WEEK 4

Note: There may be some mistakes/typos in my note. If you detect any one of them, please let me know.a.nguyen@lancaster.ac.uk

1. State the sixth term of each of the following progression and determine the sum to 10 terms. Evaluate the sum to infinity (if possible) in each case (Hint: Find the common ratio first)
a. $10,30,90,270, \ldots$
b. $81,27,9,3, \ldots$
c. $2,-4,8,-16, \ldots$..
d.-1024, 512, $-256,128, \ldots$..
e. $1,0.1,0.01,0.001, \ldots .$.

Solution:
Note: Each term is calculated by multiplying their predecessor by a fixed number
$S_{n}=a+a r^{1}+a r^{2}+a r^{3}+\ldots+a r^{n-1}$
$S_{n}=\frac{a-a r^{n}}{1-r}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a}{1-r}-\frac{a r^{n}}{1-r}$
a. $10,30,90,270$,
$10 \times 1,10 \times 3,10 \times 9,10 \times 27$
$10 \times 3^{0}, 10 \times 3^{1}, 10 \times 3^{2}, 10 \times 3^{3}, 10 \times 3^{4}, 10 \times 3^{5}$,
$10 \times 3^{0}, 10 \times 3^{1}, 10 \times 3^{2}, 10 \times 3^{3}, 10 \times 3^{4}, 10 \times 3^{5} \ldots . .10 \times 3^{n}$
Exploding progression!
$\mathrm{r}=3 ; \mathrm{a}=10 ; \mathrm{n}=10 ; \mathrm{n}=$ infinity
$S=\frac{10}{-2}-\frac{10 x 3^{10}}{-2}=295240$
$S=\frac{10}{-2}-\frac{10 \times 3^{\infty}}{-2}=(-5)+5 \times 3^{\infty}=\infty$
b. $81,27,9,3$,
$81,81 \times 1 / 3,81 \times 1 / 9,81 \times 1 / 27$
$81,81 \times 1 / 3,81 \times(1 / 3)^{2}, 81 \times(1 / 3)^{3}, 81 \times(1 / 3)^{4}, 81 \times(1 / 3)^{5}$
$\mathrm{a}=81,0<\mathrm{r}=1 / 3<1, \mathrm{n}=10, \mathrm{n}=$ infinity
$S=\frac{81}{1-(1 / 3)}-\frac{81 x(1 / 3)^{10}}{1-(1 / 3)}=\frac{81 x\left\{1-(1 / 3)^{10}\right\}}{1-(1 / 3)}=121.4979$
$S=\frac{a}{1-r}=\frac{81}{1-(1 / 3)}=121.5$
c. $2,-4,8,-16$, $2,2 \times(-2)^{1}, 2 \times(-2)^{2}, 2 \times(-2)^{3}, 2 \times(-2)^{4}, \mathbf{2 \times (- 2)}{ }^{5}$,
$\mathrm{a}=2, \mathrm{r}=-2, \mathrm{n}=10$,
$S=\frac{2}{1-(-2)}-\frac{2 x(-2)^{10}}{1-(-2)}=\frac{2 x\left\{1-(-2)^{10}\right\}}{3}=-682$
$\mathrm{n}=$ infinity: Cannot evaluate
d. $-1024,512,-256,128, \ldots$.
$-1024,-1024 \times(-1 / 2)^{1},-1024 \times(-1 / 2)^{2},-1024 \times(-1 / 2)^{3},-1024 \times(-1 / 2)^{4}$,
$-1024 \times(-1 / 2)^{5}$,
$\mathrm{a}=-1024, \mathrm{r}=-1 / 2, \mathrm{n}=10, \mathrm{n}=$ infinity
$S_{10}=\frac{a-a r^{n}}{1-r}=\frac{-1024\left\{1-(-1 / 2)^{10}\right\}}{1-(-1 / 2)}=-682$
$S_{\infty}=\frac{a}{1-r}-\frac{a r^{n}}{1-r}=\frac{a}{1-r}=\frac{-1024}{1-(-1 / 2)}=-682.6667$
e. $1,0.1,0.01,0.001$, $1,1 \times(1 / 10), 1 \times(1 / 10)^{2}, 1 \times(1 / 10)^{3}, 1 \times(1 / 10)^{4}, 1 \times(1 / 10)^{5}$,
$\mathrm{a}=1, \mathrm{r}=1 / 10, \mathrm{n}=10, \mathrm{n}=$ infinity
$S_{10}=1.1111$
$S_{\infty}=1.111111$
2. What is the value of an investment of $£ 300$ at the end of 15 years if compound interest is paid at (a) 5% per annum; (b) 10% per annum.
Formula: $\mathrm{V}_{\mathrm{t}}=(1+r)^{t} V_{0}$
Solution:
a. $V_{0}=£ 300 ; \mathrm{r}=0.05 ; \mathrm{t}=15$
$\mathrm{V}_{\mathrm{t}}=623.678$
b. $V_{0}=£ 300 ; r=0.10 ; t=15$
$\mathrm{V}_{\mathrm{t}}=1253.2$
3. An insurance policy costs $£ 150$ per annum for 25 years. What is the final value of the policy if compound interest is earned at a rate of 6% per annum?
(i.e. $£ 150$ invested each year for 25 years)

Solution:
In year 25 , the value of $£ 150$ invested in the first year is given by: $(1+0.06)^{24} \times 150$ In year 25 the value of $£ 150$ invested in the second year is given by $(1+0.06)^{23} \times 150$ In year 25 the value of $£ 150$ invested in the third year is given by $(1+0.06)^{22} \times 150$
......
In year 25 the value of $£ 150$ invested in the $24^{\text {th }}$ year is given by $(1+0.06) \times 150$
In year 25 the value of $£ 150$ invested in the $25^{\text {th }}$ year is $£ 150$
We have a geometric progression here! With $\mathrm{a}=150, \mathrm{r}=1.06, \mathrm{n}=25$
$S_{25}=\frac{a-a r^{n}}{1-r}=\frac{a\left(1-r^{n}\right)}{1-r}=8229.7$
4. Government saving bonds are bought for $£ 4$ and are worth $£ 5$ after 4 years. What is the implied rate of compound interest?
$\mathrm{V}_{\mathrm{t}}=(1+r)^{t} V_{0} ; \quad \frac{V_{t}}{V_{0}}=(1+r)^{t} ; \ln \left(\frac{V_{t}}{V_{0}}\right)=\ln (1+r)^{t} ; \ln \left(\frac{V_{t}}{V_{0}}\right)=t \ln (1+r) ;$
$\ln \left(\frac{V_{t}}{V_{0}}\right) / t=\ln (1+r) ;$ Anti $\log \left[\ln \left(\frac{V_{t}}{V_{0}}\right) / t\right]=1+r ; \quad r=$ Anti $\log \left[\ln \left(\frac{V_{t}}{V_{0}}\right) / t\right]-1$
Solution: $\mathrm{V}_{\mathrm{t}}=5, \mathrm{~V}_{0}=4, \mathrm{t}=4$
$\mathrm{r}=0.05737$
5. (a) If $£ 300$ is invested for 10 years and is then worth $£ 800$, what is the implied rate of compound interest?
(b) What is the present value of the $£ 800$ at 16% per annum compound interest?
(Q. 1 page 23 in the note)

Solution:
A/ Similar to the last question, $\mathrm{V}_{\mathrm{t}}=800, \mathrm{~V}_{0}=300, \mathrm{t}=10$
$\mathrm{r}=0.10305$
B/ $\mathrm{V}_{0}=V_{t} /(1+r)^{t} ; \mathrm{V}_{0}=800 /\left((1+0.16)^{10}\right)=181.3468$
6. What is the present value of $£ 1000$ payable after 10 years if the rate of interest is:
(a) 14%; (b) 8%.

Solution
a) $\mathrm{V}_{0}=V_{t} /(1+r)^{t} ; \mathrm{V}_{0}=268.74$
b) $\mathrm{V}_{0}=463.19$
7. (a) How much should be invested at 10% per annum compound interest rate to give $£ 250$ after 5 year?
(b) What is the value of this investment after 3 years?

Solution:
a) $\mathrm{V}_{0}=V_{t} /(1+r)^{t} ; \mathrm{V}_{0}=155.23$
b) $\mathrm{V}_{\mathrm{t}}=(1+r)^{t} V_{0} ; \mathrm{V}_{3}=206.61$
8. To projects have estimated annual net returns as follows:

A: $100,200,300$
B: $150,300,100$
Which project has the highest present value of the discount rate is 10%
Present value of project A: $V_{0}=\frac{100}{1.1}+\frac{200}{(1.1)^{2}}+\frac{300}{(1.1)^{3}}=481.59$
Present value of project B: $V_{0}=\frac{150}{1.1}+\frac{300}{(1.1)^{2}}+\frac{100}{(1.1)^{3}}=459.42$
9. What is the internal rate of return from a project, which has the following costs and receipts:

Year end	1	2	3
Costs	120	120	100
Receipts	100	110	160
Net	-20	-10	60

Solution:
$120+\frac{120}{1+r}+\frac{100}{(1+r)^{2}}=100+\frac{110}{1+r}+\frac{160}{(1+r)^{2}}$
$20+\frac{10}{(1+r)}-\frac{60}{(1+r)^{2}}=0$
$20(1+r)^{2}+10(1+r)-60=0$

Let $\mathrm{X}=(1+\mathrm{r})$ and simplify the expression
$2 X^{2}+X-6=0$
$(2 X-3)(X+2)=0$
$\mathrm{X}=1.5$ and
$\mathrm{X}=-2$ which is implausible
$1+r=1.5$
$r=0.5$

