), and ax
(party barred from immunization information) are bound to
Alessia, Unity, HCom, Bianca, Paul, and LI, respectively.

ID Commitment

e0 C(Unity,HCom, regCh(Alessia,Unity,Paul),
reqImm(Unity,Alessia,Paul))

e1 A(HCom,Unity,>, audit(HCom,Unity,Paul))
e2 P(HCom,Bianca, reqInfo(LI,Bianca) ∧ ¬listed(LI),

giveImmInfo(Bianca, LI))
e3 C(Unity,HCom,>, reqImm(Unity,Alessia,Paul))
e4 C(Alessia,Unity, reqImm(Unity,Alessia,Paul),

prodImm(Alessia,Unity,Paul)∨
exemCh(Bianca,Alessia,Paul))

e5 C(Alessia,Unity,>, prodImm(Alessia,Unity,Paul)
∨ exemCh(Bianca,Alessia,Paul))
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reqCh(...)
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Figure 3: Social state progression in an enactment.

ment to HCom to require immunization of children regis-
tered there (e0), HCom’s authorization to conduct an audit
(e1), and the prohibition on Bianca on releasing informa-
tion to LI (e2). Alessia’s registering Paul at Unity leads to
the state (top right) where Alessia is committed to Unity to
presenting Paul’s immunization information upon request
(e4) and Unity is unconditionally committed to HCom to
requesting immunization information from Alessia (that is,
e0 is detached and in its place we have e3). Unity requests
immunization information from Alessia, leading to the state
(bottom right) where e3 is discharged (not shown) and e4
is detached resulting in Alessia’s unconditional commitment
to provide either Paul’s immunization information or an ex-
emption certificate (e5). Alessia provides the information,
leading to the state (bottom left) where e5 is discharged.
Only e1 and e2 remain in this state.

In IOSE, the state of a social machine is explicit and can
be computed from the protocol if all messages are observed.
The social state does not rely upon the principals’ beliefs or

goals, or their SE-machine implementations. For example,
even if Alessia implements her SE-machine to ignore immu-
nization information requests from the school, she would be
committed by fact of her participation in the protocol as a
parent and the messages she previously exchanged.

3.4 Principals’ SE-machines
Now we turn to how a principal can implement its SE-

machine in order to participate in a social protocol. Let
us discuss some possible implementations of Unity’s and
Bianca’s SE-machines for the social protocol of Table 1. The
protocol imposes two requirements on Unity’s SE-machine:
that (1) it ask for immunization information upon registra-
tion; and (2) grant HCom access to immunization informa-
tion for audit purposes. Unity has additional requirements
besides those imposed by the protocol. For example, Unity
would like to notify its internal medical office and the child’s
tutor if a child does not have the requisite immunizations. In
addition, in case of an exemption from a physician that notes
a nonstandard contraindication, the school would like to con-
sult with the physician. Listing 1 shows an SE-machine list-
ing (in pseudocode) that meets these requirements.

Listing 1: A simplistic SE-machine for Unity.

public void uponEvent(e){

if (e == reqSch(commission))
authorizeImmAccess(database, commission))

if (e == regCh(parent, child))
if (immInfo(database, child) is incomplete)

send(reqImm(parent, child))

if (e == prodImm(parent, child, info ) )
if ( info is complete)

clearForClasses(child)
else

suspendEnrollment(child)
notifyMedicalOffice( child , ‘‘ INCOMPLETE’’)
notifyTutor ( child , ‘‘ INCOMPLETE’’)

if (e == exemCh(parent, child, physician))
if ( contraindication is valid )

clearForClasses(child)
notifyMedicalOffice( child , contraindication )

else
consult(physician, child )

}

Listing 2 shows an SE-machine for Unity that is poten-
tially noncompliant with the immunization protocol because
it may lead to the commitment to request records being vio-
lated. Instead of requesting immunization records from the
parent as is required by the protocol, this SE-machine checks
if the child is more than 14 years of age and if the parent
has confirmed that the child has had all the immunizations.

Listing 2: An alternative SE-machine for Unity.

public void uponEvent(e){
...
if (e == regCh(parent, child))

if (immInfo(database, child) is incomplete)
if (age(child)>14 and confirmsImmunization(parent))

clearForClasses(child)
...

}



Listing 3 shows a potential implementation for Alessia’s
SE-machine. In general, each principal’s SE-machine would
help that principal participate in the social machine.

Listing 3: An SE-machine for Alessia.

public void handleEventOccurences(e){
if (e == reqImm(school, child)))

info = searchPersonalDB(child, ‘‘immunization’’)
if ( info not found)

send(Apology(school, child, ‘‘ Sorry, no information’ ’ ) )
else

send(prodImm(school, child))
remindToCall(school, 2 days, ‘‘ note:immunization’’)

}

3.5 Benefits of IOSE for Social Machines
The above exercise demonstrates how, in realizing social

machines, IOSE respects principal autonomy and provides
a standard for compliance. What would previously have
been seen as the problem of specifying an immunization SE-
machine turns, under IOSE, into two independent problems
of (1) specifying an immunization social protocol, and (2)
specifying principals’ SE-machines, e.g., as demonstrated
above for Unity and Alessia. This split reflects Parnas’ con-
ception of modularity as the division of labor [28].

The aforementioned split is key to principals being able
to exercise their autonomy as they participate in an STS
engagement, as we illustrate by specifying alternative SE-
machines for Unity (Listings 1 and 2). The protocol, how-
ever, specifies what Unity as a school would be accountable
for—regardless of the SE-machine it deploys. Further, in
IOSE, the social expectations being explicit can potentially
be reasoned about at runtime, enabling us to conceive of a
progressing social state, as Figure 3 illustrates.

4. PRINCIPLES OF IOSE
We now introduce the core principles of IOSE, relating

them to the classical principles of SE—modularity, abstrac-
tion, separation of concerns, and encapsulation. Although
some intuitions behind the classical principles hold, IOSE
yields principles that contravene those of traditional SE.

4.1 Accountability Modularity: Embedding
in the Social World

In traditional SE, modularity refers to the decomposition,
typically by functionality, of a system into components. A
benefit of modularity is improving composability and taming
complexity. The decomposition of a system (Figure 1a) into
an environment and an SE-machine is a form of modularity.
However, neither the environment nor the SE-machine can
be accountable to anyone since they are not social entities.

IOSE characterizes a social machine via its roles and their
mutual social expectations and accountability. In IOSE, it
makes little sense to ask what functionality a role provides
(a question one may sensibly ask for SE-machines, such as
Web services); it makes sense though to ask though to whom
and for what is a role accountable (a question that makes
little sense for Web services). A social protocol essentially
describes how a principal playing a role would be embedded
in the social world by way of accountability.

Example. Alessia’s communication (regCh) creates a com-
mitment to Unity to provide immunization records upon re-

quest. This makes Alessia accountable to Unity for pro-
ducing the records upon request. It makes no sense to say
Alessia provides the functionality of producing immuniza-
tion records because Alessia may decide not to do so.

Benefit. Promotes autonomy by not unduly restricting
a principal’s courses of action. Promotes accountability by
providing a basis within a protocol for ensuring correctness:
a principal acquires expectations by adopting a role in a
protocol. A principal who fails to comply with its expec-
tations would be accountable to the counterparties of the
expectations. Sanctions would often be specified as part
of the protocol. For example, the protocol may require the
debtor of a violated commitment to compensate the creditor
[11]. Alternatively, a sanction might be to eject a principal
who repeatedly violates expectations—analogous to closing
a member’s account on eBay. Or, a sanction might involve
escalation to a higher authority, as in litigation. Recall from
Figure 1b that a protocol specifies a social machine and thus
should incorporate any applicable sanctions.

A principal may apply a sanction that is not specified in
the protocol. For example, Unity may avoid business with
Alessia or Alessia may bad mouth Bianca to others. Such
sanctions might themselves violate other social expectations,
for which the sanctioning principal may be accountable. For
example, Unity may be fined for treating Alessia unfairly.

4.2 Abstraction: Social Meaning as Central
Abstraction refers to the level of the concepts used in a

specification. The ideal abstraction is sufficiently high-level
to hide details and reduce complexity, yet sufficiently low-
level to support drawing the necessary conclusions. A low-
level abstraction would be a state machine or a sequence
diagram, which are operational and lack social meaning. Ab-
stractions such as goals and goal dependencies [5] are higher
level but they too lack social meaning, as we explain in Sec-
tion 4.4. In contrast, IOSE emphasizes abstractions that
capture the meanings of interactions in a social machine.

IOSE requires making all social expectations explicit in
the protocol, including stating the operational meaning of
each communication in terms of how it affects the state of a
social machine, as Figure 3 illustrates.

Example. Table 1 specifies the message meanings in an
immunization protocol.

Benefit. Promotes accountability and loose coupling. If
the meanings are explicit, the principals can potentially check
their own and each other’s compliance with respect to a so-
cial machine. Further, absent explicit meanings, interoper-
ability becomes difficult. For example, schools and parents
may come to different conclusions about what their mutual
expectations and accountabilities are. Moreover, an explicit
meaning helps keep the implementations of the various prin-
cipals separate and thus avoids hidden couplings between
their implementations.

IOSE posits that any requirement characterizing a social
machine must take the form of an expectation in the social
protocol. That is, some role must be accountable for each
requirement. IOSE forbids global constraints. Expressing
any global constraint causes two problems. First, it is not
clear who is accountable for it. Second, it presumes that the
constraint can be enforced without any principal deciding to
enforce it, since no one is accountable for it, which involves
infringing upon the autonomy of the concerned principals.



For example, specifying that prodImm must follow reqImm
leaves no one accountable for ensuring it. Is Alessia at fault
for not delaying sending prodImm or is Unity at fault for
not sending reqImm early enough? Instead, if (say) the in-
frastructure were to enforce the constraint, it could violate
either Alessia’s or Unity’s autonomy. Even an explicit en-
vironmental assumption about the infrastructure enforcing
the constraint would not capture who is accountable.

In contrast, IOSE would tackle it through the social pro-
tocol involved. We would introduce an infrastructure
provider role who would be accountable for this require-
ment. It could achieve it by controlling the infrastructure
suitably. The other roles would interact with infrastruc-
ture provider and lack privileges that conflict with the
infrastructure’s configuration. In general, an agent playing
a role that is responsible for a requirement may achieve it
by persuading other agents to act accordingly.

Example. The above ordering constraint can be expressed
as C(p, s,>, reqImm(. . .) precedes prodImm(. . .)), assuming a
suitable formalization of “precedes” [23].

Benefit. Promotes autonomy and accountability. Express-
ing a constraint to be enforced by an SE-machine hides ac-
countability. For each constraint, some principal ought to be
accountable for it, possibly as the operator of the concerned
SE-machine.

4.3 Separating Social and Technical Concerns
Separation of concerns refers to the treatment of each as-

pect of a problem independently of, yet in relation to, oth-
ers. In software engineering practice, this principle echoes
separation of policy and mechanism [20].

For social machines, we must distinguish principals from
technical entities (e.g., resources, software components, and
infrastructure) that they own, control, or access. Social ex-
pectations are meaningful only among principals, who alone
are autonomous and accountable: a patient cannot sue a
needle but can sue a nurse or a needle manufacturer.

Example. Figure 3 shows Unity’s and Alessia’s social ex-
pectations of each other. Each of them controls an SE-
machine, as in Listings 1 and 3, respectively. However, these
SE-machines are not socially visible.

Benefit. Clarifies relationships among the entities; as-
cribes accountability only to principals, who may develop
and operate technical entities.

4.4 Encapsulation: No Principal Internals
Encapsulation refers to the principle that a module reveal

no more information than is necessary to effectively use it,
in particular, that it reveal no implementation details.

In IOSE terms, encapsulation maps to the idea that a so-
cial machine cannot be specified in terms of mental abstrac-
tions such as beliefs or goals of its stakeholders or principals.
The mental abstractions are not observable. In particular,
each protocol role refers only to the social expectations re-
sulting from the communications that a principal adopting
it would be involved in, not anyone’s mental state.

Example. None of the roles of the immunization social pro-
tocol have any individual or joint goals of any sort, not even
of getting anyone immunized. However, Unity and Alessia
may have goals and their SE-machine may encode them.

Benefit. Promotes loose coupling by hiding details not
relevant to the interaction. Promotes accountability by en-
suring the social state is based exclusively on the protocol

and the same observations. This contrasts with the mental
concepts—a protocol cannot dictate what goals and beliefs
a party may adopt. The social perspective is essential for
interoperability and compliance checking [34].

4.5 STS Configurations
Figure 4 contrasts three architectural configurations to

help explain how IOSE differs from traditional SE. In each
picture, X and Y are autonomous principals and Communi-
cation refers to the infrastructure via which they interact.

Figure 4a shows the STS setting that predates IT or uses
IT only for transport, e.g., if communication is via foot mes-
senger or email. The principals are autonomous, may follow
some protocol, and have an understanding of how their ex-
pectations progress. For example, a parent may request a
physician for an immunization record and the physician may
send back the record along with an invoice. The message for-
mat may be formalized but the social meaning of the proto-
cols is not represented formally and unwritten conventions
or natural language descriptions govern the interactions.

Figure 4b shows how an SE-machine, designed following
traditional SE, sits between any two principals and helps
realize their STS engagement. The SE-machine is a technical
entity but interferes with the social interactions of X and
Y by forcing them to comply with whatever standard of
interaction is implemented in the SE-machine.

Figure 4c illustrates IOSE: unlike in Figure 4a, the pro-
tocol explicitly specifies the social interactions and omits
the technical details. Specifically, the protocol describes
how each message affects expectations among the principals
playing different roles. In a possible implementation, the
interactions of the principals may be supported via an ex-
pectations middleware that can track on behalf of a principal
the expectations concerning that principal in the social ma-
chine. The middleware is a domain-agnostic implementation
of expectations reasoning, analogous to the implementation
of HTTP in clients and servers being agnostic as to applica-
tions. In IOSE, protocols are the essential domain-specific
construct. By contrast, in 4b, the SE-machine is the essen-
tial domain-specific construct.

Note that Figures 4a and 4c support configurations where
principals interact via a “central” principal, as in engage-
ments such as business brokerages or escrow. Such engage-
ments may be necessitated by stakeholder requirements. For
example, eBay (the company) mediates interactions between
buyers and sellers on eBay’s website. However, such config-
urations differ from Figure 4b, where it is a technical and
not a social entity that mediates interactions. Recall the
requirement SchedWeekFCFS from Section 2. Capturing it
in the protocol as a commitment from physicians to par-
ents that physicians decide how to handle yields Figure 4c.
Instead, building an SE-machine for it yields Figure 4b.

5. PROMINENT SE APPROACHES
We describe and evaluate some prominent SE approaches,

especially their underlying models, with respect to the IOSE
principles. We choose approaches that are representative of
major classes of modeling approaches emphasizing require-
ments, agents, and services, respectively.

5.1 Tropos and i*
Tropos and i* emphasize requirements modeling and anal-

ysis. They model stakeholders as actors and requirements as
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Figure 4: A historical perspective on protocols and interaction. (Circles are principals; rounded rectangles are infrastruc-
ture; the rectangle is a resource. Dashed lines indicate message paths; solid lines indicate connectivity at the level of the
specification.) In interaction oriented, each principal is supported by its own SE-machine, as in Figure 1b.

goals and support relational requirements as dependencies
between actors. For example, x depends on y for its goal p
if y is able to achieve p and intends to deliver p.

• Accountability Modularity: Violated. It is not meaningful
to talk of the system actor’s, an SE-machine’s, account-
ability as there is no principal behind it.

• Explicit Social Meaning: Violated. Dependencies are in-
tended to provide high-level abstractions to capture in-
teractive relations, but refer to actors’ mental states, and
lack social meaning.

• No Global Constraints: Violated. Extensions of i* in-
troduce global temporal constraints, e.g., that one goal
should be achieved before another [22].

• Separating Social from Technical: Partially fulfilled. Al-
though i* treats social and technical actors alike, in early
requirements modeling, all actors are stakeholders; how-
ever, a system actor is introduced beginning from late
requirements modeling.

• No Principal Internals: Violated. Dependencies between
actors are rooted in the internals of the actors, such as
goals, intentions, and procedures.

KAOS, which is also goal-oriented, violates the IOSE prin-
ciples; for brevity, we omit a detailed discussion of it.

5.2 Gaia
Zambonelli et al.’s Gaia [47] is an early agent-oriented

methodology that takes an organizational approach.

• Accountability Modularity: Partially. Although Gaia has
notions such as responsibility (capturing what an agent
ought to do), that is not the same as accountability (what
others expect an agent to do).

• Explicit Social Meaning: Partially fulfilled. Gaia supports
specifying interactions among roles, but not the meanings
of communications.

• No Global Constraints: Violated. In Gaia, roles are spec-
ified via control flow abstractions, e.g., that one activity
should follow another.

• Separating Social from Technical: Partially fulfilled. Gaia
supports social constructs by modeling systems as orga-
nizations specified via roles. However, an agent in Gaia is
any object with a thread of control, e.g., a mail client—
that is, an SE-machine.

• No Principal Internals: Violated. Gaia places internal ac-
tivities in role specifications, thereby exposing an agent’s
internal decision-making.

5.3 Choreography
The earliest coordination models for Web services were

based on workflows [4]. OWL-S [26] supported specifying
workflows enriched with Semantic Web-style service anno-
tations to aid discovery and composition. However, the
notion of a workflow is a centralized one: it represents a
single locus of control even when the services involved are
distributed [39]. The notion of choreography represents an
alternative to workflow-based coordination. A choreography
specifies messages among roles and constraints on message
ordering and occurrence [29]. Choreographies may be spec-
ified using control-flow constructs, e.g. in WS-CDL [44] or
in a more declarative language such as temporal logic [25].
The benefit of specifying a choreography is that it naturally
supports multiple loci of control. Naturally, choreographies
appear to fit the paradigm of Figure 4a. The main shortcom-
ing of choreographies is that they focus on abstractions for
messages ordering and occurrence, not on high-level social
expectations as IOSE does. Somewhat surprisingly, chore-
ographies fail the principle of encapsulation.

• Accountability Modularity: Violated. Choreographies do
not specify the accountabilities of the roles involved.

• Explicit Social Meaning: Violated. Lack a representation
of social meaning.

• No Global Constraints: Violated. Global constraints on
message ordering and occurrence are central to a chore-
ography.

• Separating Social from Technical: Fulfilled. Choreogra-
phies specify interactions with reference to roles that prin-
cipals may adopt.

• No Principal Internals: Partially violated. Ideally, chore-
ographies specify constraints on messaging and nothing
else (for example, Dijkman and Dumas [16] are quite ex-
plicit about this). However, in practice, choreographies
specify the internals of principals as well. For example,
choreographies in WS-CDL may specify variables local to
a role and the role’s decisions based on that variable, e.g.,
when to end negotiation of the price of some goods [44].
In the formalization of a tax filing scenario, Mendling and



Hafner [24, p. 532] specify a tax adviser’s internal com-
pliance checks in handling a client’s annual statement,
thereby violating encapsulation.

Much of the high-level modeling work in service-oriented
computing points towards an implicit machine-oriented mind-
set, especially because these works tend to violate the prin-
ciple of encapsulation. For example, Gordijn et al. [17] pro-
duce Web services—conceptually, SE-machines—from high-
level e3-value models.

5.4 Summary of Evaluation of SE Approaches
Table 3 says that SE approaches poorly support account-

ability and therefore are inadequate as bases for social ma-
chines as understood in this paper.

Table 3: Evaluation: X, −, and × denote fulfilled, partially
fulfilled, and violated, respectively.

Principle Tropos Gaia Chor. Protocols

Accountability modularity × − × X
Explicit social meaning × − × X
No global constraints × × × X
Separating social − − X X
No principal internals × × − X

6. SOCIAL COMPUTING
Let us now discuss the relevance of IOSE to social com-

puting as characterized both by extant (mainly Web 2.0 ap-
plications) and envisioned social machines.

6.1 Extant Social Machines
Current social machines are Web 2.0 applications incorpo-

rating social relationships such as citing, following, friend-
ship, having a crush on, managing, being physician of, being
customer of, being mentor of, kinship, common affiliation,
and affinity. A social relationship maps to one or more social
expectations that help characterize a social machine. Some
social expectations, such as commitments and prohibitions,
may have wide applicability across many domains. Oth-
ers, such as friend and contact, may be limited to specific
domains. IOSE applies for any of them, the particulars of
satisfaction, violation, and sanctioning being specific to each
social machine.

IOSE helps understand conventional social machines based
on Facebook and Wikipedia via social expectations. When a
Facebook user Elisa adds Franco as a friend, Elisa authorizes
Franco to view her status. When Pietro likes Luca’s post
on Facebook, he creates an expectation among his friends
that he endorses it (a dialectical commitment). Wikipedia
describes at length who may edit pages and how disputes
must be recorded and resolved, including when disputed ar-
ticles may be locked and users blocked. Expectations in
Wikipedia may be modeled as commitments, prohibitions,
and authorizations. IOSE supports abstractions for model-
ing expectations underlying potentially arbitrary social ma-
chines. For example, we may exploit the friend relationship
to generate informal expectations for resource allocation, as
Caton et al. [7] do.

Table 4 formalizes the interactions concerning status up-
dates of a Skype-like messaging system. Here, x, y, z, and

z′ play role user, and i plays intermediary, such as the
Skype organization. The relation CON(x, y) means that y is
on x’s contact list. addContact(x,i,y) is a message from x
to i that means that y is on x’s contact list and, further, x
authorizes i to show x’s status to y if x is on y’s contact list;
acceptContact(y,i,x) is a message from y to i—meaning that
x is on y’s contact list and y authorizes i to show y’s status
to x if x has authorized i to do so. If y accepts, i infers that
i is now unconditionally authorized by x to show x’s status
to y. From this, i further infers that i is unconditionally
authorized by y to show y’s status to x. Table 4 in addition
specifies the meaning of deleting a contact, which ensures
that if either of the users involved deletes the contact, both
users’ authorizations to the intermediary are revoked.

Table 4: A partial status sharing social protocol

Message Meaning

addContact(x,i,y) CON(x, y) ∧ A(i, x,CON(y, x),
showStatus(x, y))

acceptContact(y,i,x) CON(y, x) ∧ A(i, y,A(i, x,>,
showStatus(x, y)), showStatus(y, x))

deleteContact(z,i,z′) ¬CON(z, z′) ∧ ¬A(i, z,>,
showStatus(z, z′))

It is worth considering the architecture of today’s social
machines: Is it captured by Figure 4b or by Figure 4c? Cur-
rent research treats social machines, e.g., those based on
Twitter, as centered on a social media service that users em-
ploy toward whatever purpose they may have, thus pointing
toward Figure 4b. Specifically, a Twitter social machine is
not based on explicit social expectations and as such offers
no computational support for them. Expectations and ac-
countability are determined offline in ad hoc ways. It may
be argued that a Twitter social machine encourages creativ-
ity because “anything goes.” The problem, of course, is that
“anything goes” is not a viable social constraint—including
of the kind that Berners-Lee [2] alluded to—and does not
support accountability. Notably, concerns about Twitter in
settings such as disaster response [41] are rooted in con-
cerns about accountability. IOSE addresses the challenge of
fostering creativity by providing a standard of correctness
based on expectations rather than implementation.

6.2 Social Machines as Envisioned
Let us discuss how IOSE relates to the key challenges

in realizing social machines based on Web architectures as
identified by Hendler and Berners-Lee [18].

Supporting creativity. Enabling people to act in cre-
ative ways is a major challenge. IOSE promotes creativity
by specifying social constraints, as Hendler and Berners-Lee
motivate, via expectations in social protocols. In IOSE, the
constraints may be violated, thereby fostering creativity, as
Sections 2 and 3 emphasize. For example, in the immuniza-
tion scenario, innovation arises from physicians noting new
contraindications; schools giving parents leeway in meet-
ing their requirements based on contextual information; and
public health agencies noting novel epidemiological patterns.
Such innovations may violate the current social protocol but
could be incorporated as enhancements in a revised protocol.

Reducing administrative burden. IOSE facilitates pro-
viding administrative support for social machines through



the expectations middleware representing changing social
state, as illustrated in Figure 4c. The middleware would
track expectations and compliance, thereby promoting inter-
operability and accountability. Key performance indicators
based on the satisfaction of expectations would be crucial
for effective administration.

Information accountability and trust. IOSE would
address the challenge of information accountability by mod-
eling the requisite expectations and reasoning about them
during enactment. For example, the immunization scenario
demonstrates commitments, prohibitions, and authorizations.
Such primitives can be used to capture security and privacy
requirements in a wide variety of settings. In addition, IOSE
provides a social foundation for trust based on social expec-
tations and accountability: doing so is crucial in providing
a semantic basis for trust as opposed to much of current re-
search, which concentrates on metrics but hides the mean-
ings underlying links and interactions.

Semantics and interoperability. What abstractions and
representations, especially of real-world entities, would pro-
mote interoperability to support complex social machines?
IOSE provides a possible answer through abstractions that
capture the meaning of social processes via social expec-
tations. This explicit meaning facilitates interoperability
by representing the essential social-level coupling (e.g., via
social norms and other expectations) between autonomous
principals while excluding any technical-level (i.e., based on
SE-machines) coupling between them.

7. DISCUSSION
The social machines vision is centered on the idea of achiev-

ing secure collaboration, especially when we recognize secu-
rity as integrally involving human and social aspects. Ex-
isting SE approaches are geared toward specifying an SE-
machine. Because they deemphasize interaction, these ap-
proaches, including those that employ mental abstractions
such as goals, fall short [8, 34] in capturing the essence of
social machines. These approaches treat the SE-machine as
the ideal, omitting a social notion of accountability.

In contrast, IOSE emphasizes autonomy and interaction
and specifies a social machine as a social protocol. IOSE
posits a computational notion of social state: the social ex-
pectations and concomitant accountabilities that hold among
interacting principals. The protocol specifies how the so-
cial state progresses in a social machine. In this manner,
IOSE addresses key challenges in realizing the vision of social
machines: accommodating autonomy; promoting creativity;
automating administrative tasks; and promoting account-
ability, trust, and interoperability.

A potential concern to IOSE is that social interactions are
rich and therefore cannot be computationally represented.
However, computing support must rely upon a computa-
tional representation. If the representation is about text
messages, then the resulting computation can support only
text messages, leaving all meaning as epiphenomenal. By
providing high-level abstractions, IOSE lifts computations
to the level of accountability and improves the effectiveness
and predictability of collaboration. Additional, informal in-
teractions can be placed on top of any protocol.

Modeling accountability does not alter the power struc-
tures in an organization or society: those depend primarily
upon the governance in place. Arguably, an IOSE-based

methodology would enhance transparency regarding who is
accountable and thereby promote the value of openness on
the web [6]. It is worth noting that accountability is not the
same as blame, which is akin to a sanction and subsequent
to deliberation over the relevant facts.

8. ONGOING AND FUTURE WORK
One, how can we efficiently compute with expressive social

protocol languages? To facilitate effective decision making
by a principal, how can we advise it regarding its account-
abilities to others and other’s accountabilities to it? What
are the concomitant programming abstractions and tools?
Our desired social middleware must ensure interoperability,
which is nontrivial in a decentralized setting [13].

Two, what are suitable additional formal abstractions for
social protocols, besides those we illustrate? Existing work
on normative relationships, e.g., [38], provides a good ba-
sis but additional results are needed on representing and
reasoning about a richer variety of social expectations. Al-
gorithms for dealing with qualitative degrees or measures of
satisfaction and violation is a major challenge.

Three, how can we specify social protocols that capture
stakeholder requirements? Approaches such as Colaba [10]
that capture stakeholder rationales via arguments appear
promising as do approaches such as Rodŕıguez et al.’s [32]
that mine reusable model patterns from crowds. Protos [9]
relates protocols to an abstract requirements engineering
process, although it does not represent stakeholder ratio-
nales. A combination of such techniques is what is needed.

Four, how can we take advantage of existing social com-
puting and legacy infrastructure and applications? Leading
themes include social sensing, collaborative filtering, data
mining, and social network analysis [1, 19, 30]. How can we
adapt existing techniques to derive aggregate metrics from
social expectations, e.g., to compute trust? How can we
represent and reason about expectations in information and
event stores, e.g., building on emerging specification lan-
guages for commitments and other norms [12,14].

Five, how can we support the governance of a social ma-
chine, incorporating (in addition to a social protocol) the
social machine’s stakeholder-driven evolution informed by
how they participate and the outcomes they obtain? Un-
derstanding satisfaction and violation of expectations and
their impact on a social machine is a prerequisite for sup-
porting innovation in a reasoned manner. The first prereq-
uisite is transparency so that principals can make informed
decisions about the STS’s governance. The second prerequi-
site is flexibility so that a social protocol incorporates ways,
e.g., voting procedures, by which its participating principals
could amend the protocol on the fly.

IOSE is about rethinking the principles of SE to support
collaboration through accountability to promote openness
and autonomy. Adopting IOSE leads to new foundational
research problems in Web semantics, information processing,
software engineering, and distributed computing—essential
to realizing the social machines vision as social protocols.
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