WEEK 6
Note: There may be some mistakes/typos in my note. If you detect any one of them, please let me know.a.nguyen@lancaster.ac.uk

Exercise 11

1. Determine the stationary values of the following functions

a. $\mathrm{Y}=3 \mathrm{X}^{2}-120 \mathrm{X}+30$
$d y / d x=6 X-120$
Set this equal to zero: $6 \mathrm{X}-120=0,6 \mathrm{X}=120, \mathrm{X}=20$
b. $Y=16-8 X-X^{2}$
$d y / d x=-8-2 X$
Set this equal to zero: $-8-2 \mathrm{X}=0 ;-2 \mathrm{X}=8 ; 2 \mathrm{X}=-8 ; \mathrm{X}=-4$
c. $\mathrm{Y}=\mathrm{X}^{4}-\mathrm{X}^{3}$
$d y / d x=4 X^{3}-3 X^{2}$
Set this equal to zero: $4 X^{3}-3 X^{2}=0 ; X^{2}(4 X-3)=0 ; X=0$ and $X=3 / 4$
d. $\mathrm{Y}=(\mathrm{X}-5)^{3}$, Let $\mathrm{u}=(\mathrm{X}-5)$, we have $\mathrm{Y}=\mathrm{u}^{3}$. Applying the chain rule (function of function rule) we have
$d y / d x=(d y / d u)(d u / d x)=3(X-5)^{2}$
Set this equal to zero, we have $\mathrm{X}=5$

2. Total cost is given by

$\mathrm{C}=500+4 \mathrm{q}+\left(\mathrm{q}^{2}\right) / 2$

Obtain the value of q that minimize AC

AC is given by: $A C=\frac{T C}{q}=500 q^{-1}+4+q / 2$, then differentiating to get
$\frac{d}{d q} A C=-500 q^{-2}+1 / 2$, which is then set equal to zero and solve for q, we have
$-500 q^{-2}=-1 / 2,500 q^{-2}=1 / 2,500 \frac{1}{q^{2}}=1 / 2,1000=q^{2}, q= \pm 31.62$. Negative q is implausible
3. If the demand function for a monopolists product is $q+2 p=10$, determine the p and q required to maximize total revenue. What is the elasticity of demand at this quantity?

Solution: Rewrite the demand function as $p=5-q / 2$.
Total revenue is given by $T R=p . q=(5-q / 2) q=5 q-q^{2} / 2$
Marginal revenue is given by: $M R=\frac{d T R}{d q}=5-q$, which should be equal to zero. We obtain $q=5$. So $p=2.5$
4. The TC function is $T C=q^{3}+20 q^{2}+20$ and the demand function is $q+p=240$. Find the p and q required to maximise profits (Note: $T R=p . q$)

Rewrite the demand function as $p=240-q$
Total revenue is given by $T R=p \cdot q=(240-q) q$
Profit is given by: $\Pi=T R-T C=\left(240 q-q^{2}\right)-\left(q^{3}+20 q^{2}+20\right)=-q^{3}-21 q^{2}+240 q-20$
Differentiating this profit function gives us $\frac{d \Pi}{d q}=-3 q^{2}-42 q+240$, which is then set to be equal to zero, divided both sides by -3 , we have $q^{2}+14 q-80=0$, and then solve for $q . q=4.35$ and $q=-18.35$ (implausible). So $p=240-4.35=235.65$. But you also need to check the sufficient condition! (Hint: - $6 q-42$, which is obviously negative since q cannot be negative!)
5. Compare the output levels which: (a) maximise $T R$, (b) minimise $A C$, and (c) maximise profit for a monopolist faced with a demand function and cost function as follow: $2 q+4 p=200 ; T C=256+2 q+2 q^{2}$.

Solution: Rewrite the demand function as $p=50-q / 2$
Total revenue is given by: $T R=\mathrm{p} \cdot \mathrm{q}=(50-\mathrm{q} / 2) \cdot \mathrm{q}=50 \mathrm{q}-\left(\mathrm{q}^{2}\right) / 2$
Differentiate and set equal to zero: $M R=\frac{d}{d q} T R=50-q$, so $q=50$. (You should also check the sufficient condition!).
The AC is given by: $A C=\frac{T C}{q}=\frac{256}{q}+2+2 q=256 q^{-1}+2+2 q$
Differentiate we get $\frac{d}{d q} A C=-256 q^{-2}+2=-256 \frac{1}{q^{2}}+2$, set equal to zero, we have $q=11.313$.

The profit function is given by

$$
\Pi=T R-T C=\left(50 q-\frac{q^{2}}{2}\right)-\left(256+2 q+2 q^{2}\right)=48 q-\frac{5 q^{2}}{2}-256
$$

Differentiate we get $\frac{d}{d q} \Pi=48-5 q$, set equal to zero, we have $q=9.6$

Exercise 12.

1. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
a. $z=x y+x^{2} y+x y^{2}$
$\frac{\partial z}{\partial x}=y+2 x y+y^{2}$, and $\frac{\partial z}{\partial y}=x+x^{2}+2 x y$
b. $z=3 x^{2} y+4 x y^{2}+6 x y$
$\frac{\partial z}{\partial x}=6 x y+8 y^{2}+6 y$ and $\frac{\partial z}{\partial y}=3 x^{2}+4 x y+6 x$
c. $z=(x+y) e^{x+y}$,

Let $\mathrm{u}=\mathrm{x}+\mathrm{y}$, we have $\mathrm{z}=\mathrm{ue} \mathrm{u}^{\mathrm{u}}$
$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}=e^{u}+u e^{u}=e^{x+y}+(x+y) e^{x+y}$
Similarly we have $\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial y}=e^{u}+u e^{u}=e^{x+y}+(x+y) e^{x+y}$
d. $\mathrm{z}=\ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$

Let $u=x^{2}+y^{2}$, we have $\mathrm{z}=\ln \mathrm{u}$
$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}=\frac{1}{u} 2 x=\frac{1}{x^{2}+y^{2}} 2 x$ and $\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial y}=\frac{1}{u} 2 y=\frac{1}{x^{2}+y^{2}} 2 y$

2. Let the demand for apples be given by

$q_{1}=240-p_{1}^{2}+6 p_{2}-p_{1} p_{2}$, where $\mathbf{p}_{1}=$ price of apples and $\mathbf{p}_{2}=$ price of orange Evaluate the partial elasticity of demand for apples when $p_{1}=5$ and $p_{2}=4$, w.r.t. (a) the price of apples and (b) the price of oranges.

Remember the definition and formula for elasticity?
$\varepsilon=\frac{\% \text { change in } Y}{\% \text { change in } X}=\frac{d y}{d x} \frac{x}{y}$, e.g. Y may be the quantity demanded and X is the price.
With $\mathrm{p}_{1}=5$ and $\mathrm{p}_{2}=4$, we have $\mathrm{q}_{1}=219$
$\varepsilon_{p_{1}}=\frac{d q_{1}}{d p_{1}} \frac{p_{1}}{q_{1}}=\left(-2 p_{1}-p_{2}\right) \frac{p_{1}}{q_{1}}=-0.3196$
$\varepsilon_{p_{2}}=\frac{d q_{1}}{d p_{2}} \frac{p_{2}}{q_{1}}=\left(6-p_{1}\right) \frac{p_{2}}{q_{1}}=0.018$
3. For a production function $q=f(k, l)$, the partial elasticity of output w.r.t. the labour input is defined as $\frac{\partial q}{\partial l} \cdot \frac{\partial l}{\partial q}$, show that for the Cobb-Douglas production function $q=A l^{\alpha} k^{\beta}$, this partial elasticity is α and for capital it is β.

Solution: Taking \log we have $\ln (q)=\ln (A)+\alpha \ln (1)+\beta \ln (k)$, and differentiating wrt 1 and k we have

$$
\begin{array}{ll}
\frac{\partial \ln q}{\partial l}=\alpha \frac{d}{d l} \ln l & \frac{\partial \ln q}{\partial k}=\beta \frac{d}{d k} \ln k \\
b u t & \text { but } \\
\frac{\partial \ln q}{\partial q} \frac{d q}{d l}=\alpha \frac{d}{d l} \ln l & \frac{\partial \ln q}{\partial q} \frac{d q}{d k}=\beta \frac{d}{d k} \ln k \\
\frac{1}{q} \frac{d q}{d l}=\alpha \frac{1}{l} & \frac{1}{q} \frac{d q}{d k}=\beta \frac{1}{k} \\
\frac{d q}{d l} \frac{l}{q}=\alpha & \frac{d q}{d k} \frac{k}{q}=\beta
\end{array}
$$

