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Abstract 

There is substantial variation in language experience between 
learners, yet there is surprising similarity in the language 
structure they eventually acquire. While it is possible that this 
canalisation of language structure may be due to constraints 
imposed by modulators, such as an innate language system, it 
may instead derive from the broader, communicative 
environment in which language is acquired. In this paper, the 
latter perspective is tested for its adequacy in explaining the 
robustness of language learning to environmental variation. A 
computational model of word learning from cross-situational, 
multimodal information was constructed and tested. Key to 
the model’s robustness was the presence of multiple, 
individually unreliable information sources that could support 
learning when combined. This “degeneracy” in the language 
system had a detrimental effect on learning when compared to 
a noise-free environment, but was critically important for 
acquiring a canalised system that is resistant to environmental 
noise in communication.  
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Introduction 
A key question in the cognitive sciences is how, despite 

the enormous variation in linguistic experience, each 
language learner acquires broadly the same language 
structure, “within a fairly narrow range” (Chomsky 2005). 
This issue has led to proposals for mechanisms that ensure 
this “canalisation” of language structure. Traditionally, 
these mechanisms have been conceived as constraints that 
apply to structure the language exposure, such as innately 
specified syntactic or semantic properties. But there is 
growing realisation that multiple, rich sources of 
information within the communicative environment may 
offer substantial, perhaps sufficient constraints to learning.  

A similar change in perspective was observed in 
canalisation in biological evolution. Initial proposals were 
that canalisation was a consequence of the natural selection 
of mechanisms that operate to minimise phenotypic 
variation (Waddington, 1942). However, a more recent 
explanation is that minimal phenotypic variation is stably 
achieved as a consequence of interaction between multiple 
regulators (despite substantial environmental variation) as 
part of the developmental process of the organism (Siegal & 
Bergman, 2002). Simulations of the developmental 
operation of multiple transcriptional regulators found that 
the greater the interactivity between these sources, the 
smaller the phenotypic variation resulting from 
environmental variation.  

An analogous perspective can be taken on canalisation of 
social or cultural systems, such as language, whereby 
increasing levels of interaction may increase the stability 
and optimise performance of an information processing 
system (Bettencourt, 2009). Canalisation of language, long 
conceived as being a consequence of mechanisms that 
implement resistance to environmental variation, could 
instead be the outcome of interacting, multiple sources of 
information. 

Recently, there has been reconsideration of the potential 
for language learning to be supported by the richness of the 
language environment. For instance, grammatical category 
acquisition is not only supported by information from word 
co-occurrences – the traditional information source for 
linguistics studies of language acquisition (Redington, 
Chater, & Finch, 1998) – but also from substantial 
information in phonotactic and prosodic structure, such as 
distinct stress patterns on nouns compared to verbs 
(Monaghan, Christiansen, & Chater, 2007). Furthermore, 
information about objects and actions within the child’s 
purview may further constrain potential referents for words 
(Yurovsky, Smith, & Yu, 2013), providing restrictive 
information about the semantic features associated with 
particular categories. 

There have been several accounts for how such multiple 
cues may be combined to support learning. The redundancy 
of different information sources may assist the learner by 
increasing the saliency of particularly important information 
present in their environment (Bahrick, Lickliter, & Flom, 
2004). Alternatively, the cues may operate summatively 
(Christiansen, Allen, & Seidenberg, 1998), or they may 
operate in a hierarchy, such that if one cue is available then 
it is used in preference to other cues, which are relied upon 
only if the preferred cues are unavailable (Mattys, White, & 
Melhorn, 2005). 

An alternative possibility, consistent with models of 
canalisation in biology, is that multiple cues for language 
learning interact, resulting in a system that is stable in the 
face of variation in the environment. This property of 
language is its “degeneracy”, defined as “the ability of 
elements that are structurally different to perform the same 
function or yield the same output” (Edelman & Garry, 
2001). Degeneracy affects not only acquisition – where 
presence or absence of particular cues will not adversely 
affect the structure acquired – but also the robustness of the 
system once the language is acquired, due to reduced 
dependency on any one information source. Computational 
models of degeneracy in language and other complex 
systems have shown that it is important for robustness of 



learning (Whitacre, 2010), permitting, for instance, effective 
processing of speech sounds against background noise 
(Winter, 2014).  

In this paper, a computational model of multiple 
interacting information sources is presented as a proof of 
concept that degeneracy can result in canalisation of 
language structure. The domain of study is word learning, 
where forms and meanings of words have to be mapped. 
This task is difficult, because there are numerous 
possibilities for the target candidate word in multi-word 
utterances, and multiple possible referents in the 
environment to which the target word may map (Quine, 
1960). However, multiple cues are present both in the 
spoken language and in the environment that surrounds the 
learner to assist in this task. This perspective requires 
extending the notion of degeneracy from examining the 
redundant, overlapping cues within language structure to 
examine cues more broadly within the communicative 
situation. 

Within spoken language, information about the 
grammatical roles for words can be ascertained from 
distributional information, consequently reducing the 
number of possible target words that need to be considered. 
For instance, nouns are frequently preceded by articles (the, 
a) and these also tend to succeed verbs. Use of such simple 
distributional information has been shown to assist in 
determining word referent mappings (Monaghan & 
Mattock, 2012). Further information for identifying the 
critical information in an utterance is also available from 
prosodic information. When teaching a child a new word, 
the speaker tends to increase the pitch variation, intensity, 
and duration of the target word within the utterance 
(Fernald, 1991).  

In addition, constraints within the environment help to 
reduce uncertainty about the potential referents. One of 
these information cues is derived from cross-situational 
statistical information, where over multiple situations the 
learner can increase their association between the target 
word and target object (McMurray, Horst, & Samuelson, 
2012) even when several possible words and referents are 
present. Such cross-situational learning (Yu & Smith, 2012) 
can further be supplemented by information that the speaker 
uses to indicate the field of reference. For instance, speakers 
tend to use deictic gestures (finger pointing or eye gaze) 
toward a referent which is being described (Iverson, Capirci, 
Longobardi, & Caselli, 1999). 

However, in isolation, each of these cues is insufficient to 
perfectly constrain learning: The word succeeding an article 
is not always a noun – in English adjectives might 
intervene, and spontaneous language is replete with false 
starts, and word sequencing errors. Similarly, the loudest 
word in speech is not always the target word, or a novel 
word being learned by the listener, and gestural cues are not 
always reliable. In Iverson et al.’s (1999) study they found 
that 15% of utterances were accompanied by gestures 
indicating aspects of the immediate environment to direct 
children’s attention. Yet, such unreliability has profound 

value for learning. Consider if the child always learned from 
a speaker who reliably pointed to the intended referent. 
Then, if ever a situation arose where a referent was not 
gestured towards, this could impair effective 
communication, because the cue may be relied upon for 
effective mapping from word to referent. 

There are costs to including multiple cues in the learning 
situation, because this increases the amount of information 
needed to be processed in each instance of learning. So, the 
trade-off between the increased strain on the cognitive 
systems required by processing of multiple as opposed to 
single, or no, cues and the potential advantages of 
interacting information sources for learning must be 
examined. Specifically, we tested the value of multiple 
information sources for learning, and we examined the 
importance of interaction among information sources for 
linguistic canalisation, i.e., the robustness of learning in the 
face of environmental variation.  

A computational model was constructed to test integration 
of information received from multiple sources to assist the 
learning of relations between words and their referents. Two 
sets of simulations testing the model were conducted. The 
first assessed the contribution of single cues to word 
learning. The hypothesis was that adding cues to the input 
would assist in acquisition of the mapping, with gestural 
cues assisting in defining the referent, prosodic cues 
promoting identification of the target word, and 
distributional cues supporting acquisition of both. However, 
the reliable presence of cues was hypothesised to result in 
impaired ability to identify the form-meaning mapping 
when the cue is no longer present.  

The second set of simulations explored the role of 
multiple cues for learning. The prediction was that multiple 
cues would further promote learning, but that noisy cues 
would be most effective for supporting not only effective 
acquisition but also robustness in the learning, immune from 
effects of variability in the environment. Thus, a model 
trained with a degenerate environment should result in a 
canalised system, being able to effectively map between 
words and referents even when environmental cues that 
support this mapping are no longer available. 

A Multimodal Model of Word Learning 
The starting point for the current model used the hub-and-

spoke architecture (Plaut, 2002), where information from 
different modalities is inputted to a central processing 
resource, and is thus unconstrained in its integration. These 
models then determine the optimal way in which 
information sources can cohere to support learning. The 
model implementation is closely based on a previous model 
of multimodal information integration in sentence 
processing, which was created to simulate behaviour in the 
visual world paradigm (Smith, Monaghan, & Huettig, 
2014). This modeling approach has been effective in 
demonstrating how and when different information 
modalities interact in language processing, and how the 
influence of different modalities on language processing 



derive from the nature of the representations themselves, 
rather than requiring architectural assumptions to be 
imposed on the system. 

The model used here is a subsystem of this larger 
modeling enterprise, addressing the special case of 
acquiring word-referent mappings. The model is compatible 
with previous associative models of word learning 
(McMurray et al., 2012), as well as being broadly consistent 
with the principles of statistical models of cross-situational 
word learning (Yu & Smith, 2012). The model therefore 
applies these general modeling principles to explore the role 
of multiple information sources in facilitating, and 
constraining word learning. 

 

 Figure 1: The multimodal integration model of word 
learning. 

Architecture 
The model architecture is illustrated in Figure 1. The model 
is implemented as a recurrent backpropagation neural 
network. It comprises a central hidden layer of 100 units 
which received connections from various input modalities, 
and projected to a semantic layer output.  
The phonological input represented two word slots, each of 
which contained 20 units. The visual input contained two 
locations each comprising 20 units, where object 
representations were presented. The semantic layer was 
composed of 100 units. For some simulations that included 
a distributional cue, the model also received input from a 
distributional cue layer, which was composed of 2 units. 
The integrative layer was also fully self-connected. 

Representations 
The model was trained to learn 100 words. 

Representations of each modality of a word was encoded as 
a pseudopattern so that the properties of the relations 
between representations could be controlled. The 
phonological representation of each word was composed of 
four phonemes, randomly drawn from a set of 10 different 
phonemes. Each phoneme comprised 5 units, with 2 units 
active. The visual representation of the word’s referent was 
constructed from 20 units with 8 units active for each 
representation. The semantic representations were localist, 
such that one of the 100 units was active for each of the 
words. 

Fifty of the words were randomly assigned to one 
category, and the remaining fifty were assigned to the other 
category, such that these categories could be defined by a 
distributional cue.  

 
Table 1: Proportion of training trials with each cue 

according to condition. 
 

Condition Dist 
Cue 

Prosodic 
Cue 

Gestural 
Cue 

No Cue 0 0 0 
Single Cues 
    Dist Cue 

 
1 

 
0 

 
0 

    Prosodic Cue 0 1 0 
    Gestural Cue 0 0 1 
Combined Cues 
    25% reliability 

 
.25 

 
.25 

 
.25 

    50% reliability .50 .50 .50 
    75% reliability .75 .75 .75 
    100% reliability 1 1 1 

Training  
The model was trained to identify the meaning of the 

word from phonological and visual representation inputs, 
for all 100 words. Each trial was a simulation of a cross-
situational learning task, where two words and two objects 
were presented, but only one of the objects was named by 
one of the words (Monaghan & Mattock, 2012). The model 
had to learn to solve the task by generating the correct 
semantic representation for the named object.  

For each training trial, a word was randomly selected. Its 
phonological form was presented at one of the two word 
slots in the phonological input (position was randomly 
chosen), and another randomly selected word’s 
phonological form was presented at the other word slot. The  
object depicting the word’s referent was presented at one of 
the two visual input positions (randomly chosen) and 
another randomly selected visual representation was 
presented at the other visual input position. 

For the simulations with cues, gesture and prosody were 
implemented as intrinsic properties of the visual and 
phonological input representations, respectively, by 
doubling the activation at the input of the target visual 
object or the target phonological form. This had the effect of 
increasing the contribution of the target representation 
within each representational modality to affect the activation 
state of the integrative layer, and was a simulation of 
increased saliency of that representation (i.e., that a gestural 
cue increases saliency of the target object, and prosodic cue 
is implemented as an increase in intensity, duration, and 
pitch of the target spoken word). This is illustrated in Figure 
1 as a highlighting of the uppermost object and the first 
phonological representation as a consequence of gestural 
and prosodic cues, respectively. 

The distributional cue was implemented as an extrinsic 
cue. If the word was from the first (randomly assigned) 
category then the first unit in the distributional layer was 



active, and if the word was from the second category the 
second unit was active. This cue could therefore assist the 
model in determining which was the target object and 
spoken word, but the cue did not operate within either of 
these modalities. 

The simulations of single cues presented each learning 
trial with the cue present with 100% reliability (see Table 
1). The simulations of multiple cues varied the extent to 
which the cues were reliably present in each learning 
situation, from 25%, through to 100% reliability. 

Activation cycled in the model for 6 time steps. At time 
step one, the visual and phonological inputs were presented. 
For two time steps activation passed from the input to the 
integrative layer and from the integrative layer to the 
semantic layer, and from the integrative layer to itself. At 
time steps 3 to 6 the target semantic representation was 
presented at the semantic output layer, and activation 
continued to cycle around the model.  The model was 
trained with continuous recurrent backpropagation through 
time (Pearlmutter, 1989) with error determined by sum 
squared error of the difference between the actual and target 
semantic representations. In one epoch of training, each of 
the 100 words occurred once as the target. The model was 
trained up to 100,000 epochs at which point performance for 
each condition had asymptoted. 

Twenty versions of the model with different 
pseudopattern representations, different randomised starting 
weights, and different randomised ordering of training 
patterns were run. 

Testing 
The model’s performance was assessed during training on 

its ability to produce the target semantic representation for 
each phonological and visual input. If the activity of the 
semantic unit corresponding to the target word was more 
active than any other unit in the semantic layer, then the 
model was determined to be accurate.  

Accuracy during training was assessed, and also the point 
in training at which the model was able to accurately detect 
all 100 words for five consecutive epochs. 

At the end of training, the robustness of the model’s 
learning was assessed by measuring its accuracy when no 
cues were present during testing. 

Results 

Single Cues 
The model’s accuracy during training when no cues and  
single cues were present is shown in Figure 2.  

An ANOVA with epoch at which the simulation reached 
the accuracy criterion as the dependent variable, and cue 
condition (no cue, distributional cue, prosodic cue, gestural 
cue) as within subjects factor was conducted to test whether 
the model learned differently according to the presence of 
cues. The result was significant, F(3, 57) = 70722, p < .001, 
ηp

2 = 1.00. Post hoc tests revealed that the model reached 
criterion more quickly for the prosodic cue (mean epochs = 

35,800, SD = 1,005), and gestural cue (mean = 35,650, SD 
= 745) conditions than the no cue condition which had not 
reached criterion by 100,000 epochs (mean proportion 
correct was .96), both p < .001. Though the trajectory of 
learning was distinct, as shown in Figure 2, the effect of 
distributional cues was smaller, and not significantly 
different in time to criterion compared to the no cue 
condition (mean proportion correct after 100,000 epochs 
was .99). The prosodic and gestural cues supported learning 
more than the distributional cue, both p < .001, but there 
was no statistical difference in speed of learning from the 
prosodic and gestural cues, p = 1. 
 

 
Figure 2: Accuracy during training for the single cues 

conditions, compared to no cue condition. 
 

 
Figure 3: Accuracy after training for the single cues 

conditions, when no cues are present during testing (Dist = 
Distributional). 

 
The robustness of the model’s learning to omission of cues 

during testing is shown in Figure 3. An ANOVA on 
accuracy in the post-learning test with no cues present, and 
cue condition as within subjects factor was significant, F(3, 
57) = 8.982, p < .001, ηp

2 = .321. Post hoc tests showed that 
the distributional cue did not significantly affect robustness 
of learning compared to the no cue condition, p = .284, 
however, the prosodic and gestural cue both resulted in 
poorer performance than the no cue condition, both p < 
.001. The gestural cue resulted in more robust learning than 
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the prosodic cue, p = .001, but these conditions did not 
differ significantly from the distributional cue condition, 
both p = 1.   

We tested whether the difference between the intrinsic cue 
conditions (prosodic and gestural cues) was due to their 
quicker acquisition. We trained every model to the same 
number of training trials (100,000) then tested robustness of 
learning. The results were similar. Even with more training, 
the effect of a single, reliable intrinsic cue was detrimental 
to the model’s ability to map between form and meaning 
when the cue was not present, F(3, 48) = 45.62, p < .001, 
ηp

2 = .740. Prosodic and gestural cues were now not 
significantly different than one another, p = .423, but were 
both significantly different than the no cue and the 
distributional cue conditions, all p < .001. 

Multiple Cues 
The model’s accuracy during training for combined cues 
with different levels of reliability is shown in Figure 4. For 
epoch taken to reach training criterion, an ANOVA 
indicated that combined cues with different reliability 
significantly affected speed of learning, F(4, 76) = 3855, p < 
.001, ηp

2 = .99. Post hoc tests indicated that learning in the 
no cue and the 25% cue reliability condition were 
significantly slower than the 50% condition, both p < .001, 
which was in turn slower than the 75% condition, p < .001, 
which was in slower than the 100% perfect reliability 
multiple cue condition, p < .001. Thus, as anticipated, the 
greater the reliability of information present during learning, 
the faster the model learned to map between forms and 
meanings. 
 

 
Figure 4: Accuracy during training for the multiple cue 

conditions, compared to no cue condition. 
 
The robustness of learning was also compared between 

these conditions. The results are shown in Figure 5. An 
ANOVA demonstrated that the robustness of performance at 
testing was affected by the cues present during training, F(4, 
76) = 2.953, p = .025, ηp

2 = .135. Post hoc tests revealed 
that the no cue and 50%, 75%, and 100% cue conditions 

were significantly different, all p < .001. The 25% cue 
condition was not significantly different than any other 
condition, all p ≥ .718. As reliability increased from 50% to 
75%, the robustness of the model declined, p < .001, and 
similarly declined from 75% to 100% reliability, p < .001. 
Thus, low reliability of cues did not seem to assist in 
learning quickly or robustly, but once individual cues 
appeared at least half the time, further increasing the 
reliability of the cues began to reduce the resistance of the 
model to the absence of cues after training. 50% reliability 
appears to be close to the optimal trade-off for speed and 
robustness of learning. 
 

 
Figure 5: Accuracy after training for the multiple cue 
conditions, when no cues are present during testing. 

Discussion 
Language learning occurs in situations where multiple, 
interacting sources of information are available to support 
acquisition. Although attending to multiple cues increases 
the processing load on the individual, this degeneracy in 
language results in two important advantages for the 
language learning system.  

First, adding a combination of cues to the model’s input 
improves the speed and accuracy of learning to map 
between representations. Providing some guiding 
information about the intended object in a scene containing 
more than one referent, and emphasis of the target word in a 
multiword utterance, along with additional information 
about the general category of the target, improves 
performance. Even when the individual cues occurred only 
50% of the time, learning of form-meaning mappings was 
still significantly enhanced compared to learning in the 
absence of cues. 

This observation that speed and accuracy of language 
learning is promoted by multiple cues has been explored 
extensively, and is consistent with several current accounts 
of multiple cue integration in learning (Bahrick et al., 2004; 
Christiansen et al., 1998; Mattys et al., 2005; Monaghan et 
al., 2007). All these theories would predict the growing 
advantage of learning as cues increase in reliability, as 
observed in the current simulations. 

However, the degeneracy of language also has a second 
advantage. The learning that is acquired from a degenerate 
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environment is highly robust (Ay, Flack, & Krakauer, 
2007), and the model was able to make use of cues even 
when they were variably present across communicative 
situations. However, this multiple cue advantage for 
robustness was only observed when there was noise in the 
environment: When the cues occurred with perfect 
reliability then, even though learning was at its fastest, the 
acquired system was fragile and prone to error under 
suboptimal subsequent conditions. Thus, canalisation of 
language structure in a word learning task can be conceived 
of as a consequence of the interaction of multiple 
information sources for learning.  

There is therefore a trade-off between speed of initial 
learning, and the robustness of that learning. The former is 
supported by perfectly reliable information (see, e.g., Onnis, 
Edelman, & Waterfall, 2013), and more information 
resulted in better and better learning. The latter is supported 
by multiple information sources, but with each individual 
source being somewhat noisy. The precise point of this 
trade-off is an issue for further exploration in computational 
systems, in order to determine the extent to which natural 
language environments are optimally designed for 
acquisition. 

The simulations presented here suggest that, rather than 
canalisation being a challenge in the face of environmental 
variation, it is instead a primary consequence of this 
variation in a system that is able to integrate multiple 
information sources.  
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