WEEK 8
Note: There may be some mistakestypos in my note. If you detect any one of them, please let me know. a.nguyen@lancaster.ac.uk

Exercise 14.

1. Given $P=20+3 Q^{2}$
find
(i) price when $\mathrm{Q}=5$

$$
P=20+3 Q^{2}=20+3\left(5^{2}\right)=95
$$

(ii) producer surplus when $\mathrm{Q}=\mathbf{5}$

Revenue is given by $T R=P Q=5 * 95=475$
Producer is given by the difference between the revenue and the area under the supply curve from 0 to 5

$$
\begin{aligned}
& P S=475-\int_{Q=0}^{Q=5}\left(20+3 Q^{2}\right) d Q=475-\left.\left(20 Q+Q^{3}\right)\right|_{Q=0} ^{Q=5} \\
& =475-\left[20(5)+\left(5^{3}\right)\right]-\left[20(0)+\left(0^{3}\right)\right]=475-100-125=250
\end{aligned}
$$

2. Given the following demand and supply equations:

Demand: $\mathrm{P}=50-4 \mathrm{Q}$
Supply: $P=25+Q$
(i) Find the equilibrium $\mathbf{P}$ and $\mathbf{Q}$
$50-4 \mathrm{Q}=25+\mathrm{Q} 5 \mathrm{Q}=25 \mathrm{Q}=5, \mathrm{P}=30$
(ii) Using integral calculus, calculate the consumer surplus and the producer surplus at the equilibrium level of output

TR is given by $T R=5 \times 30=150$
Producer surplus is given by

$$
\begin{aligned}
& P S=150-\int_{Q=0}^{Q=5}(25+Q) d Q=150-\left.\left(25 Q+\frac{1}{2} Q^{2}\right)\right|_{Q=0} ^{Q=5} \\
& =150-\left[25(5)+\frac{1}{2}\left(5^{2}\right)\right]-\left[25(0)+\frac{1}{2}\left(0^{2}\right)\right]=150-125-12.5=12.5
\end{aligned}
$$

## Consumer surplus is given by

$$
\begin{aligned}
& C S=\int_{Q=0}^{Q=5}(50-4 Q) d Q-150=\left.\left(50 Q-2 Q^{2}\right)\right|_{Q=0} ^{Q=5} \quad-150 \\
& =\left[50(5)-2\left(5^{2}\right)\right]-\left[50(0)+2\left(0^{2}\right)\right] \quad-150=250-50-150=50
\end{aligned}
$$

3. Given the following MC and MR functions, find TC and TR MC=10+5Q
$M C=a+b Q$
$\mathrm{MR}=5$
$M R=\alpha-\beta q$
$T C=\int \frac{d(T C)}{d Q} d Q=\int M C d Q=\int(10+5 Q) d Q=10 Q+\frac{5}{2} Q^{2}$
$T C=\int \frac{d(T C)}{d Q} d Q=\int M C d Q=\int(a+b Q) d Q=a Q+\frac{b}{2} Q^{2}$
$T R=\int \frac{d(T R)}{d Q} d Q=\int M R d Q=\int 5 d Q=5 Q$
$T R=\int \frac{d(T R)}{d Q} d Q=\int M R d Q=\int(\lambda-\beta Q) d Q=\lambda Q-\frac{\beta Q^{2}}{2}$

## 4. Find $A C$ and $A R$ in 3 above.

Simply dividing the TC and TR over Q to obtain AC and AR .

