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Abstract 

Learning how words refer to aspects of the environment is a 
complex task, but one that is supported by numerous cues 
within the environment which constrain the possibilities for 
matching words to their intended referents. In this paper we 
tested the predictions of a computational model of multiple 
cue integration for word learning, that predicted variation in 
the presence of cues provides an optimal learning situation. In 
a cross-situational learning task with adult participants, we 
varied the reliability of presence of distributional, prosodic, 
and gestural cues. We found that the best learning occurred 
when cues were often present, but not always. The effect of 
variability increased the salience of individual cues for the 
learner, but resulted in robust learning that was not vulnerable 
to individual cues’ presence or absence. Thus, variability of 
multiple cues in the language-learning environment provided 
the optimal circumstances for word learning. 

Keywords: word learning; multiple cues; strategies; gesture; 
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Cues for word learning 
Learning how words relate to objects, actions, properties, or 
relations in the world is a complex task. One of the key 
difficulties is that word learning provides few explicit 
constraints on which words can relate to particular aspects 
of the environment (Quine, 1960). Thus, in acquiring 
vocabulary, children must resolve a many-to-many (possibly 
even an infinite-to-infinite) mapping between words in 
utterances and elements of the environment around them. So 
how do children solve this task?  

There are two proposals for how learning word-referent 
mappings can be constrained. The first is that children have 
internal biases that apply to language learning situations that 
limit possible referents to words (Markman, 1994). For 
instance, mutual exclusivity refers to the assumption in word 
learning situations that each referent has only one name, 
leading children to pair an unnamed object with a novel 
word (Markman & Wachtel, 1998). In terms of limiting 
referents, children seem to be biased to linking a word with 
a whole object rather than a part of an object (Macnamara, 
1982), and may more readily form categories of objects with 
similar shape which are referred to by the same word 
(Baldwin, 1992). 

The alternative proposal for resolving the many-to-many 
mapping problem in word learning is that the environment, 
rather than the learner, contains many properties that assist 

in constraining possible mappings (MacWhinney, 1991). 
Though a single learning situation contains many possible 
words and many possible referents for those words, over 
multiple situations, children may observe that there are co-
occurrences between particular words and particular 
elements of the environment. Yu and Smith (2007) showed 
that learners are able to exploit such cross-situational 
statistical relations between words and referents. However, 
the statistical associations are noisy in real-world child-
directed speech settings (Yu & Ballard, 2007), and so 
additional cues in the environment are likely to assist further 
in constraining learning. 

One possibility is distributional information in terms of 
co-occurrences between words. In English child-directed 
speech, determiners reliably precede nouns in complex 
utterances (Monaghan & Mattock, 2012), and these 
distributional cues can assist the child in knowing which 
potential words in an utterance are likely to refer to objects 
in their environment (Fitneva, Christiansen, & Monaghan, 
2009). Other distributional cues that are readily available to 
children can also provide information about verb categories, 
and function versus content word distinctions (Childers, 
2011; Christiansen & Monaghan, 2016).  

Prosodic information is another cue to assist in reducing 
the many-to-many mapping problem, not only providing 
information about different grammatical categories 
(Christiansen & Monaghan, 2016) but also indicating 
speaker focus in a learning situation: Messer (1981) found 
that approximately 50% of child-directed utterances with a 
learning goal had the referring word reaching the highest 
amplitude. 

For further reducing the possibilities for the intended 
referent, gestural cues provide additional cues to constrain 
word learning, with 15% of child-directed speech utterances 
accompanied by gestures that guided the child to the object 
being referred to (Iverson, Capirci, Longobardi, & Caselli, 
1999). 

Combining cues for word learning 
Individually, then, cues appear to be noisy but informative 

sources of information about intended referents. Thus, 
combining cues is likely to result in yet more robust and 
faster learning. There are several models for how multiple 
cues may interact for word learning. 



First, cues may be additive, such that more information 
provides cumulative evidence about word-referent 
mappings. For instance, in a computational model, Yu and 
Ballard (2007) demonstrated that mapping accuracy 
improved with the addition of distributional cues.  

However, an alternative model for how multiple cues may 
support learning is provided by Bahrick, Lickliter, and 
Flom’s (2004) intersensory redundancy hypothesis. In this 
theoretical model, multiple cues that indicate the same 
structure in language (such as multiple cues indicating the 
word-referent mapping, for instance) enable the learner to 
realise that this relation is not random, but carries 
information about the stimuli. Consequently, cues that are 
correlated increase in saliency and are attended to more as 
learning proceeds. 

However, this view of increased saliency from redundant 
cues only applies when there are overlapping cues to 
structure, and the distribution of cues in the learning 
environment may be very different. Monaghan et al. (2007) 
examined cues to grammatical categories of words across a 
range of languages. They found that distributional 
information provided, unsurprisingly, valuable information 
about the role of words in each language – for instance, in 
English words that belonged to the verb category tended to 
succeed “you” and precede “the”, whereas words that 
belonged to the category of nouns tended to succeed “the”, 
and precede “to”. But, in addition, Monaghan et al. (2007) 
also found that phonological coherence also applied to these 
grammatical categories – though there is substantial 
variation, nouns tend to sound like other nouns and verbs 
tend to sound like other verbs, in terms of a range of 
phonological and prosodic properties.  

Yet, it was the interplay of these cues that was striking: 
when distributional information was a weak indicator of 
grammatical category, Monaghan et al. (2007) found that 
phonological cues were more reliable, and vice versa. Thus, 
there was not so much a redundant overlap of cues, but 
rather a serendipitous arrangement of cues across situations 
to provide useful information (Christiansen & Monaghan, 
2016).  

An alternative perspective, then, is that multiple cues for 
language structure enable robust learning, but not due to 
intersensory redundancy, but rather due to providing a safety 
net that is resistant to variation of their presence in the 
environment. In Monaghan (2017) this idea of degeneracy 
was implemented in a connectionist model that took as input 
multiple information sources to support learning of cross-
situational statistical regularities between an object in vision 
and a word in auditory input, when both the object and the 
word occurred alongside others. The model was able to 
learn the cross-situational statistical regularities, but this 
learning was boosted when additional cues were added to 
the model’s learning environment. One was distributional 
information (where the referring word was preceded by a 
marker word, such as “the” preceding a noun). Another was 
a prosodic cue, where the referring word in the utterance 
was emphasised in the auditory input. The final cue was a 

gestural cue, where attention was drawn to the object that 
was being referred to in the utterance. In each case, adding 
the cue improved the model’s learning. Furthermore, adding 
all the cues improved performance still further. 

The second set of simulations in Monaghan (2017) tested 
what effect individually unreliable cues would have on 
learning. The presence of each of the three cues varied 
between 33% and 100% of the time, but note that in most 
learning situations, at least one of the cues was likely to be 
present. The reduction of reliability of multiple cues reduced 
the speed of learning, however, following training, the 
ability of the model to respond correctly to word-object 
mappings when they were presented with no additional cues 
in the environment was more robust when cues were 
individually unreliable. The presence of noise in the 
environment, when that environment provides an unreliable 
constellation of individual cues, meant that the model was 
better able to recognise words when the environment was 
momentarily impoverished. Consider a language instructor 
who always pointed to the object to which they were 
referring. That is likely to be helpful for constraining the 
potential referents for words that the learner hears. But what 
would happen when the instructor is distracted – or a new 
instructor with different habits arrives – and does not 
provide the gestural cue? If the cue was previously 100% 
reliable, then this would become a crutch that was relied 
upon for determining the speaker’s intention, and the 
referent would not be identifiable if not gestured towards.  

A computational approach with a similar outcome is 
Srivastava et al.’s (2014) dropout model, where hidden units 
in a model are stochastically deactivated to prevent the 
model overlearning one aspect of the input – to resist relying 
only on the most reliable information stream in the 
environment, and consequently preventing effective 
generalisation. This switching off meant that the model 
maximised use of information from the environment. 
However, critically for our purposes, the learning system 
does not selectively prevent attention to environmental 
information. The noise in the language environment 
provides this function. Far from being a problem for 
learning, environmental noise enabled effective, reliable, 
and robust learning to take place, providing a positive 
perspective on poverty of the stimulus (Chomsky, 2005). 
Indeed, stimulus poverty resulted in rich learning. 

However, the benefit of multiple, noisy cues is a 
prediction of the degeneracy model (Monaghan, 2017) but 
has not yet been tested empirically. Here, we provide a 
behavioural test of whether the presence of multiple, 
variable cues promotes robust word-referent learning. We 
constructed a cross-situational learning task, with each 
situation presenting learners with two objects and a set of 
words (see Monaghan & Mattock, 2012, for similar outline 
of the cross-situational word learning design). One of the 
words always referred to one of the objects, but the other 
object and the other words varied. Over multiple trials, 
participants may come to recognise that certain words and 
objects always co-occurred. We measured the extent to 



which additional cues in the environment assisted in 
learning – implementing gestural, distributional, and 
prosodic cues to support learning, but we varied the extent 
to which these cues were present. The degeneracy model 
predicted that (very) noisy cues should slow learning, but 
that there may be an optimal level of variability at which 
learning is more accurate than perfect information 
conditions when all cues are present. We examined three 
levels of variability as well as no variability, where cues 
were present 25%, 50%, 75%, or 100% of the time. We 
measured performance during training exposure, and we 
also measured whether learning was robust to omission of 
cues – by testing participants after learning on trials where 
no cues were present. Based on the predictions of the 
degeneracy model (Monaghan, 2017), we anticipated that 
learning would be resistant to omission of cues in all 
conditions, but that omission of cues may be least affected 
when those cues were variable during exposure. 

Figure 1. Example of a learning trial, containing 
distributional, prosodic (i.e., fintoom is emphasised in the 

speech), and gestural cues. 

Testing the effect of multiple, variable cues for 
word learning 

Method 
Participants 

Participants were 72 native English speaking adults, mean 
age = 19.8 years (SD = 2.46), who were students at 
Lancaster University. Participants were paid £3.50 for 
participating, or received course credit. Participants were 
assigned to one of four conditions (N = 18 per condition) 
which varied the extent to which cues were reliably present 
during training (25%, 50%, 75%, or 100% of the time). 

 

Materials 
The materials comprised a set of abstract objects and a set 

of novel words with which the objects were paired during 
learning. We took 10 arbitrary shape pictures from Fiser and 
Aslin (2002) (see Figure 1 for examples). For the speech, we 
generated 22 nonsense words. Ten of the words each 
referred to one of the object shapes. An additional 10 words 
did not refer to any shape. A final two words were also 
generated to act as distributional marker words. Words were 
read by a female native English speaker in monotone, and 

were also read in emphasized form, with the speaker 
imagining they were speaking the word to a child. 
Emphasised words had higher mean pitch, greater pitch 
variation, longer duration, and greater intensity than 
monotone words (all t(19) > 8.98, p < .001). 

Each learning trial comprised an utterance containing a 
referring word and a non-referring word. When the 
distributional cue was present, the two words were preceded 
by marker words that distinguished the referring and non-
referring word. When the prosodic cue was present the 
referring word was emphasised, otherwise both words were 
monotonic. When the gestural cue was present, a finger 
pointed to the intended referent. In the example trial shown 
in Figure 1, “tha” indicates the following word is the 
referring word and “fintoom” refers to one of the pictures 
(in this case, the picture on the left). Cues were randomly 
selected individually according to the variability condition 
(e.g., for the 25% cue, there was a ¼ chance that each cue 
was present or absent, such that there were trials where 3, 2, 
1, or no cues were present). 

An additional training block was constructed from 6 novel 
shapes and 12 novel words, but these new training data are 
not reported further here. 
Procedure 

Participants were instructed to try to learn which object 
was referred to by the speech. There were 6 blocks of 
training, each of which contained 30 trials, where for each 
trial an utterance was played through headphones and two 
objects were presented on a computer screen simultaneously. 
One of the objects was the target and always co-occurred 
with the referring word, the other object was selected from 
the remaining nine objects. Within each block of training, 
objects appeared an equal number of times as target and as 
foil, and were counterbalanced for appearing on the left or 
the right of the screen. Presence or absence of cues was 
manipulated between conditions by randomly selecting 
whether each cue was present or absent in 25%, 50%, 75%, 
or 100% of trials.  

Participants responded by pressing “1” or “2” for left 
object or right object, respectively, on a computer keyboard. 
No feedback was provided on accuracy of performance.  

After training, participants were tested for their 
knowledge of word-referent mappings when all cues were 
absent, to determine whether learning was robust, or 
required presence of cues for accurate performance. 

Results 
We conducted four separate analyses exploring how 

learning was affected by the variability of cues. In each 
analysis, a series of generalized linear mixed-effects models 
(GLMER) were performed, predicting the dependent 
variable of response accuracy (correct or incorrect). The 
models were built up incrementally, adding in fixed effects 
and performing likelihood ratio tests after the addition of 
each new fixed effect term (following Barr, Levy, Scheepers 
& Tily, 2013). Random effects of participant and 
experiment version were included in all reported analyses. 



First, we analysed learning during training. The effect of 
block (1-6) significantly improved model fit (χ2(1) = 314.1, 
p < .001), indicating that over the course of training, there 
was a significant increase in participant’s response accuracy. 
Including variability condition (25%, 50%, 75% and 100%) 
also significantly improved model fit (χ2(3) = 21.259, p < 
.001). Crucially, there was a significant improvement to 
model fit when the interaction term of block x condition was 
added (χ2(3) = 71.113, p < .001), indicating that 
performance over the course of training varied by reliability 
condition. See Table 1 for the final model summary, which 
indicates that the 75% condition resulted in more rapid 
learning than the other conditions (see Figure 2). 

 

 
Figure 2. Learning trajectories for the word-object mapping 
cross-situational learning task with multiple cues of different 

reliabilities. 
 
Table 1. GLMER model summary predicting accuracy from 

training data. 
Fixed effects est. SE z p 

(Intercept) .47 .21 2.24 .025 
Block .30 .03 10.96 <.001 
Condition (25%-100%) -.39 .29 -1.36 .175 
Condition (50%-100%) -.17 .29 -0.58 .559 
Condition (75%-100%) -.10 .29 -0.33 .739 
Block*Condition(25%-100%) -.17 .04 -4.81 <.001 
Block*Condition(50%-100%) -.17 .04 -4.65 <.001 
Block*Condition(75%-100%) .09 .04 2.11 .035 

 
For the second analysis, we investigated the effect that 

variability of cues had on sensitivity to the individual cues 
during training, by measuring the effect of presence of 
individual cues on learning. In this analysis, only trials 
where at least one cue was present were included (see 
Figure 3). 

The addition of variability condition significantly 
improved model fit (χ2(3) = 16.199, p = .001), indicating 
that there was a difference in overall accuracy across 
conditions, with performance in the 100% condition being 
significantly greater than the 25% and 50% conditions (both 
p < .01), but not the 75% condition (p > .05). Next, the 
addition of cue type also significantly improved model fit 
(χ2(2) = 32.083, p < .001). This result indicates that there 
was a significant increase in accuracy when gesture cues 
were present, compared with when distributional and 

prosodic cues were present, both p < .001. Importantly, there 
was a significant improvement to model fit when the 
interaction term of variability condition x cue type was 
added (χ2(6) = 23.665, p < .001). See Table 2 for the final 
model summary, which indicates that when variability is at 
75%, the salience of gesture cues was increased compared to 
the 100% condition, when cues were always present. 
Variability had the effect of emphasising the contribution of 
gesture. The benefit of gesture over the other cues was also 
present for 25% and 50% cues, but only when variability 
was at 75% was accuracy greater than the 100% condition. 

 

 
Figure 3. Performance during training trials by variability 

condition and cue type. 
 
 

Table 2. GLMER model summary predicting accuracy from 
trials when at least one cue was present. 

Fixed effects est. SE z p 
(Intercept) .01 .01 7.08 <.001 
Condition (25%-100%) .01 .01 -2.99 .003 
Condition (50%-100%) .01 .01 -2.52 .012 
Condition (75%-100%) .01 .01 0.69 .491 
Cue(dist-gesture) .01 .01 0.00 .99 
Cue(dist-prosody) .01 .01 0.00 .99 
Cue(dist-gesture)*Condition(25-100%) .01 .01 3.53 <.001 
Cue(dist-gesture)*Condition(50-100%) .01 .01 3.23 .001 
Cue(dist-gesture)*Condition(75-100%) .01 .01 2.98 .003 
Cue(dist-prosody)*Condition(25%-100%) .01 .01 0.01 .898 
Cue(dist-prosody)*Condition(50%-100%) .01 .01 0.62 .535 
Cue(dist-prosody)*Condition(75%-100%) .01 .01 0.39 .696 

 
During the training trials, the number of cues available to 

the learner varied from 0 to 3 in the variability conditions. In 
order to determine the effect of number of cues present, we 
tested the number of cues present in terms of improvement 
to model fit. We found that they did (χ2(1) = 66.342, p < 
.001), indicating that as the number of cues present 
increased, accuracy improved (see Figure 4). Further, the 
interaction of number of cues x variability condition also 
improved model fit (χ2(2) = 14.309, p < .001). 

In order to determine how variability affected use of cues, 
we examined accuracy when all cues were present, 



comparing across variability conditions. Importantly, when 
all three cues were present, accuracy in the 75% condition 
was significantly greater than the 100% condition (estimate 
= .86, SE = .41, z = 2.11, p = .035). Thus, 75% variability 
improved the accuracy of performance when all cues were 
present.  

Finally, we determined whether learning was robust under 
conditions of cue variability, and how variability affected 
performance during the test trials when none of the cues 
were present. The addition of variability condition 
significantly improved model fit (χ2(3) = 11.357, p = .010), 
with significant differences between the 100% condition 
when compared to the 25% and 50% conditions (both p < 
.05), but no significant difference between the 100% and 
75% conditions (p = .556). Importantly, this reflects the 
pattern of results found in the final block of training (see 
Figure 2), where performance improved as reliability of cues 
increased. See Figure 5 for results. Thus, in all conditions 
learning was robust to absence of cues. 

 

 
Figure 4. Test of performance for different number of cues 

present during training. 
 

 

 
Figure 5. Performance on all words after training for test 

trials, when no cue was present. 
 

Discussion 
The main aim of this study was to test the effect of 

variation of multiple cues in the language environment for 
supporting word learning. We predicted, based on the 
degeneracy model of learning (Monaghan, 2017), that 
optimal performance would be a consequence of variable 
presence of multiple cues that aid learning. This was 
because the learner can exploit multiple information sources, 
without relying on any one cue, or coming to ignore the 
contribution of other highly correlated cues. 

The results of the behavioural study of learning word-
referent mappings supported the degeneracy model, in that 
learning was faster and more accurate when distributional, 
prosodic, and gestural cues occurred in 75% of trials during 
training, than when cues were present 100% of the time.  

However, greater variability – 25% and 50% occurrence 
of individual cues – reduced accuracy compared to the 75% 
condition, indicating that, for learning a small number of 
words, the optimal conditions were with cues present more 
than half the time, but not all the time. In natural language 
learning situations, reliability of individual cues to support 
word learning seems to be substantially lower. For instance, 
the prosodic cue of highest amplitude as an indicator of the 
referring word occurs in 50% of learning situations (Messer, 
1981), and explicit gestural cues occur substantially less 
often – even as low as 15% of learning situations (Iverson et 
al, 1999). However, these are situations where the 
vocabulary is much greater than the 10 word-object 
mappings of the current learning situation, and additional 
cues to word-referent mappings when the possibilities for 
those mappings are exponentially higher may have a greater 
effect even when they occur more rarely. For instance, the 
model of Monaghan (2017) was trained on 100 words, and 
under those circumstances 50% variability was found to be 
optimal for learning. Scaling up the current language to 
larger vocabularies will be an important further test of the 
principles of variation in multiple environmental cues.  

Analysis of the trials where individual cues were present 
or absent indicated that the benefit of variability in presence 
of cues was greatest for the gestural cue, with variability 
enhancing the use made of this cue when it occurred (Figure 
3). Such a result is consistent not only with the degeneracy 
model of multiple cues, but also with the intersensory 
redundancy hypothesis (Bahrick et al, 2004), such that 
correlated cues increase in salience, but with the exception 
that the redundancy should not be absolute: if cues are 
perfectly correlated then their salience does not increase, as 
in the 100% condition. 

The results from analyses of different numbers of cues 
present showed that combining cues boosted learning 
(Figure 4), indicating that the learner was exploiting 
information present from each of the individual cues. It was 
not the case, for instance, that participants learned to only 
attend to particular cues, as their confluence resulted in 
greater improvement. Indeed, when those cues were variable 
but all present, performance was best of all – again, the 75% 
variability condition outperformed the 100% condition when 



all three cues were available in the trial. 
In all variability conditions, learning was shown to be 

robust to absence of individual cues. This is an important 
result, because it demonstrates that though cues can support 
learning, they do not over-shadow the cross-situational 
statistical relations between particular words and objects co-
occurring. This was the case even when cues were always 
present, thus, even if multiple cues are always present they 
do not result in brittle learning of statistical relations. It may 
be that individual cues, if occurring with high reliability 
could interfere with robust learning (e.g., Srivastava, 2014), 
and this is a topic for future investigation. 

We know that the language environment is noisy, but 
replete with numerous multimodal cues that point in 
different ways to the same language structures (Whitacre, 
2010; Winter, 2014; Yurovsky, Smith, & Yu, 2013). We 
have shown that learners are able to exploit these multiple 
cues, and also their variability, to support word learning. 
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