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Timetable

1 Monday 14.15–15.15

2 Tuesday 09.15–10.45
3 14.15–15.15

4 Wednesday 09.15–10.45
5 14.15–15.15

6 Thursday 09.15–10.45
7 14.15–15.15

8 Friday 09.15–10.45



Lecture topics

• Introduction: motivating examples

• Review of preliminary material

• Longitudinal data: linear Gaussian models; conditional
and marginal models; why longitudinal and time series
data are not the same thing.

• Continuous spatial variation: stationary Gaussian pro-
cesses; variogram estimation; likelihood-based estimation;
spatial prediction.

• Discrete spatial variation: joint versus conditional speci-
fication; Markov random field models.



• Spatial point patterns: exploratory analysis; Cox pro-
cesses and the link to continuous spatial variation; pair-
wise interaction processes and the link to discrete spatial
variation.

• Spatio-temporal modelling: spatial time series; spatio-
temporal point processes; case-studies



1. Motivating examples

Example 1.1 Bailrigg temperature records

Daily maximum temperatures, 1.09.1995 to 31.08.1996
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1.2 Schizophrenia clinical trial (PANSS)

• randomised clinical trial of drug therapies

• three treatments:

– haloperidol (standard)

– placebo

– risperidone (novel)

• dropout due to “inadequate response to treatment”

Treatment Number of non-dropouts at week
0 1 2 4 6 8

haloperidol 85 83 74 64 46 41
placebo 88 86 70 56 40 29
risperidone 345 340 307 276 229 199
total 518 509 451 396 315 269



Example 1.2: Schizophrenia trial data
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Example 1.3 Wheat uniformity trial

• trial conducted at Rothamsted in summer of 1910

• wheat yield recorded in each of 500 rectangular plots
(3.3m by 2.59m)

• same variety of wheat planted in all plots



Mercer and Hall wheat yields
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1.4 Cancer atlases

Raw and spatially smoothed relative risk estimates for
lip cancer in 56 Scottish counties
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1.5 Galicia biomonitoring study

Lead concentrations measured in samples of moss, map shows
locations and log-concentrations
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1.6 Retinal mosaics

Locations of two types of light-responsive cells in macaque
retina (2 animals)

 

 

 

 

Eglen and Wong (2008)



2. Review of preliminary material

Time series

• trend and residual;

• autocorrelation;

• prediction;

• analysis of Bailrigg temperature data



Analysis of Bailrigg temperature data

data<-read.table("maxtemp.data",header=F)

temperature<-data[,4]

n<-length(temperature)

day<-1:n

plot(day,temperature,type="l",cex.lab=1.5,cex.axis=1.5)

#

# plot shows strong seasonal variation,

# try simple harmonic regression

#



c1<-cos(2*pi*day/n)

s1<-sin(2*pi*day/n)

fit1<-lm(temperature~c1+s1)

lines(day,fit1$fitted.values,col="red")

#

# add first harmonic of annual frequency to check for

# non-sinusoidal pattern

#

c2<-cos(4*pi*day/n)

s2<-sin(4*pi*day/n)

fit2<-lm(temperature~c1+s1+c2+s2)

lines(day,fit2$fitted.values,col="blue")

#

# two fits look similar, but conventional F test says otherwise

#

summary(fit2)

RSS1<-sum(fit1$resid^2); RSS2<-sum(fit2$resid^2)

F<-((RSS1-RSS2)/2)/(RSS2/361)

1-pf(F,2,361)



#

# conventional residual plots

#

# residuals vs fitted values

#

plot(fit2$fitted.values,fit2$resid)

#

# residuals in time-order as scatterplot

#

plot(1:366,fit2$resid)

#

# and as line-graph

#

plot(1:366,fit2$resid,type="’l"’)



#

# examine autocorrelation properties of residuals

#

residuals<-fit2$resid

par(mfrow=c(2,2),pty="s")

for (k in 1:4) {

plot(residuals[1:(n-k)],residuals[(k+1):n],

pch=19,cex=0.5,xlab=" ",ylab=" ",main=k)

}

par(mfrow=c(1,1))

acf(residuals)

#

# exponentially decaying correlation looks reasonable

#

cor(residuals[1:(n-1)],residuals[2:n])

Xmat<-cbind(rep(1,n),c1,s1,c2,s2)

rho<-0.01*(60:80)

profile<-AR1.profile(temperature,Xmat,rho)



#

# examine results

#

plot(rho,profile$logl,type="l",ylab="L(rho)")

Lmax<-max(profile$logl)

crit.val<-0.5*qchisq(0.95,1)

lines(c(rho[1],rho[length(rho)]),rep(Lmax-crit.val,2),lty=2)

profile

#

# Exercise: how would you now re-assess the significance of

# the second harmonic term?



#

# profile log-likelihood function follows

#

AR1.profile<-function(y,X,rho) {

m<-length(rho)

logl<-rep(0,m)

n<- length(y)

hold<-outer(1:n,1:n,"-")

for (i in 1:m) {

Rmat<-rho[i]^abs(hold)

ev<-eigen(Rmat)

logdet<-sum(log(ev$values))

Rinv<-ev$vectors%*%diag(1/ev$values)%*%t(ev$vectors)

betahat<-solve(t(X)%*%Rinv%*%X)%*%t(X)%*%Rinv%*%y

residual<- y-X%*%betahat

logl[i]<- - logdet - n*log(c(residual)%*%Rinv%*%c(residual))

}

max.index<-order(logl)[m]

Rmat<-rho[max.index]^abs(hold)

ev<-eigen(Rmat)

logdet<-sum(log(ev$values))

Rinv<-ev$vectors%*%diag(1/ev$values)%*%t(ev$vectors)

betahat<-solve(t(X)%*%Rinv%*%X)%*%t(X)%*%Rinv%*%y

residual<- y-X%*%betahat

sigmahat<-sqrt(c(residual)%*%Rinv%*%c(residual)/n)

list(logl=logl,rhohat=rho[max.index],sigmahat=sigmahat,betahat=betahat)

}



Longitudinal data

• replicated time series;

• focus of interest often on mean values;

• modelling and inference can and should exploit
replication



Discrete spatial variation

• space is not like time;

• models for discrete spatial variation are tied to
number of spatial units



Real-valued continuous spatial variation

• direct specification of covariance structure;

• variogram as an exploratory and/or diagnostic tool



Spatial point processes

• the Poisson process;

• crude classification of processes/patterns as regular,
completely random or aggregated



3. Longitudinal data

• linear Gaussian models;

• conditional and marginal models;

• missing values



Correlation and why it matters

• different measurements on the same subject are
typically correlated

• and this must be recognised in the inferential process.



Estimating the mean of a time series

Y1, Y2, ..., Yt, ..., Yn Yt ∼ N(µ, σ2)

Classical result: Ȳ ± 2
√

σ2/n

But if Yt is a time series:

• E[Ȳ ] = µ

• Var{Ȳ } = (σ2/n) × {1 + n−1
∑

u 6=t Corr(Yt, Yu)}

Exercise: is the sample variance unbiased for σ2 = Var(Yt)?



Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n
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Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n
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Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n

−4 −2 0 2 4

2
4

6
8

10

time

re
sp

on
se



Correlation may or may not hurt you

Yit = α + β(t − t̄) + Zit i = 1, ...,m t = 1, ..., n

Parameter estimates and standard errors:

ignoring correlation recognising correlation
estimate standard error estimate standard error

α 5.234 0.074 5.234 0.202
β 0.493 0.026 0.493 0.011



A spaghetti plot of the PANSS data
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The variogram of a stochastic process Y (t) is

V (u) =
1

2
Var{Y (t) − Y (t − u)}

• well-defined for stationary and some non-stationary
processes

• for stationary processes,

V (u) = σ2{1 − ρ(u)}

• easier to estimate V (u) than ρ(u) when data are
unbalanced



Estimating the variogram

Data: (Yij , tij) : i = 1, ...,m; j = 1, ..., ni

rij = residual from preliminary model for mean response

• Define

vijkℓ =
1

2
(rij − rkℓ)

2

• Estimate

V̂ (u) = average of all vijiℓ such that |tij − tiℓ| ≃ u

σ̂2 = average of all vijkℓ such that i 6= k.
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Solid lines are estimates from data, horizontal lines are eye-ball
estimates (explanation later)



Where does the correlation come from?

• differences between subjects

• variation over time within subjects

• measurement error



General linear model, correlated residuals

i = subjects j = measurements within subjects

E(Yij) = xij1β1 + ... + xijpβp

Yi = Xiβ + ǫi

Y = Xβ + ǫ

• measurements from different subjects independent

• measurements from same subject typically correlated.



Parametric models for covariance structure

Three sources of random variation in a typical set of
longitudinal data:

• Random effects (variation between subjects)

– characteristics of individual subjects

– for example, intrinsically high or low responders

– influence extends to all measurements on the
subject in question.



Parametric models for covariance structure

Three sources of random variation in a typical set of
longitudinal data:

• Random effects

• Serial correlation (variation over time within subjects)

– measurements taken close together in time typically
more strongly correlated than those taken further
apart in time

– on a sufficiently small time-scale, this kind of
structure is almost inevitable



Parametric models for covariance structure

Three sources of random variation in a typical set of
longitudinal data:

• Random effects

• Serial correlation

• Measurement error

– when measurements involve delicate determinations,
duplicate measurements at same time on same
subject may show substantial variation

Diggle, Heagerty, Liang and Zeger (2002, Chapter 5)



Some simple models

• Compound symmetry

Yij − µij = Ui + Zij

Ui ∼ N(0, ν2)

Zij ∼ N(0, τ 2)

Implies that Corr(Yij , Yik) = ν2/(ν2 + τ 2), for all j 6= k



• Random intercept and slope

Yij − µij = Ui + Witij + Zij

(Ui,Wi) ∼ BVN(0,Σ)

Zij ∼ N(0, τ 2)

Often fits short sequences well, but extrapolation
dubious, for example Var(Yij) quadratic in tij



• Autoregressive

Yij − µij = α(Yi,j−1 − µi,j−1) + Zij

Yi1 − µi1 ∼ N{0, τ 2/(1 − α2)}
Zij ∼ N(0, τ 2), j = 2, 3, ...

Not a natural choice for underlying continuous-time
processes



• Stationary Gaussian process

Yij − µij = Wi(tij)

Wi(t) a continuous-time Gaussian process

E[W (t)] = 0 Var{W (t)} = σ2

Corr{W (t),W (t − u)} = ρ(u)

ρ(u) = exp(−u/φ) gives continuous-time version
of the autoregressive model



Time-varying random effects
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Time-varying random effects: continued
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• A general model

Yij − µij = d′
ijUi + Wi(tij) + Zij

Ui ∼ MVN(0,Σ)
(random effects)

dij = vector of explanatory variables for random effects

Wi(t) = continuous-time Gaussian process
(serial correlation)

Zij ∼ N(0, τ 2)
(measurement errors)

Even when all three components of variation are needed
in principle, one or two may dominate in practice



The variogram of the general model

Yij − µij = d′
ijUi + Wi(tij) + Zij

V (u) = τ 2 + σ2{1 − ρ(u)} Var(Yij) = ν2 + σ2 + τ 2
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Fitting the model: non-technical summary

• Ad hoc methods won’t do

• Likelihood-based inference is the statistical gold standard

• But be sure you know what you are estimating when
there are missing values



Maximum likelihood estimation (V0 known)

Log-likelihood for observed data y is

L(β, σ2, V0) = −0.5{nm logσ2 + m log |V0|
+σ−2(y − Xβ)′(I ⊗ V0)

−1(y − Xβ)} (1)

where WI ⊗ V0) is block-diagonal with non-zero blocks V0

Given V0, estimator for β is

β̂(V0) = (X′(I ⊗ V0)
−1X)−1X′(I ⊗ V0)

−1y, (2)

Explicit estimator for σ2 also available as

σ̂2(V0) = RSS(V0)/(nm) (3)

RSS(V0) = {y − Xβ̂(V0)}′(I ⊗ V0)
−1{y − Xβ̂(V0)}.



Maximum likelihood estimation, V0 unknown

Substitute (2) and (3) into (1) to give reduced log-likelihood

L(V0) = −0.5m[n log{RSS(V0)} + log |V0|]. (4)

Numerical maximization of (4) then gives V̂0, hence β̂ ≡ β̂(V̂0)
and σ̂2 ≡ σ̂2(V̂0).

• Dimensionality of optimisation is 1
2
n(n + 1) − 1

• Each evaluation of L(V0) requires inverse and
determinant of an n by n matrix.



A random effects model for CD4 cell counts

data<-read.table("CD4.data",header=T)

data[1:3,]

time<-data$time

CD4<-data$CD4

plot(time,CD4,pch=19,cex=0.25)

id<-data$id

uid<-unique(id)

for (i in 1:10) {

take<-(id==uid[i])

lines(time[take],CD4[take],col=i,lwd=2)

}



# Simple linear model assuming uncorrelated residuals

#

fit1<-lm(CD4~time)

summary(fit1)

#

# random intercept and slope model

#

library(nlme)

?lme

fit2<-lme(CD4~time,random=~1|id)

summary(fit2)



# make fitted value constant before sero-conversion

#

timeplus<-time*(time>0)

fit3<-lme(CD4~timeplus,random=~1|id)

summary(fit3)

tfit<-0.1*(0:50)

Xfit<-cbind(rep(1,51),tfit)

fit<-c(Xfit%*%fit3$coef$fixed)

Vmat<-fit3$varFix

Vfit<-diag(Xfit%*%Vmat%*%t(Xfit))

upper<-fit+2*sqrt(Vfit)

lower<-fit-2*sqrt(Vfit)

#

# plot fit with 95% point-wise confidence intervals

#

plot(time,CD4,pch=19,cex=0.25)

lines(c(-3,tfit),c(upper[1],upper),col="red")

lines(c(-3,tfit),c(lower[1],lower),col="red")



Missing values and dropouts

Issues concerning missing values in longitudinal data can be
addressed at two different levels:

• technical: can the statistical method I am using cope with
missing values?

• conceptual: why are the data missing? Does the fact
that an observation is missing convey partial information
about the value that would have been observed?

These same questions also arise with cross-sectional data, but
the correlation inherent to longitudinal data can sometimes be
exploited to good effect.



Rubin’s classification

• MCAR (completely at random): P(missing) depends
neither on observed nor unobserved measurements

• MAR (at random): P(missing) depends on observed
measurements, but not on unobserved measurements

• MNAR (not at random): conditional on observed
measurements, P(missing) depends on unobserved
measurements.

Rubin (1976)



Dropout

Once a subject goes missing, they never return

Example : Longitudinal clinical trial

• completely at random: patient leaves the the study
because they move house

• at random : patient leaves the study on their doctor’s
advice, based on observed measurement history

• not at random : patient misses their appointment
because they are feeling unwell.

Little (1995)



Conventional wisdom

• any sensible method of analysis valid if dropout is MCAR

• likelihood-based analysis valid if dropout is MAR

But: under MAR, target of likelihood-based inference is model
for hypothetical dropout-free population



Proof: Partition Y for each subject into observed and missing
components, Y = (Yo, Ym) and let M denote binary vector of
missingness indicators. Likelihood for observed data is

L = g(yo,m) =
∫

f(yo, ym,m)dym

=
∫

f(yo)f(ym|yo)p(m|yo, ym)dym

If p(m|yo, ym) = p(m|yo), take outside integral to give

L = p(m|yo)f(yo)

and log-likelihood contribution

logL = log p(m|yo; θ) + log f(yo|θ)

• OK to ignore first term for likelihood inference about θ

• and no loss of efficiency if θ = (θ1, θ2) such that θ1 and
θ2 parameterise p(·) and f(·), respectively.

But is inference about f(·) what you want?



Example

• Model is Yij = µ + Ui + Zij (random intercept)

• Dropout is MAR: logit(pij) = −1 − 2 × Yi,j−1
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PJD’s take on ignorability

For correlated data, dropout mechanism can be ignored only if
dropouts are completely random

In all other cases, need to:

• think carefully what are the relevant practical questions,

• fit an appropriate model for both measurement process
and dropout process

• use the model to answer the relevant questions.

Diggle, Farewell and Henderson (2007)



Schizophrenia trial data

• Data from placebo-controlled RCT of drug treatments
for schizophrenia:

– Placebo; Haloperidol (standard); Risperidone (novel)

• Y = sequence of weekly PANSS measurements

• F = dropout time

• Total m = 516 subjects, but high dropout rates:

week −1 0 1 2 4 6 8
missing 0 3 9 70 122 205 251

proportion 0.00 0.01 0.02 0.14 0.24 0.40 0.49

• Dropout rate also treatment-dependent (P > H > R)



Schizophrenia data
PANSS responses from haloperidol arm
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Dropout is not completely at random
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Schizophrenia trial data
Mean response (random effects model)
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Schizophrenia trial data: summary

• dropout is not MCAR

• MAR model apparently fits well, but:

– hard to distinguish empirically between different MAR
models;

– and we haven’t formally investigated evidence for
informative dropout

Exercise: think about how you might embed the MAR model
within an informative dropout model



Generalized linear models for longitudinal data

• random effects models

• transition models

• marginal models

Diggle, Heagerty, Liang and Zeger (2002, Chapter 7)



Random effects GLM

Responses Y1, . . . , Yn on an individual subject conditionally
independent, given unobserved vector of random effects U

U ∼ g(u) represents properties of individual subjects that
vary randomly between subjects

• E(Yj |U) = µj : h(µi) = x′
jβ + U ′α

• Var(Yj|U) = φv(µj)

• (Y1, . . . , Yn) are mutually independent conditional on U .

Likelihood inference requires evaluation of

f(y) =

∫ n
∏

j=1

f(yj|U)g(U)dU



Transition GLM

Each Yj modelled conditionally on preceding Y1, Y2, . . . , Yj−1.

• E(Yj |history) = µj

• h(µj) = x′
jβ +

∑j−1
k=1 Y

′
j−kαk

• Var(Yj|history) = φv(µj)

Construct likelihood as product of conditional distributions,
usually assuming restricted form of dependence.

Example: fk(yj|y1, ..., yj−1) = fk(yj|yj−1)

Need to condition on y1 as model does not directly specify
marginal distribution f1(y1).



Marginal GLM

Let h(·) be a link function which operates component-wise,

• E(y) = µ : h(µ) = Xβ

• Var(yi) = φv(µi)

• Corr(y) = R(α).

Not a fully specified probability model

May require constraints on variance function v(·) and
correlation matrix R(·) for valid specification

Inference for β uses generalized estimating equations

Liang and Zeger (1986)



What are we estimating?

• in marginal modelling, β measures population-averaged
effects of explanatory variables on mean response

• in transition or random effects modelling, β measures
effects of explanatory variables on mean response of an
individual subject, conditional on

– subject’s measurement history (transition model)

– subject’s own random characteristics Ui

(random effects model)



Example: Simulation of a logistic regression model,
probability of positive response from subject i at time t is pi(t),

logit{pi(t)} : α + βx(t) + γUi,

x(t) is a continuous covariate and Ui is a random effect
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Example: Effect of mother’s smoking on probability of
intra-uterine growth retardation (IUGR).

Consider a binary response Y = 1/0 to indicate whether a baby
experiences IUGR, and a covariate x to measure the mother’s
amount of smoking.

Two relevant questions:

1. public health: by how much might population incidence
of IUGR be reduced by a reduction in smoking?

2. clinical/biomedical: by how much is a baby’s risk of IUGR
reduced by a reduction in their mother’s smoking?

Question 1 is addressed by a marginal model, question 2 by a
random effects model



4. Continuous spatial variation

• stationary Gaussian processes;

• variogram estimation;

• likelihood-based estimation;

• spatial prediction.



What is this thing called geostatistics?

biostatistics = bio–statistics

geostatistics 6= geo–statistics

The core geostatistical problem: given a set of measured values
Yi at locations xi ∈ A of some spatial phenomenon S(·), what
can you say about the complete surface {S(x) : x ∈ A}?

Krige, 1951; Matérn, 1960; Mathéron, 1963; Watson, 1972;
Ripley, 1981



Recall from LDA lectures

• Stationary Gaussian process Yij − µij = Wi(tij)

Wi(t) a continuous-time Gaussian process

E[W (t)] = 0,Var{W (t)} = σ2,
Corr{W (t),W (t − u)} = ρ(u)

• Variogram of a stochastic process Y (t) is

V (u) =
1

2
Var{Y (t) − Y (t − u)}

For stationary processes,

V (u) = σ2{1 − ρ(u)}

For geostatistics, simply substitute a spatial process S(x) for
the temporal process W (t), and off you go



Model-based Geostatistics

• the application of general principles of statistical
modelling and inference to geostatistical problems

• Example: kriging as minimum mean square error
prediction under Gaussian modelling assumptions

Diggle, Moyeed and Tawn, 1998; Diggle and Ribeiro, 2007



Computation with geoR

library(geoR)

lead<-read.table("lead2000.data",header=T)

lead<-as.geodata(lead)

summary(lead)

plot(lead)

?points.geodata

points(lead,cex.min=1,cex.max=4)

points(lead,cex.min=0.5,cex.max=2)

points(lead,cex.min=0.5,cex.max=2,pt.div="quint")

loglead<-lead

loglead$data<-log(loglead$data)

points(loglead,cex.min=0.5,cex.max=2,pt.div="quint")



Notation

• Y = {Yi : i = 1, ..., n} is the measurement data

• {xi : i = 1, ..., n} is the sampling design

• A is the region of interest

• S∗ = {S(x) : x ∈ A} is the signal process

• S = {S(xi) : i = 1, ..., n}
• T = F(S∗) is the target for prediction

• [S∗, Y ] = [S∗][Y |S∗] is the geostatistical model

Typically, [S∗, Y ] can be further factorised and simplified as

[S∗, Y ] = [S][S∗|S][Y |S∗, S] = [S][S∗|S][Y |S]

Exercise: why is this helpful?



Gaussian model-based geostatistics

Model specification:

• Stationary Gaussian process S(x) : x ∈ IR2

· E[S(x)] = µ

· Cov{S(x), S(x′)} = σ2ρ(‖x − x′‖)

• Mutually independent Yi|S(·) ∼ N(S(x), τ 2)



Minimum mean square error prediction

[S, Y ] = [S][Y |S]

• T̂ = t(Y ) is a point predictor

• MSE(T̂ ) = E[(T̂ − T )2]

Theorem: MSE(T̂ ) takes its minimum value when T̂ = E(T |Y ).

Proof uses result that for any predictor T̃ ,

E[(T − T̃ )2] = EY [VarT (T |Y )] + EY {[ET (T |Y ) − T̃ ]2}

Immediate corollary is that

E[(T − T̂ )2] = EY [Var(T |Y )] ≈ Var(T |Y )



Simple and ordinary kriging

Recall Gaussian model:

• Stationary Gaussian process S(x) : x ∈ IR2

· E[S(x)] = µ

· Cov{S(x), S(x′)} = σ2ρ(‖x − x′‖)

• Mutually independent Yi|S(·) ∼ N(S(x), τ 2)



Gaussian model implies

Y ∼ MVN(µ1, σ2V )

V = R + (τ 2/σ2)I Rij = ρ(‖xi − xj‖)
Target for prediction is T = S(x), write r = (r1, ..., rn) where

ri = ρ(‖x − xi‖)

Standard results on multivariate Normal then give [T |Y ] as
multivariate Gaussian with mean and variance

T̂ = µ + r′V −1(Y − µ1) (5)

Var(T |Y ) = σ2(1 − r′V −1r). (6)

Simple kriging: µ̂ = Ȳ Ordinary kriging: µ̂ = (1′V −11)−11′V −1Y



The Matérn family of correlation functions

ρ(u) = 2κ−1(u/φ)κKκ(u/φ)

• parameters κ > 0 and φ > 0

• Kκ(·) : modified Bessel function of order κ

• κ = 0.5 gives ρ(u) = exp{−u/φ}

• κ → ∞ gives ρ(u) = exp{−(u/φ)2}

• κ and φ are not orthogonal:

– helpful re-parametrisation: α = 2φ
√
κ

– but estimation of κ is difficult
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Simple kriging: three examples

1. Varying κ (smoothness of S(x))
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2. Varying φ (range of spatial correlation
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3. Varying τ 2/σ2 (noise-to-signal ratio)
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Predicting non-linear functionals

• minimum mean square error prediction is not invariant
under non-linear transformation

• the complete answer to a prediction problem is the
predictive distribution, [T |Y ]

• Recommended strategy:

– draw repeated samples from [S∗|Y ]
(conditional simulation)

– calculate required summaries from each sample
(examples to follow)



The variogram re-visited

• the variogram of a process Y (x) is the function

V (x, x′) =
1

2
Var{Y (x) − Y (x′)}

• for the spatial Gaussian model, with u = ||x − x′||,

V (u) = τ 2 + σ2{1 − ρ(u)}

• provides a summary of the basic structural parameters
of the spatial Gaussian process
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Empirical variograms

uij = ‖xi − xj‖ vij = 0.5[y(xi) − y(xj)]
2

• the variogram cloud is a scatterplot of the points (uij , vij)

• the empirical variogram smooths the variogram cloud by
averaging within bins: u − h/2 ≤ uij < u + h/2

• for a process with non-constant mean (covariates), use
residuals r(xi) = y(xi) − µ̂(xi) to compute vij



Limitations of V̂ (u)
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Consequences:

• variogram cloud is unstable, pointwise and in overall shape

• binning addresses point 1, but not point 2



Parameter estimation using the variogram

What not to do and how to do it

• weighted least squares criterion:

W (θ) =
∑

k

nk{V̄k − V (uk; θ)}2

where θ denotes vector of covariance parameters and V̄k

is average of nk variogram ordinates vij.

• need to choose upper limit for u (arbitrary?)

• variations include:
– fitting models to the variogram cloud
– other estimators for the empirical variogram
– different proposals for weights



Comments on variogram fitting

1. Can give equally good fits for different extrapolations
at origin.
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2. Correlation between variogram points induces
smoothness.

Empirical variograms for three simulations
from the same model.
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3. Fit is sensitive to specification of the mean.

Illustration with linear trend surface:

• solid smooth line: theoretical variogram;

• dotted line: from data;

• solid line: from true residuals;

• dashed line : from estimated residuals.
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Parameter estimation: maximum likelihood

Y ∼ MVN(µ1, σ2R + τ 2I)

R is the n × n matrix with (i, j)th element ρ(uij) where
uij = ||xi − xj ||, Euclidean distance between xi and xj .

Or more generally:

µ(xi) =
k
∑

j=1

fk(xi)βk

where dk(xi) is a vector of covariates at location xi, hence

Y ∼ MVN(Dβ,σ2R + τ 2I)



Gaussian log-likelihood function:

L(β, τ, σ, φ, κ) ∝ −0.5{log |(σ2R + τ 2I)| +
(y − Dβ)′(σ2R + τ 2I)−1(y − Dβ)}.

• write ν2 = τ 2/σ2, hence σ2V = σ2(R + ν2I)

• log-likelihood function is maximised for

β̂(V ) = (D′V −1D)−1D′V −1y

σ̂2 = n−1(y − Dβ̂)′V −1(y − Dβ̂)

• substitute (β̂, σ̂2) to give reduced maximisation problem

L∗(ν2, φ, κ) ∝ −0.5{n log |σ̂2| + log |(R + ν2I)|}

• usually just consider κ in a discrete set {0.5, 1, 2, 3, ..., N}



Comments on maximum likelihood

• likelihood-based methods preferable to variogram-based
methods

• restricted maximum likelihood is widely recommended
but in PJD’s experience is sensitive to mis-specification
of the mean model.

• in spatial models, distinction between µ(x) and S(x) is
not sharp.

• composite likelihood treats contributions from pairs (Yi, Yj)
as if independent

• approximate likelihoods useful for handling large
data-sets

• examining profile likelihoods is advisable, to check for
poorly identified parameters



A word on asymptotics

Two different asymptotic regimes are:

• increasing domain

• infill

Inferential implications are:

• increasing domain ⇒ consistent parameter estimation

• infill ⇒ consistent prediction

Stein, 1999



Trans-Gaussian models

• assume Gaussian model holds after point-wise
transformation

• Box-Cox family is widely used

Y ∗
i = hλ(Yi) =

{

(Y λ
i − 1)/λ if λ 6= 0

log(Yi) if λ = 0

• bias-correction? only if point prediction is required?

Example: log-Gaussian kriging

• T (x) = exp{S(x)} T̂ (x) = exp{Ŝ(x) + v(x)/2}

• S1, ..., Sm are a sample from [S|Y ]

• Ti = exp(Si) ⇒ T1, ..., Tm are a sample from [T |Y ]

Exercise: is T (x) = exp{S(x)} really the correct target?



Swiss rainfall data



Swiss rainfall: trans-Gaussian model

Y ∗
i = hλ(Yi) =

{

(Y λ
i − 1)/λ if λ 6= 0

log(Yi) if λ = 0

For log-likelihood, write hλ = hλ(Y1), ..., hλ(Yn),

ℓ(β, θ, λ) = −1

2
{log |σ2V | + (hλ − Dβ)′{σ2V }−1(hλ − Dβ)}

+(λ − 1)
n
∑

i=1

log(Yi)



Swiss rainfall: profile log-likelihoods for λ

Left panel: κ = 0.5 Centre panel: κ = 1 Right panel: κ = 2



Swiss rainfall: MLE’s (λ = 0.5)

κ µ̂ σ̂2 φ̂ τ̂ 2 log L̂
0.5 18.36 118.82 87.97 2.48 -2464.315
1 20.13 105.06 35.79 6.92 -2462.438
2 21.36 88.58 17.73 8.72 -2464.185

Likelihood criterion favours κ = 1



Swiss rainfall: profile log-likelihoods
(λ = 0.5, κ = 1)

Left panel: σ2 Centre panel: φ Right panel: τ 2



Swiss rainfall: plug-in predictions and
prediction variances

0 50 100 150 200 250 300

−
50

0
50

10
0

15
0

20
0

25
0

X Coord

Y
 C

oo
rd

100 200 300 400

0 50 100 150 200 250 300

−
50

0
50

10
0

15
0

20
0

25
0

X Coord

Y
 C

oo
rd

20 40 60 80



Swiss rainfall: non-linear prediction
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Left-panel: plug-in prediction for proportion of total

area with rain exceeding 200 (= 20mm)

Right-panel: plug-in prediction for P(rain > 250|Y )



Computation with geoR

vario1<-variog(loglead,uvec=5000*(0:30))

plot(vario1)

plot(vario1,pch=19,col="red")

?variog

vario2<-variog(loglead,uvec=5000*(0:30),trend="1st")

plot(vario2)

names(vario1)

plot(vario1$u,vario1$v,type="l",xlim=c(0,150000),ylim=c(0,0.25),

xlab="u",ylab="V(u)")

lines(vario2$u,vario2$v,col="red")



loglead2<-loglead

loglead2$coords<-loglead$coords/100000

mlfit<-likfit(loglead2,ini.cov.pars=c(0.25,1),

cov.model="matern",kappa=0.5)

region<-matrix(c(4.5,46.0,7.0,46.0,7.0,48.5,4.5,48.5),4,2,T)

grid<-pred_grid(region,by=0.1)

KC<-krige.control(obj.model=mlfit)

OC<-output.control(n.predictive=100)

set.seed(24367)

predictions<-krige.conv(geodata=loglead2,locations=grid,

borders=region,krige=KC,output=OC)



image(predictions)

points(loglead2,add=T)

coast<-read.table("galicia_coastline.txt",header=T)

lines(coast[,1],coast[,2])

par(mfrow=c(1,2))

hist(loglead2$data,main="data")

predict.max<-NULL

for (sim in 1:100) {

predict.max<-c(predict.max,max(predictions$simulations[,sim]))

}

hist(predict.max,main="predicted maximum")



Bayesian inference: basics

Model specification

[Y, S, θ] = [θ][S|θ][Y |S, θ]
Parameter estimation

• integration gives

[Y, θ] =

∫

[Y, S, θ]dS

• Bayes’ Theorem gives posterior distribution

[θ|Y ] = [Y |θ][θ]/[Y ]

• where [Y ] =
∫

[Y |θ][θ]dθ



Prediction: S → S∗

• expand model specification to

[Y, S∗, θ] = [θ][S|θ][Y |S, θ][S∗|S, θ]

• plug-in predictive distribution is

[S∗|Y, θ̂]

• Bayesian predictive distribution is

[S∗|Y ] =

∫

[S∗|Y, θ][θ|Y ]dθ

• for any target T = t(S∗), required predictive distribution
[T |Y ] follows



Notes

• likelihood function is central to both classical and Bayesian
inference

• Bayesian prediction is a weighted average of plug-in
predictions, with different plug-in values of θ
weighted according to their conditional probabilities
given the observed data.

• Bayesian prediction is usually more conservative
than plug-in prediction



Bayesian computation

1. Evaluating the integral which defines [S∗|Y ] is often
difficult

2. Markov Chain Monte Carlo methods are widely used

3. but for geostatistical problems, reliable implementation
of MCMC is not straightforward (no natural Markovian
structure)

4. INLA is a serious competitor to MCMC
(Rue, Martino and Chopin, 2009)

5. for the Gaussian model, direct simulation is available



Gaussian models: known (σ2, φ)

Y ∼ N(Dβ,σ2R(φ))

• choose conjugate prior β ∼ N
(

mβ ; σ2Vβ

)

• posterior for β is
[

β|Y, σ2, φ
] ∼ N

(

β̂, σ2 Vβ̂

)

β̂ = (V −1
β + D′R−1D)−1(V −1

β mβ + D′R−1y)

Vβ̂ = σ2 (V −1
β + D′R−1D)−1)

• predictive distribution for S∗ is

p(S∗|Y, σ2, φ) =

∫

p(S∗|Y, β, σ2, φ) p(β|Y, σ2, φ) dβ.



Notes

• mean and variance of predictive distribution can be
written explicitly (but not given here)

• predictive mean compromises between prior and weighted
average of Y

• predictive variance has three components:

– a priori variance,

– minus information in data

– plus uncertainty in β

• limiting case Vβ → ∞ corresponds to ordinary kriging.



Gaussian models: unknown (σ2, φ)

Convenient choice of prior is:

[β|σ2, φ] ∼ N
(

mb, σ
2Vb

)

[σ2|φ] ∼ χ2
ScI

(

nσ, S
2
σ

)

[φ] ∼ arbitrary

• results in explicit expression for [β, σ2|Y, φ] and
computable expression for [φ|Y ] whose form depends on
choice of prior for φ

• in practice, use arbitrary discrete prior for φ and combine
posteriors conditional on φ by weighted averaging



Algorithm 1:

1. choose lower and upper bounds for φ, assign a discrete
uniform prior for φ over the chosen range

2. compute posterior [φ|Y ] on this discrete support set

3. sample φ from posterior, [φ|Y ]

4. attach sampled value of φ to conditional posterior,
[β, σ2|y, φ], and sample (β, σ2) from this distribution

5. repeat steps (3) and (4) as many times as required,
to generate a sample from the joint posterior, [β, σ2, φ|Y ]

Predictive distribution [S∗|Y, φ] is tractable, hence write

p(S∗|Y ) =

∫

p(S∗|Y, φ) p(φ|y) dφ = Eφ|Y [p(S∗|Y, φ)]



Algorithm 2:

1. discretise [φ|Y ], as in Algorithm 1.

2. compute posterior [φ|Y ]

3. sample φ from posterior [φ|Y ]

4. attach sampled value of φ to [S∗|y, φ] and sample from
this to obtain realisations from [S∗|Y ]

5. repeat steps (3) and (4) as required

Note: Extends immediately to multivariate φ
(but may be computationally awkward)



Swiss rainfall

Priors/posteriors for φ (left) and ν2 (right)
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Swiss rainfall

Mean (left-panel) and variance (right-panel) of

predictive distribution
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Swiss rainfall: posterior means and
95% credible intervals

parameter estimate 95% interval
β 144.35 [53.08, 224.28]
σ2 13662.15 [8713.18, 27116.35]
φ 49.97 [30, 82.5]
ν2 0.03 [0, 0.05]



Swiss rainfall: non-linear prediction
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Left-panel: Bayesian (solid) and plug-in (dashed) prediction for
proportion of total area with rainfall exceeding 200 (= 20mm)

Right-panel: Bayesian predictive map of P (rainfall > 250|Y )



Computation with geoR

MC<-model.control()

?model.control

PC<-prior.control(beta.prior="flat",sigmasq.prior="sc.inv.chisq",

sigmasq=0.2,df.sigmasq=4,phi.discrete=0.1*(1:5),

tausq.rel.prior="uniform",tausq.rel.discrete=0.1*(0:3))

OC<-output.control(n.posterior=100,n.predictive=100,

simulations.predictive=T,signal=T,moments=F)

set.seed(24367)

results.bayes<-krige.bayes(geodata=loglead2,locations=grid,

borders=region,model=MC,prior=PC,output=OC)



names(results.bayes)

posterior.bayes<-results.bayes$posterior

names(posterior.bayes)

posterior.sample<-posterior.bayes$sample

par.names<-names(posterior.sample)

par(mfrow=c(2,2))

for (i in 1:4) {

hist(posterior.sample[,i],xlab=par.names[i],main=" ")

}

par(mfrow=c(1,1))

plot(posterior.sample[,2],posterior.sample[,3],

xlab=par.names[2],ylab=par.names[3])



par(mfrow=c(1,1),pty="s")

predictions.bayes<-results.bayes$predictive

image(unique(grid[,1]),unique(grid[,2]),

matrix(predictions.bayes$mean.simulations,26,26))

points(loglead2,add=T); lines(coast[,1],coast[,2])

par(mfrow=c(1,2))

predict.max<-NULL

for (sim in 1:100) {

predict.max<-c(predict.max,max(predictions$simulations[,sim]))

}

hist(predict.max,xlab="predictive distribution of maximum",

main="plug-in",breaks=0.1*(16:28))

predict.bayes.max<-NULL

for (sim in 1:100) {

predict.bayes.max<-c(predict.bayes.max,

max(predictions.bayes$simulations[,sim]))

}

hist(predict.bayes.max,xlab="predictive distribution of maximum",

main="Bayesian",breaks=0.1*(16:28))



Generalized linear geostatistical model (GLGM)

• Latent spatial process

S(x) ∼ SGP{0, σ2, ρ(u))}
ρ(u) = exp(−|u|/φ)

• Linear predictor

η(x) = d(x)′β + S(x)

• Link function

E[Yi] = µi = h{η(xi)}

• Conditional distribution for Yi : i = 1, ..., n

Yi|S(·) ∼ f(y; η) mutually independent



GLGM

• usually just a single realisation is available, in contrast
with GLMM for longitudinal data analysis

• GLGM approach is most appealing when there is a
natural sampling mechanism, for example Poisson model
for counts or logistic-linear models for proportions

• transformed Gaussian models may be more useful for
non-Gaussian continuous responses

• theoretical variograms can be derived but are less natural
as summary statistics than in Gaussian case

• but empirical variograms of GLM residuals can still be
useful for exploratory analysis



The Loa loa prediction problem

Ground-truth survey data

• random sample of subjects in each of a number of villages

• blood-samples test positive/negative for Loa loa

Environmental data (satellite images)

• measured on regular grid to cover region of interest

• elevation, green-ness of vegetation

Objectives

• predict local prevalence throughout study-region (Cameroon)

• compute local exceedance probabilities,

P(prevalence > 0.2|data)



Loa loa: a generalised linear model

• Latent spatial process

S(x) ∼ SGP{0, σ2, ρ(u))}
ρ(u) = exp(−|u|/φ)

• Linear predictor

d(x) = environmental variables at location x

η(x) = d(x)′β + S(x)

p(x) = log[η(x)/{1 − η(x)}]

• Error distribution

Yi|S(·) ∼ Bin{ni, p(xi)}



Schematic representation of Loa loa model
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The modelling strategy

• use relationship between environmental variables and ground-
truth prevalence to construct preliminary predictions via
logistic regression

• use local deviations from regression model to estimate
smooth residual spatial variation

• Bayesian paradigm for quantification of uncertainty in
resulting model-based predictions



logit prevalence vs elevation
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logit prevalence vs MAX = max NDVI
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Comparing non-spatial and spatial predictions
in Cameroon

Non-spatial
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Probabilistic prediction in Cameroon



Next Steps

How can we improve the precision of our predictive inferences?



RAPLOA

• A cheaper alternative to parasitological sampling:

– have you ever experienced eye-worm?

– did it look like this photograph?

– did it go away within a week?

• RAPLOA data to be collected:

– in sample of villages previously surveyed
(to calibrate parasitology vs RAPLOA estimates)

– in villages not previously surveyed
(to reduce local uncertainty)

• Calibration model needed to reconcile parasitological and
RAPLOA prevalence estimates





RAPLOA calibration
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RAPLOA calibration (ctd)

Fit linear functional relationship on logit scale and back-transform
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Bivariate geostatistical models

Y1i = S1(x1i) + Z1i : i = 1, ..., n1

Y2j = S2(x2j) + Z2j : j = 1, ..., n2

• OK to assume Z1i, Z2j independent?

• how to model correlation between S1(x) and S2(x
′)?

• common sampling locations?

• symmetric or asymmetric association?

Crainiceanu, Diggle and Rowlingson (2008)
Fanshawe and Diggle (2011)



5. Discrete spatial variation

• Joint vs conditional specification

• Markov random field models



Conditional specification of joint distributions

Theorem

f(y)

f(z)
=

n
∏

i=1

fi(yi|y1, ..., yi−1, zi+1, ..., zn)

fi(zi|y1, ..., yi−1, zi+1, ..., zn)

Outline of proof

Case n = 3 sufficient to show the idea, as follows

f(y1, y2, y3) = f(y3|y1, y2) × f(y2, y1)

=
f(y3|y1, y2)

f(z3|y1, y2)
× f(z3|y1, y2) × f(y1, y2)

=
f(y3|y1, y2)

f(z3|y1, y2)
× f(y1, y2, z3)



Same argument gives

f(y1, y2, z3) = f(y2|y1, z3) × f(y1, z3)

=
f(y2|y1, z3)

f(z2|y1, z3)
× f(y1, z2, z3)

and so on, to give required result.



Exercise 2.2.2 (from preliminary material) re-visited

Yi = α(Yi−1 + Yi+1) + Zt : Zi ∼ N(0, τ 2)

Full conditional of Yi depends on Yi−2, Yi−1, Yi+1 and Yi+2.

• Re-write model in vector-matrix notation as

Y = AY + Z ⇔ Y = (I − A)−1Z

where (using n = 5 for illustration)

A =













0 α 0 0 0
α 0 α 0 0
0 α 0 α 0
0 0 α 0 α
0 0 0 α 0













• Then, Y ∼ MVN(0, τ 2(I − A)−2)



• Standard result from graphical modelling is that non-zero
elements in Var(Y )−1 identify conditional dependencies
(eg Whittaker, 1990, Proposition 5.7.3)

• Straightforward matrix algebra gives

(I−A)2 =













1 + α2 −2α α2 0 0
−2α 1 + 2α2 −2α α2 0
α2 −2α 1 + 2α2 −2α α2

0 α2 −2α 1 + 2α2 −2α
0 0 α2 −2α 1 + α2













• Third row of (I − A)2 gives required result
(no non-zero elements)



Hammersley-Clifford

Previous result says joint distribution of Y is determined by
full conditionals provided full conditionals are self-consistent

General result: for any A ⊂ {1, 2, ..., n},
write YA = {yi : i ∈ A}, then

f(y) = exp







∑

A⊂{1,2,...,n}

h(YA)







(1)

Definitions:

1) for any set of full conditionals fi(yi|{yj : j 6= i}), index j is
a neighbour of i if fi(·) depends on yj

2) a clique is a set of mutual neighbours.



Theorem (Hammersley-Clifford)

Expression (1) gives valid specification of f(y) if and only if:

1. h(YA) = 0 for all non-cliques A

2. f(y) integrable (so can scale to
∫

f(y) = 1)

3. if f(yj) > 0 for all j ∈ A, then f(YA) > 0

Besag, 1974



Markov random field models

• Random vector Y = (Y1, ..., Yn)

• joint distribution [Y ] fully specified by full conditionals,

[Yi|{Yj : j 6= i}] : i = 1, ..., n

• Neighbourhood of i is N (i) ⊂ {1, 2, ..., n}

• MRF: [Yi|{Yj : j 6= i}] = [Yi|Yj : j ∈ N (i)] : i = 1, ..., n



Examples of MRF models

1. Binary Yi: auto-logistic model

pi = P(Yi = 1|{Yj : j 6= i}) logitpi = α + β
∑

j∈N (i)

Yj

Higher-order models defined naturally on regular lattices:

     

     

     

     

     

1

1

1

1

2

2 2

2

3

3

3

3

4

4

4

4

4

4

4

4

logitpi = α +
m
∑

k=1

βk

∑

j∈Nk(i)

Yj



2. Count Yi: auto-Poisson model

µi = E[Yi|{Yj : j 6= i}] logµi = α + β
∑

j∈N (i)

Yj

Restriction: the auto-Poisson model only defines a proper
distribution when β ≤ 0



3. Hierarchical model with latent Gaussian MRF

A better way to model spatial count data:

• latent Gaussian MRF S = (S1, ..., Sn)

• conditionally independent Yi|S ∼ Poiss(α + βSi)

Even better if α is replaced by αi = d′
iθ for vector of

spatial explanatory variables di

Besag, York and Mollié, 1991



Computational appeal of MRF models

• Gaussian MRF, mean µ, precision matrix Ω = {Var(Y )}−1,
log-likelihood is

L = 0.5n log |Ω| − 0.5(Y − µ)′Ω(Y − µ)

Markov structure implies that Ω is sparse

• Gaussian or non-Gaussian MRF, Gibbs sampler for MCMC
follows directly from model specification through
full conditionals,

[Yi|{Yj : j 6= i}] : i = 1, ..., n



Limitations of MRF models for spatial data

• models are just multivariate probability distributions

– parameterised in a way that has a spatial
interpretation

– but specific to a fixed set of locations x1, ..., xn

• neighbourhood specification can be problematic

– natural hierarchy of models on regular lattices

– not so for irregular lattices

– and arguably un-natural for spatially aggregated data,

Yi =

∫

Ai

Y (x)dx



6. Spatial point patterns

• exploratory analysis

• Cox processes and the link to continuous
spatial variation

• pairwise interaction processes and the link to
discrete spatial variation.



Notation

• spatial point process: countable set of events xi ∈ IR2

• N(A) = #(xi ∈ A) for spatial region A ⊂ IR2

• stationary if properties invariant under translation

• isotropic if properties invariant under rotation

• orderly if no multiple coincident events



The Poisson Process

1. N(A) ∼ Poiss(µ(A)), where

µ(A) =

∫

A

λ(x)dx

2. given N(A) = n, events xi ∈ A iid, pdf ∝ λ(x)

Complete spatial randomness: λ(x) = λ

Properties

1. N(A) and N(B) independent when A and B disjoint

2. Var{N(A)}/E[N(A)] = 1, for all A

3. distance from an arbitrary point to the nearest event:

F (x) = 1 − exp(−πλx2) : x > 0



Partial realisation of a Poisson process
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Point process intensities

Def 6.1. The (first-order) intensity function of a spatial point
process is

λ(x) = lim
|dx|→0

{

E[N(dx)]

|dx|

}

Def 6.2. The second-order intensity function of a spatial point
process is

λ2(x, y) = lim
|dx|→0
|dy|→0

{

E[N(dx)N(dy)]

|dx||dy|

}

Def 6.3. The covariance density of a spatial point process is

γ(x, y) = λ2(x, y) − λ(x)λ(y).



What if process is stationary and isotropic?

(i) λ(x) ≡ λ = E[N(A)]/|A|, (constant, for all A).

(ii) λ2(x, y) ≡ λ2(‖x − y‖) (depends only on distance)

(iii) γ(u) = λ2(u) − λ2.



The K-function

Def 6.4 The reduced second moment function of a stationary,
isotropic spatial point process is

K(s) = 2πλ−2

∫ s

0

λ2(r)rdr.

Theorem 6.1. For a stationary, isotropic, orderly process:

K(s) = λ−1E[number of further events within distance s of an
arbitrary event]

• gives a tangible interpretation of K(s)

• suggests a method of estimating K(s) from data

Theorem 6.2. For a homogeneous, planar Poisson process,

K(s) = πs2



Three pictures
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Completely random
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Aggregated
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A useful property of the K-function

Def 6.5. A random thinning, P ′, of a point process P , is a point
process whose events are a sub-set of the events of P generated
by retaining or deleting the events of P in a series of mutually
independent Bernoulli trials.

Theorem 6.3. K(s) is invariant to random thinning.

Proof. Exercise (use Theorem 6.1)

Implication: the interpretation of an estimated K-function is
robust to incomplete ascertainment of events, provided the
incompleteness is spatially neutral.



Estimating the K-function

Data: xi ∈ A : i = 1, . . . , n

Estimation of λ

λ̂ = n/|A|
Estimation of K(s)

λK(s) = E[number of further events within distance s
of an arbitrary event]

1. Define E(s) = λK(s).

2. Let dij be the distance between the events xi and xj.

3. Define

Ẽ(s) = n−1
n
∑

i=1

∑

j 6=i

I(dij ≤ s)



4. The estimator Ẽ(s) is negatively biased because we do
not observe events outside A

5. Introduce weights,

wij = reciprocal of proportion of circumference of circle,
centre xi and radius dij, which is contained in A.

•

•

 

•

•



6. An edge-corrected estimator for E(s) is

Ê(s) = n−1
n
∑

i=1

∑

j 6=i

wijI(dij ≤ s).

where I(·) is the indicator function.

7. Since K(s) = E(s)/λ, define

K̂(s) = Ê(s)/λ̂

= n−2|A|
n
∑

i=1

∑

j 6=i

wijI(dij ≤ s)



Estimates K̂(s) for three simulated patterns
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Bivariate K-functions

λj : j = 1, 2 denotes intensity of type j events.

λjKij(s) = expected number of further type j events within
distance s of an arbitrary type i event

• if type j events are a homogeneous Poisson process, then

Kjj(s) = πs2

• if type 1 and type 2 events are independent processes,
then

K12(s) = πs2

• if type 1 and type 2 events are a random labelling of a
univariate process with K-function K(s), then

K11(s) = K12(s) = K22(s) = K(s)



An example: displaced amacrine cells in rabbit retina

• type 1 events transmit information to the brain when a
light goes on

• type 2 events transmit information to the brain when a
light goes off

• interest is in discriminating between two developmental
hypotheses:

1. on and off cells are initially generated in separate
layers which later fuse to form the mature retina

2. on and off cells are initially undifferentiated in a
single layer and acquire their distinct functionality
at a later stage
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Solid/open circles respectively identify on/off cells



Second-order properties:

t

D
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)
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Functions plotted are D̂(t) = K̂(t) − πt2 as follows:

– – – : on cells; · · · · · : off cells; — — — : all cells;
——— : bivariate.

The parabola −πt2 is also shown as a solid line.



Computation with splancs

#

# Exploratory analysis of amacrine cell data

#

library(splancs)

on<-scan("amacrines_on.data")

length(on)

on<-matrix(on,152,2,T)

off<-scan("amacrines_off.data")

length(off)

off<-matrix(off,142,2,T)

a<-1060/662

poly<-matrix(c(0,0,a,0,a,1,0,1),4,2,T)

par(pty="s")

polymap(poly)

pointmap(on,add=T,pch=19,col="red")

pointmap(off,add=T,pch=19,col="blue")



?khat

s<-0.005*(0:51)

k.on<-khat(on,poly,s)

k.off<-khat(off,poly,s)

plot(s,k.on-pi*s*s,type="l",col="red",ylim=c(-0.015,0.005))

lines(s,k.off-pi*s*s,col="blue")

k.cross<-k12hat(on,off,poly,s)

lines(s,k.cross-pi*s*s)



Three pictures re-visited

Completely random
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A Poisson process

• N(A) ∼ Poiss(λ|A|)

• conditional on N(A) = n, events xi : i = 1, ..., n are
independent random sample from uniform distribution
on A



Aggregated

•

•

•
•

• •••

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

••

••

•

•
•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•
•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



A Cox process

• Λ(x) a non-negative-valued spatial stochastic process

• conditional on Λ(x) = λ(x), process is inhomogeneous
Poisson

Cox, 1955

Picture: Λ(x) =
∑

g(x − Xi)

• Xi : i = 1, 2, ... homogenous Poisson process

• g(·) = bivariate Gaussian density, N(0, σ2I)

Note: this process can also be interpreted as a Poisson cluster
process (Bartlett, 1964).
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An inhibitory process

• events X = {x1, ..., xn} in spatial region A

• LR(X ) = likelihood ratio for X wrt Poisson process of
unit intensity

• non-negative-valued interaction function h(u) : u ≥ 0

LR(X ) ∝ βn
∏

j 6=i

h(||xi − xj ||)

Picture:

h(u) =

{

0 : u < δ
1 : u ≥ δ



Poisson processes

• completely defined by their intensity function λ(x)

– N(A) ∼ Poiss
(∫

A
λ(x)dx

)

– conditional on N(A) = n, events xi : i = 1, ..., n are
independent random sample from distribution with
pdf f(x) ∝ λ(x)

• Log-likelihood function,

L(θ) =

n
∑

i=1

log λ(xi; θ)−
∫

A

λ(x; θ)dx

• independence property often unrealistic, but may be
useful approximation



Cox processes

• a Cox process is an inhomogeneous Poisson process with
stochastic intensity Λ(x)

• useful class of models for environmentally driven
processes

• even more useful when environmental covariates can
explain part of the variation in Λ(x)

Cox (1955)

Link to continuous spatial variation (geostatistics)

Cox process: [Λ][X|Λ]
Geostatistical model: [S][Y |S]



Cox processes: moment properties

Assume Λ(x) stationary with mean λ and covariance
function γ(u), then:

• λ = intensity

• γ(u) = covariance density

K(s) = πs2 + 2πλ−2

∫ s

0

γ(u)udu



Cox processes: model-fitting

• likelihood generally intractable (except by Monte Carlo)

• ad hoc estimation by matching theoretical and empirical
second moments (not entirely satisfactory)

∫ s

0

w(u){K̂(u) − K(u; θ)}2du

Møller and Waagepetersen, 2004



Pairwise interaction point processes (PIPP’s)

• defined by their likelihood ratio wrt Poisson process

• useful for modelling inhibitory interactions between events

• can be derived as continuous limit of Poisson MRF
models on a regular lattice

Besag, Milne and Zachary (1982)

• problematic for modelling attractive interactions
(recall similar reservation wrt auto-Poisson model)



PIPP’s: formulation

• events X = {x1, ..., xn} in spatial region A

• LR(X ) = likelihood ratio for X wrt Poisson process of
unit intensity

• non-negative-valued interaction function h(u) : u ≥ 0

LR(X ) ∝ βn
∏

j 6=i

h(||xi − xj ||)

• process well-defined if h(u) ≤ 1 for all u

• h(u) = 1 for all u gives homogeneous Poisson process



PIPP’s: model-fitting

Conditional intensity at x, given X = {x1, ..., xn} in A − {x},

λ(x|X ) = β
n
∏

i=1

h(||xi − x||)

• MCMC scheme for simulating realisations operates by
alternating between:

– adding event according to pdf f(x) ∝ λ(x|X )

– deleting event at random

• likelihood evaluation requires Monte Carlo methods



• pseudo-likelihood:

– treats λc(·) as if unconditional
intensity, hence

L(θ) =
n
∑

i=1

log λc(xi|X − {xi}; θ) −
∫

A

λ(x|X ; θ)dx

– gives good starting values for Monte Carlo inference

Link to discrete spatial variation (Markov random fields)

MRF: [Yi|{Yj : j 6= i}] : i = 1, ..., n
PIPP: λ(x|X : x ∈ IR2



Computation using spatstat

#

# fitting a pairwise interaction point process to the

#amacrine "on" cells

#

library(spatstat)

library(splancs)

#

xy.on<-matrix(scan("amacrines_on.data"),152,2,T)

xy<-xy.on

?ppp

xy.ppp<-ppp(xy[,1],xy[,2],xrange=c(0,1060),yrange=c(0,662))



?ppm

?quadscheme

Q<-quadscheme(xy.ppp,nd=c(80,56))

#

# 80 by 56 quadrature grid gives approximate convergence of

# non-parametric estimate

#

stuff<-ppm(Q,interaction=PairPiece(r=20*(1:10)),

correction="Ripley")

h.nonparam.on<-c(0,0.0589,0.2857,0.6922,0.9524,1.0087,

0.9468,0.9230,0.8553,0.8415)

u.nonparam<-20*(0:9)+10

plot(u.nonparam,h.nonparam.on,type="l",xlab="r",ylab="h(u)")



PIPP’s: Monte Carlo likelihood

Likelihood function for PIPP with parameter θ and data X can
always be written as

ℓ(θ) = a(θ)LR(X , θ)

Circumvent intractability of normalising constant a(θ)
as follows:

• Write

a(θ)−1 =

∫

LR(X , θ)dX

=

∫

LR(X , θ)× a(θ0)

a(θ0)
× LR(X , θ0)

LR(X , θ0)
dX



• Define r(X , θ, θ0) = LR(X , θ)/LR(X , θ0), then

a(θ)−1 = a(θ0)
−1

∫

r(X , θ, θ0)ℓ(X , θ0)dX

= a(θ0)
−1Eθ0

[r(X , θ, θ0)]

• Since θ0 is arbitrary, it follows that for any value θ0, the
MLE θ̂ maximises

L(θ) = logLR(X , θ)− log Eθ0
[r(X , θ, θ0)]

which in turn can be approximated by

L∗(θ) = logLR(X , θ)− log







s−1
s

∑

j=1

r(Xj, θ, θ0)]







,

where Xj : j = 1, ..., s are simulated with θ = θ0



Algorithm

1. Pick starting value θ0 (eg maximum pseudo-likelihood
estimate), and number of simulations s

2. Maximise resulting L∗(θ) to give θ = θ̃

3. Set θ0 = θ̃, increase s and repeat



Example: displaced amacrine cells

Biology (as of 2004)

Diggle, Eglen and Troy (2006)



Bivariate pairwise interaction point processes

Bivariate data

X1 = {x1i : i = 1, ..., n1} X2 = {x2i : i = 1, ..., n2}
Bivariate pairwise interaction model

f(X1, X2) ∝ P11P22P12

P11 =

n1
∏

i=2

i−1
∏

j=1

h11(||x1i − x1j||)

P22 =

n2
∏

i=2

i−1
∏

j=1

h22(||x2i − x2j||)

P12 =

n1
∏

i=1

n2
∏

j=1

h12(||x1i − x2j||)



Parametric family of interaction functions

h(u; θ) =

{

0 : u ≤ δ
1 − exp[−{(u − δ)/φ}α] : u > δ

Special cases

• Simple inhibition: φ → 0

• Independence: h12(u) = 1

• Functional independence: h12(·) simple inhibitory

Marginal behaviour depends on h12(·)



 

 

δ12 = 0 (independence)



 

 

δ12 = 50 (mutually inhibitory)



Parametric analysis of the amacrine cells

Non-parametric estimates of h(u) obtained by fitting
step-function model using maximum pseudo-likelihood
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Fitted univariate models

h(u; θ) =

{

0 : u ≤ δ
1 − exp[−{(u − δ)/φ}α] : u > δ

• Likelihood ratio statistic for common
marginal parameters: D = 1.36 ∼ χ2

2 p = 0.507

• Pooled Monte Carlo MLE’s

Parameter Estimate Std Error Correlation
φ 49.08 2.51
α 2.92 0.25 -0.06

Treat δ as known (physical size of cells)



Goodness-of-fit
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A bivariate model for the amacrine cells

Likelihood ratio tests

• statistical independence vs functional independence

D = 5.30 ∼ χ2
1 p = 0.021

• functional independence vs general bivariate

D = 0.30 ∼ χ2
2 p = 0.861

• 95% confidence interval for δ12

2.3 ≤ δ12 < 5.0



Goodness-of-fit

• K̂ij(s) estimate from data

• K̄ij(s) mean of estimates from 99 simulations of model

• three test statistics:

Tij =
150
∑

s=1

[{K̂ij(s) − K̄i(s)}/s]2

Results

T11, p = 0.11 (on cells)
T22, p = 0.05 (off cells)
T12, p = 0.25 (dependence)

Bonferroni: p ≤ 0.15



 

 

fitted model, δ12 = 5 (functional independence)
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7. Spatio-temporal modelling

• spatial time series

• spatio-temporal point processes

• case-studies



Classification of spatio-temporal data?

Some possiblities:

• geostatistical: (xi, ti, Yi) : i = 1, ..., n; (xi, ti) ∈ IR2 × IR+

• regular lattice: Yijt : i = 1, ..., n; j = 1, ...,m; t = 1, ..., T
(spatially discrete)

• spatial time series: (xi, Yit) : i = 1, ..., n; t = 1, ..., T
(spatially discrete or spatially continuous)

• point process: (xi, ti) : i = 1, ..., n

• various hybrids



Spatial time series

(Yit, xi) : i = 1, ..., n; t = 1, ..., T

• spatially discrete sample from a spatially continuous
phenomenon

• a common situation in practice, e.g. environmental
monitoring networks

• implicit assumption that data are spatially sparse but
temporally dense



Spatial time series: model specification

1. Direct specification: Cov{Y (x, t), Y (x′, t′)} = σ2ρ(u, v),
u = ||x − x′||, v = |t − t′|

(a) separable: ρ(u, v) = ρs(u)ρt(v)

(b) non-separable: ρ(u, v) 6= ρs(u)ρt(v)

2. Conditioning on the past:

• Yt = {Yt(x) : x ∈ IR2}
• model Yt conditional on {Ys : s < t}

Natural starting point for modelling,

[Yt|{Ys : s < t}] = [Yt|Yt−1]

Separability implies that [Yt(x)|Yt−1] = [Yt(x)|Yt−1(x)]



The PAMPER study

Goal: Construct predictions of black smoke levels, S(x, t),
over thirty-year period

Available data:

• monitored black smoke levels from spatially discrete
monitoring network



• monitors are only active intermittently



Modelling strategy

Two-stage approach:

1. model temporal variation in spatially averaged
black smoke levels

2. model residual spatio-temporal variation about
temporal average



Model for temporal variation in spatially
averaged black smoke

Yt = spatially averaged black smoke at time t

Model needs to take account of:

• long-term (decreasing) trend

• seasonal variation

Classical regression model for Yt is

logPt = α + βt +
r
∑

k=1

{Ak cos(kωt) + Bk sin(kωt)} + Zt

Case r = 1 gives pure sinusoid, r = 22, 3, ... allows non-sinusoidal
seasonal patterns
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Model for temporal variation in spatially
averaged black smoke (continued)

Classical model fails because seasonal pattern is stochastic.

Dynamic model:

logPt = α + βt + {At cos(ωt) + Bt sin(ωt)} + Zt

At = At−1 + ǫt

Bt = Bt−1 + δt

Allows locations and magnitudes of seasonal peaks and troughs
to vary between years
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Model for spatio-temporal variation in
residuals

Yt(x) = log P̂t + S(x, t) + Zt(x)

• S(x, t) = spatio-temporally correlated (?) random field

• Zt(x) = mutually independent measurement errors



Constructed covariates

• where does the spatio-temporal correlation come from?

• look for possible surrogate measures which:

– are available at all locations and times

– correlate well with measured black smoke
concentrations at monitored locations



Monitored black smoke vs domestic
chimney density

Important interactions with:
• non-residential/residential land-use (solid/open circles)
• clean-air act (staggered implementation)
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PAMPER analysis: discussion points

1. temporal takes precedence over spatial

2. construction of spatially continuous explanatory
variables assists prediction of spatio-temporally
continuous exposure surface

3. and may eliminate residual spatio-temporal
correlation



Spatio-temporal point processes:
Cox process models

1. Unobserved stochastic intensity,

Λ(x, t) = non-negative-valued stochastic process

2. Conditional on Λ(x, t) = λ(x, t), ∀x, t, point process is
Poisson with intensity λ(x, t)

Useful class of models for:

• environmentally driven processes

• aggregated point patterns

• empirical prediction



Real-time disease surveillance

Data: daily calls to NHS direct

Model: log-Gaussian Cox process

Λ(x, t) = λ0(x)µ0(t) exp{S(x, t)}
S(x, t) ∼ SGP{−0.5σ2, σ2, ρ(u, v)}

Goal: real-time mapping of P{S(x, t) > c} for pre-specified c

Diggle, Rowlingson and Su (2005)

Animation at www.lancaster.ac.uk/staff/diggle



Spatio-temporal point processes:
conditional intensity models

Ht = complete history (locations and times of events)

λ(x, t|Ht) = conditional intensity (hazard) for new
event at location x, time t, given history Ht

Useful class of models for:

• processes involving interactions amongst events

• aggregated or regular point patterns

• mechanistic modelling

2001 foot-and-mouth epidemic in Cumbria:

www.lancaster.ac.uk/staff/diggle



Likelihood analysis

Log-likelihood for data (xi, ti) ∈ A × [0, T ] : i = 1, ..., n,
with t1 < t2 < ... < tn, is

L(θ) =
n
∑

i=1

log λ(xi, ti|Hti) −
∫ T

0

∫

A

λ(x, t|Ht)dxdt

Rarely tractable, but Monte Carlo methods available
in special cases (eg log-Gaussian Cox processes)



Partial likelihood analysis

Data (xi, ti) ∈ A × [0, T ] : i = 1, ..., n; t1 < t2 < ... < tn

Condition on locations xi and times ti
Derive log-likelihood for observed ordering 1, 2, ..., n

Need to distinguish between:

• Spatially discrete set of potential points

• Spatially continuous set of potential points



Partial Likelihood Formulation

• Condition on the locations xi and times ti

• Ri: the risk set at time ti

• Partial log-likelihood Lp(θ) =
∑n

i=1 log pi

• Spatially discrete → Ri = {i, i + 1, ..., n}

pi =
λ(xi, ti|Hti)

∑

j≥i λ(xj, ti|Hti)

• Spatially continuous → Ri ≡ A

pi =
λ(xi, ti|Hti)

∫

A
λ(x, ti|Hti)dx



The 2001 UK FMD epidemic

• First confirmed case 20 February 2001

• Approximately 140,000 at-risk farms in the UK
(cattle and/or sheep)

• Outbreaks in 44 counties, epidemic particularly severe
in Cumbria and Devon

• Last confirmed case 30 September 2001

• Consequences included:

– more than 6 million animals slaughtered (4 million
for disease control, 2 million for “welfare reasons”)

– estimated direct cost £8 billion



Progress of the epidemic in Cumbria

• Animation



Progress of the epidemic in Cumbria

• Animation

• predominant pattern is of transmission between
near-neighbouring farms

• but also some apparently spontaneous outbreaks?

• qualitatively similar pattern in Devon



Questions

• What factors affected the spread of the epidemic?

• How effective were control strategies in limiting the spread?



A model for the FMD epidemic
(after Keeling et al, 2001)

Notation

• Ht = history of process up to t−

• λ(x, t|Ht) = conditional intensity

• λjk(t) = rate of transmission from farm j to farm k

Farm-specific covariates for farm i

• n1i = number of cows

• n2i = number of sheep



Transmission kernel

f(u) = exp{−(u/φ)κ} + ρ

At-risk indicator for transmission of infection

Ijk(t) = 1 if farm k not infected and not slaughtered by time
t, and farm j infected and not slaughtered by time t

Reporting delay

Simplest assumption is that reporting date is infection date
plus τ (latent period of disease plus reporting delay if any)



Resulting statistical model

λjk(t) = λ0(t)AjBkf(||xj − xk||)Ijk(t)

λ0(t) = arbitrary

Aj = (αn1j + n2j)

Bk = (βn1k + n2k)



Fitting the model

• rate of infection for farm k at time t is

λk(t) =
∑

j

λjk(t)

• partial likelihood contribution from ith case is

pi = λi(ti)/
∑

k

λk(ti)

• fix τ = 5, κ = 0.5, estimate remaining parameters by
maximising partial likelihood



FMD results

Common parameter values in Cumbria and Devon?

Likelihood ratio test: χ2
4 = 2.98

Parameter estimates

(α̂, β̂, φ̂, ρ̂) = (4.92, 30.68, 0.39, 9.9 × 10−5)

But note that likelihood ratio test rejects ρ = 0.

Standard errors

Available via usual asymptotic argument, but numerical
estimates of information matrix unreliable?



Model extensions

• sub-linear dependence of infectivity/susceptibility on stock
size

Aj = (αnγ
1j + nγ

2j)

Bk = (βnγ
1k + nγ

2k)

Likelihood ratio test: χ2
1 = 334.9.

• other farm-specific covariates, eg zj = area of farm j

Aj = (αnγ
1j + nγ

2j) exp(z
′
jδ)

and similarly for Bk.

Likelihood ratio test: χ2
1 = 3.26



Fitted transmission kernel
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Qualitatively similar to estimate given in Keeling et al (2001)



Estimating λ0(t)

λij(t) = λ0(t)ρij(t)

ρ(t) =
∑

i

∑

j

Iij(t)ρij(t)

Λ(t) =

∫ t

0

λ0(u)du

Nelson-Aalen estimator

Λ̂0(t) =

∫ t

0

ρ̂(u)−1dN(u) =
∑

i:ti≤t

ρ̂(ti)
−1



Nelson-Aalen estimates for Cumbria (solid line)
and Devon (dotted line)
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Nesting colonies of common terns



Islets 23 and 84
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Approximation of elevation surface

Approximate elevation surface z(x) for islet 84 based on all
available elevations and assuming piece-wise constant z(x) within
Voronoi tiles
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Conditional intensity

λ(x, t|Ht) = λ0(t) exp{βz(x)}g(x, ti|Ht)

• g(x, t|Ht) models dependence on locations of earlier nests

• βz(x) models log-linear effect of elevation



Two models for g(·)

• M1:

g(x, t|Ht) = h

(

min
j:tj<t

(||xj − x||)
)

• M2:

g(x, t|Ht) =
∏

j:tj<t

h(||x − xj||)

h(u) =

{

0, u ≤ d0

1 + θ exp
{

− (u−d0)
c

φ

}

, u > d0

• c = 1 → exponential kernel

• c = 2 → Gaussian kernel



Results

• assumption of common set of parameters in islets 23 and
84 is not supported by the data

• but dataset for islet 23 is uncomfortably small for formal
inference (36 events)

• likelihood ratio tests favour model M1 (nearest
neighbour distance only) with c = 1 (exponential kernel)

• highly significant effect of elevation

β̂ = 0.05, SE = 0.0006, p << 0.001



Monte Carlo interval estimation

Envelope of estimates ĥ(u) from 99 simulations of fitted model
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Conclusions

• spatio-temporal data-sets becoming widely available

• different problems require different modelling strategies

• temporal should often take precedence over spatial

• routine implementation is an important consideration when
exploring many different models



Any questions?



And I leave you with...

• the role of modelling

“We buy information with assumptions”

Coombs (1964)

• choice of model/method should relate to scientific
purpose.

“Analyse problems, not data”

PJD
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