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ABSTRACT

The importance of wild birds as potential vectors of disease has received recent renewed empirical interest,

especially regarding human health. Understanding the spread of bacterial pathogens in wild birds may serve as

a useful model for examining the spread of other disease organisms, both amongst birds, and from birds to other

taxa. Information regarding the normal gastrointestinal bacterial flora is limited for the majority of wild bird

species, with the few well-studied examples concentrating on bacteria that are zoonotic and/or relate to avian

species of commercial interest. However, most studies are limited by small sample sizes, the frequent absence of

longitudinal data, and the constraints of using selective techniques to isolate specific pathogens. The pathogenic

genera found in the gut are often those suspected to exist in the birds’ habitat, and although correlations are

made between bacterial pathogens in the avian gut and those found in their foraging grounds, little is known

about the effect of the pathogen on the host, unless the causative organism is lethal. In this review, we provide an

overview of the main bacterial pathogens isolated from birds (with particular emphasis on enteropathogenic

bacteria) which have the potential to cause disease in both birds and humans, whilst drawing attention to the

limitations of traditional detection methods and possible study biases. We consider factors likely to affect the

susceptibility of birds to bacterial pathogens, including environmental exposure and heterogeneities within

the host population, and present probable avenues of disease transmission amongst birds and from birds to other

animal taxa. Our primary aim is to identify gaps in current knowledge and to propose areas for future study.

Key words: avian bacterial diseases, detection methods, enteropathogens, exposure, human waste, pathogen

transmission, Salmonella, sewage, susceptibility, wild birds.
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I. INTRODUCTION

The emergence of new infectious diseases in wildlife
(Alexander, 2003; Capua & Alexander, 2002; Rappole,
Derrickson & Hubálek, 2000), and their potential threat as
zoonoses (see Table 1 for glossary of terms), has increased
general interest in birds as vectors of pathogens and their
role in disease epidemiology. Birds are susceptible to many
bacterial diseases common to humans and domestic animals
(Broman, et al., 2002; Kapperud & Rosef, 1983; Keymer,
1958; Wilson & MacDonald, 1967), and also to other
potentially infectious microorganisms, including protozoa
and viruses, such as the influenza A virus. Various wildfowl
species serve as natural reservoirs for this virus, and have
been the source of highly virulent strains that have caused a
number of major pandemics over the last century (Capua &
Alexander, 2002; Gauthier-Clerc, Lebarbenchon &
Thomas, 2007). The virus can pass from infected birds to
pigs, and on to humans (Trampuz et al., 2004), though direct
transfer from birds in close proximity to humans can also
occur (Webster, 2004). Similarly, wild birds may act as
natural reservoir hosts for West Nile virus, infecting
mosquitoes, which in turn may infect other birds, horses
and humans (Rappole & Hubalek, 2003), causing fatal
encephalitis (Reed et al., 2003).

Although viral transmission differs from bacterial trans-
mission in a number of important ways (Anderson & May,
1992; Nelson, Williams & Graham, 2005; Swinton et al.,
2002), understanding the spread of avian bacterial patho-
gens may serve as a useful model for examining the spread
of other disease organisms, both amongst birds and from
birds to other taxa. Using bacterial pathogens as model
organisms has the key advantage that they are often safer to
work with than viral pathogens. Empirical studies doc-
umenting bacterial intestinal flora of wild birds are sparse;
the majority have determined the prevalence of specific
strains of bacteria that may present a potential health threat
to humans or domestic animals (Daniels, Hutchings &
Greig, 2003; Goodchild & Tucker, 1968; Johnston,
MacLachlan & Hopkins, 1979; McClure, Eveland & Kase,
1957; Williams, Richards & Lewis, 1976). Studies of
enterobacterial infections and carriage rates in wild birds
have so far concentrated on those avian species most likely
to acquire bacteria from human sources, especially gulls
(Larus spp.), with salmonellae, campylobacters and Escherichia
coli being the prevailing causative organisms of interest
(Allos, 2001; Broman et al., 2002; Casanovas et al., 1995;
Hurvell, 1973; Kapperud & Rosef, 1983; Keymer, 1958;

Varslot, Resell & Fostad, 1996; Wilson & MacDonald,
1967). Avian feeding ecology appears to be a key determi-
nant of enterobacterial acquisition (Cornelius, 1969;
Fenlon, 1983; Williams et al. 1976), though different avian
species seem to vary in susceptibility to enteropathogenic
bacteria (Butterfield et al., 1983; Fenlon, 1981; Fricker, 1984;
Sixl et al., 1997). Most data on the prevalence of
enteropathogenic bacteria in passerines come from veter-
inary studies focussing on disease outbreaks resulting in
high mortality (Faddoul, Fellows & Baird, 1966; Keymer,
1958; Kirkwood, Holmes & Macgregor, 1995). While these
studies may give some indication of the frequency with
which birds die from different infections, they provide little
or no information on the bacterial source, or the prevalence
of the pathogens in apparently healthy individuals. The role
of birds as vectors of disease could be underestimated, as
many individuals may asymptomatically harbour sub-lethal
levels of potentially pathogenic bacterial species (Fenlon,
1981, 1983; Fricker, 1984). In contrast to wild birds, the
gastrointestinal flora and the processes of disease trans-
mission in commercially bred poultry have been extensively
studied (Barnes, 1979; Basher et al., 1984; Davies & Wray,
1996; Evans & Sayers, 2000), due to the zoonotic threat to
the economic value of the industry. Whilst the types of
pathogens that cause disease in poultry, their relative
infectivity and the resulting symptoms in the birds, may
help us to understand the dynamics of disease transmission
in wild birds, it is difficult to extrapolate from the highly
artificial conditions of the poultry house to free-living avian
species. Though many of the bacterial enteropathogens that
affect poultry have also been isolated from wild birds,
relatively little is known about their effect on wild
populations, with the exception of outbreaks of lethal
diseases. Due to the general lack of interest in wild birds as
zoonotic vectors of disease, combined with their relatively
low commercial value, few studies have examined their
normal gastrointestinal flora. However, bird feed manufac-
turers have increased the economic value of wild birds, and
concurrently drawn attention to their potential as vectors of
disease. Identification of the normal microfloral compo-
nents of the avian gut is important if we are fully to
understand the complexities of enterobacterial interactions
within the bird, and to appreciate how inherent gut bacteria
may influence the susceptibility of the host to pathogens
acquired from the environment. Likewise, a sound under-
standing of non-enteropathogenic infections can provide
insight into the transmission dynamics of other types of
avian pathogen.
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This review summarises our current knowledge of the
bacterial pathogens carried by, and known to cause disease
in, birds, with particular emphasis on enteropathogenic
bacteria. We explore the factors that may affect their
susceptibility to disease (summarised in Fig. 1), and investi-
gate the mechanisms by which birds may act as vectors of
pathogenic bacteria. We aim to identify gaps in our current
knowledge and draw attention to areas that could be
rewarding for further research.

II. BACTERIAL PATHOGENS FOUND IN BIRDS

(1) Enteropathogens

The majority of information regarding bacterial enter-
opathogens in wild birds stems from studies that have
applied traditional microbiological techniques (Brittingham,
Temple & Duncan, 1988; Kapperud & Rosef, 1983;
Waldenström et al., 2002). Quantitative data are lacking
on the levels of enteropathogenic bacteria shed by wild
birds, and the sparse literature documenting the faecal flora
of wild birds has tended to focus on the prevalence of
bacterial enteropathogens in a few, well-studied species,
notably those most likely to impact upon human health.
Table 2 provides an overview of the main bacterial enter-
opathogens isolated from wild birds. Methodological
approaches and limitations are discussed in section VI.

A variety of Salmonella species have been found in both
apparently healthy and obviously diseased wild birds.
Salmonella enterica serotype Typhimurium (S. Typhimurium)
is the serotype most commonly associated with wild birds,
and has been found to cause disease in house sparrows
Passer domesticus, brown-headed cowbirds Molothrus ater,
white-throated sparrows Zonotrichia albicollis (Faddoul et al.
1966) and tufted ducks Aythya fuligula (Keymer, 1958).
S. pullorum is known to reduce the probability of egg hatch-
ing and chick survival in ring-necked pheasants Phasianus

colchicus (Pennycott & Duncan, 1999; Sharp & Laing, 1993).
Domestic fowl commonly harbour S. enterica serovar Enter-
itidis (S. Enteritidis) without it causing discernible illness in
the birds, though this bacterium causes food-borne out-
breaks of salmonellosis in humans through the consumption
of infected chicken eggs (Guard-Petter, 2001).

Clinical signs of birds sick from Salmonella infections
include lethargy, fluffed-up plumage and a tendency to
remain near feeding areas and, although they appear to
have difficulties swallowing, they feed until shortly before
death (Kirkwood et al., 1995). Post-mortem examinations have
shown birds to have poor body condition, crops full of
undigested food, internal organs displaying lesions and
nodules (Kirkwood et al., 1995; Routh & Sleeman, 1995),
and sometimes enlarged livers and spleens (Faddoul et al.,
1966). Salmonellae in humans can cause enteric fever
(typhoid) resulting from bacterial invasion of the blood-
stream, and acute gastroenteritis resulting from food-borne
infection/intoxication (Finlay & Falkow, 1988).

Klebsiella species appear to be relatively common avian
pathogens (Bangert et al., 1988; Fudge, 2001; Hernandez
et al., 2003). Enterobacter species are well documented in birds
but appear not to cause disease outbreaks (da Silva et al.,
2004; Glünder, 1989; Shane et al., 1984). Escherichia coli has
been isolated from a range of bird species, including
apparently healthy passerines and waterfowl (Brittingham
et al., 1988; Damar�e et al., 1979; Foster et al., 1998). However,
avian pathogenic E. coli is known to cause extra-intestinal
diseases in chickens, turkeys and other avian species
(Dho-Moulin & Fairbrother, 1999), and E. coli producing
cytolethal distending toxin have been isolated from dead
wild finches (Foster et al., 1998). As well as being a significant
cause of human diarrhoea, E. coli can cause haemorrhagic
colitis, haemolytic uraemic syndrome (Tarr, 1995) and
thrombotic thrombocytopenic purpura in infected humans
(Doyle, 1991).

Pseudomonas aeruginosa is a common avian pathogen
(Brittingham et al., 1988; Walker et al., 2002) which

Table 1. Glossary of terms.

Term Definition used herein

Abundance The relative quantitative representation of bacterial species within the study organism or ecosystem
Acquired immunity Immunity acquired by infection or vaccination as a result of the development of antibodies through

exposure to an infective agent
Carriage rate The frequency with which a microorganism is present in a population of (asymptotic) carriers,

usually determined by the prevalence of culturable bacteria in faecal samples
Enzootic A disease which is constantly present in an animal population, but which usually only affects

a small number of individuals
Enteropathogenic An entity which is capable of causing disease in the intestinal tract
Fomite An inanimate object or substance that is capable of transmitting infectious organisms from one

individual to another
Innate immunity Immunity that is naturally present and is not due to prior sensitization to an antigen from, for example,

an infection or vaccination. Since it is not stimulated by specific antigens, innate immunity is
generally nonspecific

Intensity The mean number of parasites per infected host
Molecular marker A DNA sequence or gene that can be used to identify an organism, species, or strain associated with it
Pandemic A disease that is prevalent throughout an entire country, continent, or the whole world
Prevalence The proportion of the sample population that tests positive for a bacterial pathogen
Zoonoses A disease of animals, such as rabies or psittacosis, that can be transmitted to humans
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principally affects the upper respiratory tract, causing
rhinitis, sinusitis and laryngitis (Bailey et al., 2000; Gerlach,
1994; Momotani et al., 1995). Infections are also associated
with septicaemia and haemorrhagic enteritis in psittacines
(Rich, 2003), corneal ulcers in captive cranes (Miller et al.,
1995) and mass mortality in free-living flamingos (Kock
et al., 1999). Different strains of Streptococcus and Enterococcus
species have also been isolated from birds in association
with septicemic disease (Devriese et al., 1995, 1992, 1991;
Droual et al., 1997; Farrow & Collins, 1985). Staphylococcosis
is a relatively common disease of domestic poultry, particu-
larly turkeys, resulting in osteomyelitis, arthritis, tendonitis,
and occasionally septicemia (Gross, 1978). Infections with
Staphylococcus aureus are frequently secondary to impairment
of the host defence mechanisms, or are due to a compro-
mised immune system (Wobeser & Kost, 1992). Once inside
the host organism, the bacterium can colonize a wide range
of organs, and in birds dying from staphylococcosis,
necrosis, vascular congestion and inflammation of internal
organs have all been reported (Arp, Robinson & Jensen,
1983; Bergmann et al., 1988; Cheville et al., 1988). Wild
birds are thought to be a significant reservoir for Yersinia
pseudotuberculosis, and are also known to harbour Y. enter-
ocolitica (Fukushima & Gomyoda, 1991; Fukushima,
Gomyoda & Kaneko, 1991; Hubbert, 1972). If pathogenic
species of Yersinia are common in wild bird populations,

avian transmission of these bacteria to humans and other
animals is possible (Niskanen et al., 2003).

Various apparently healthy wild birds have been found to
contain Campylobacter fetus subsp. jejuni (C. jejuni), suggesting
that this organism may be a normal component of the
intestinal flora of at least some bird species (Kapperud &
Rosef, 1983). However, the presence of Campylobacter species
appears to be influenced by feeding behaviour and differs
considerably amongst ecological guilds of birds: the
majority of insectivores and granivores rarely or never test
positive for Campylobacter species (Waldenström et al., 2002),
whereas raptors, scavengers and most ground-foraging
guilds, show high rates of carriage. C. jejuni alone has been
isolated from feral pigeons Columba livia, blackbirds Turdus
merula, starlings Sturnus vulgaris, house sparrows, dunlin
Calidris alpina and various gulls (Smibert, 1969; Skirrow &
Benjamin, 1980; Palmgren et al., 1997; Craven et al., 2000).
Campylobacters can cause diarrhoea and vomiting in
humans (Blaser, 1997; Gillespie et al., 2002), with C. jejuni
being the most common cause of bacterial gastroenteritis
worldwide (Allos, 2005). Birds are ideal hosts for campy-
lobacters, due to their relatively high body temperature
(42°C), and human infections are most commonly associ-
ated with consumption of undercooked, contaminated
poultry meat (Harris, Weiss & Nolan, 1986). The survival
of C. jejuni in water and on ground surfaces (Blaser et al.,

Fig. 1. A diagrammatic overview of the factors likely to influence the true prevalence/abundance of pathogens in birds, and the
constraints that may affect observed prevalence/abundance data (see text for details). The true prevalence of pathogens in birds is
likely to be affected by both exposure and susceptibility. Exposure to pathogens may be affected by a range of factors, including: life-
history and demographic effects (e.g. age, sex, body size, etc.), population density, and the homogeneity of pathogens in the
environment, and may also be dependent on contact with other species. Both acquired and innate immunity will affect the
susceptibility of individuals to pathogens. The measurable fitness cost to the birds will be affected both by the abundance and
virulence of the pathogens. The effectiveness of detecting the abundance of pathogens in birds is influenced by various
methodological constraints (e.g. detection method; sensitivity, specificity and biases in sampling protocol deployed; sample sizes).
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lü

n
d

er
et
al
.

(1
9

9
1

)

C
h

a
ri

d
ri

i
C

lo
a
ca

l
sw

a
b

s/
cl

o
a
ca

l
la

va
g
e

C
a
m

p
yl

o
b

a
ct

er
s

(7
1

.3
8

)
3

1
1

S
co

tl
a
n

d
–

F
ri

ck
er

&
M

et
ca

lf
e

(1
9

8
4

)

G
u

ll
(L
ar
us

)
sp

ec
ie

s
F
a
ec

a
l

sa
m

p
le

S
a
lm

o
n

el
la

e
(2

6
.7

)
6

0
G

er
m

a
n

y
R

ef
u

se
E

d
el

et
al
.

(1
9

7
6

)
G

u
ll

(L
ar
us

)
sp

ec
ie

s
F
a
ec

a
l

sa
m

p
le

S
a
lm

o
n

el
la

e
(2

3
.7

)
1

1
4

G
er

m
a
n

y
R

ef
u

se
E

d
el

et
al
.

(1
9

7
8

)
G

u
ll

(L
ar
us

)
sp

ec
ie

s
F
a
ec

a
l

sa
m

p
le

S
a
lm

o
n

el
la

e
(1

2
.9

)
1

2
4

2
S

co
tl

a
n

d
,

A
b

er
d

ee
n

sh
ir

e
S

ew
a
g
e

F
en

lo
n

(1
9

8
1

)

G
u

ll
(L
ar
us

)
sp

ec
ie

s
F
a
ec

a
l

sa
m

p
le

S
a
lm

o
n

el
la

e
(5

5
)

2
0

S
co

tl
a
n

d
A

b
er

d
ee

n
sh

ir
e

S
ew

a
g
e

F
en

lo
n

(1
9

8
3

)

G
u

ll
(L
ar
us

)
sp

ec
ie

s
F
a
ec

a
l

sa
m

p
le

L
is

te
ri

a
s

(1
4

.5
)

2
7

5
S

co
tl

a
n

d
,

A
b

er
d

ee
n

sh
ir

e
S

ew
a
g
e

F
en

lo
n

(1
9

8
5

)

G
u

ll
(L
ar
us

)
sp

ec
ie

s
C

lo
a
ca

l
sw

a
b

S
a
lm

o
n

el
la

e
(1

0
.7

)
5

6
0

S
co

tl
a
n

d
–

F
ri

ck
er

et
al
.

(1
9

8
3

)
G

u
ll

(L
ar
us

)
sp

ec
ie

s
C

lo
a
ca

l
la

va
g
e

S
a
lm

o
n

el
la

e
(7

.8
)

5
8

8
8

S
co

tl
a
n

d
R

ef
u

se
G

ir
d

w
o

o
d
et
al
.

(1
9

8
5

)
G

u
ll

(L
ar
us

)
sp

ec
ie

s
C

lo
a
ca

l
sw

a
b

C
a
m

p
yl

o
b

a
ct

er
s

(2
3

.3
)

1
8

0
N

o
rw

a
y

–
K

a
p

p
er

u
d

&
R

o
se

f
(1

9
8

3
)

Bacterial pathogens in wild birds 353

Biological Reviews 84 (2009) 349–373 � 2009 The Authors Journal compilation � 2009 Cambridge Philosophical Society



T
a
b

le
2

.
(c
on
t.

)

B
ir

d
sp

ec
ie

s/
g
ro

u
p

S
a
m

p
li
n

g
m

et
h

o
d

B
a
ct

er
ia

l
sp

ec
ie

s
a
n

d
p

re
va

le
n

ce
(%

o
f

b
ir

d
s

in
fe

ct
ed

)
S

a
m

p
le

si
ze

L
o
ca

ti
o
n

P
ro

b
a
b

le
so

u
rc

e
R

ef
er

en
ce

G
u

ll
(L
ar
us

)
sp

ec
ie

s
A

u
to

p
sy

S
.

T
yp

h
im

u
ri

u
m

(6
)

8
3

S
co

tl
a
n

d
–

M
a
cd

o
n

a
ld

&
B

ro
w

n
(1

9
7

4
)

G
u

ll
(L
ar
us

)
sp

ec
ie

s
F
a
ec

a
l

sa
m

p
le

C
a
m

p
yl

o
b

a
ct

er
s

(1
3

.7
)

2
0

5
N

.
Ir

el
a
n

d
M

o
o

re
et
al
.

(2
0

0
2

)
G

u
ll
,

sp
ec

ie
s

u
n

sp
ec

if
ie

d
A

u
to

p
sy

C
a
m

p
yl

o
b

a
ct

er
s

(3
3

)
S

a
lm

o
n

el
la

e
(5

.8
)

1
0

3
N

o
rw

a
y

R
ef

u
se

W
il
lu

m
se

n
&

H
o

le
(1

9
8

7
)

H
er

ri
n

g
g
u

ll
C

lo
a
ca

l
sw

a
b

S
a
lm

o
n

el
la

e
(1

7
)

1
5

4
S

co
tl

a
n

d
–

B
en

to
n
et
al
.

(1
9

8
3

)
H

er
ri

n
g

g
u

ll
C

lo
a
ca

l
sw

a
b

S
a
lm

o
n

el
la

e
(2

.1
–

8
.4

)
2

7
8

6
E

n
g
la

n
d

–
B

u
tt

er
fi

el
d
et
al
.

(1
9

8
3

)
H

er
ri

n
g

g
u

ll
F
a
ec

a
l

sa
m

p
le

/
a
u

to
p

sy
/

cl
o

a
ca

l
la

va
g
e

S
a
lm

o
n

el
la

e
(9

.6
)

2
0

2
1

S
co

tl
a
n

d
,

C
ly

d
e

a
re

a
R

ef
u

se
M

o
n

a
g
h

a
n
et
al
.

(1
9

8
5

)

H
er

ri
n

g
g
u

ll
F
a
ec

a
l

sa
m

p
le

S
a
lm

o
n

el
la

e
(2

2
.2

)
5

1
4

W
a
le

s
R

ef
u

se
W

il
li
a
m

s
et
al
.

(1
9

7
6

)
R

in
g
-b

il
le

d
g
u

ll
(L
.
de
la
w
ar
en
si
s)

C
lo

a
ca

l
sw

a
b

S
a
lm

o
n

el
la

e
(1

3
)

C
a
m

p
yl

o
b

a
ct

er
s

(4
.3

)
L
is
te
ri
a
m
on
oc
yt
og
en
es

(4
.4

)

2
6

4
C

a
n

a
d

a
,

M
o

n
tr

ea
l

R
ef

u
se

Q
u

es
sy

&
M

es
si

er
(1

9
9

2
)

S
co

lo
p

a
ci

d
a
e,

C
h

a
ri

d
ri

id
a
e

C
lo

a
ca

l
sw

a
b

C
a
m

p
yl

o
b

a
ct

er
s

(7
9

.6
)

3
8

2
S

w
ed

en
–

W
a
ld

en
st

rö
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1980) suggests that gulls and pigeons could be a possible
source of human infection, especially amongst children,
who are more suseptible to contact with these birds and/or
their faeces through play in public open spaces (Hatch, 1996;
Casanovas et al., 1995).

Pasteurella aviseptica has been isolated from carrion crows
Corvus corone, blackbirds, robins Erithacus rubecula, starlings
and tufted ducks (Keymer, 1958), and P. multocida from
various raptors (Morishita et al., 1996). P. multocida, which
causes fowl cholera, is known to be lethal to game birds
such as ring-necked pheasants, partridges Perdix perdix and
red grouse Lagopus lagopus scoticus (Jennings, 1954, 1955).
When outbreaks of fowl cholera occur in wild game bird
populations, high mortality ensues as a result of the birds’
relatively gregarious nature and tendency to occur at high
densities (Botzler, 1991) and, although fowl cholera is not
usually a threat to human health, outbreaks may have
severe economic implications for the game industry.

Listeria monocytogenes is ubiquitous in the environment
(Beuchat, 1996; Fenlon, 1985) and grows at refrigeration
temperature (approximately 4°C). It can therefore survive
and multiply outside a host species, facilitating uptake by
further hosts or vectors, such as wild birds (Fenlon, 1985).
Listeriosis can cause gross abnormalities and histological
lesions in the liver, heart, spleen and kidneys, as well as toe
paralysis in newly hatched chicks (Basher et al., 1984).
Humans commonly ingest Listeria species through the con-
sumption of raw and unprocessed food products. Listeriosis
causes muscle ache, neck stiffness and convulsions, and can
result in gastroenteritis, miscarriage (Altekruse, Cohen &
Swerdlow, 1997), sepsis in immunocompromised patients,
or meningitis in infants and patients with chronic diseases
(Schlech, 2000).

Clostridium perfringens is another ubiquitous bacterium
which is commonly associated with poultry houses and their
surroundings (Craven et al., 2001). It is often found in the
intestinal tracts of healthy birds, and is the causative agent
for outbreaks of both acute clinical disease and subclinical
disease in broiler and turkey flocks (Engström et al., 2003).
The detection of C. perfringens in faeces from wild birds near
broiler chicken houses suggests that wild birds that gain
entry to poultry houses have the potential to transmit the
pathogen to poultry (Craven et al., 2000). C. perfringens is of
concern to human health, as it can cause food borne disease
by transmission through poultry products (Engström et al.,
2003). It is beyond the scope of this review to fully detail the
symptoms and diseases resulting from bacterial infections
that both birds and humans are susceptible to, though it is
pertinent to note that both direct and indirect contact
between birds and humans may have important implica-
tions for human health.

(2) Non-enteropathogens

(a ) Avian psittacosis

Psittacosis, or avian chlamydiosis, is a zoonotic illness
caused by Chlamydia psittaci; originally thought to occur only
in psittacine birds, it is now known to affect a wide range of
both avian and mammalian species, including humansA
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(Vanrompay et al., 1995). Individual bird species may be
infected by C. psittaci strains that differ in virulence;
symptoms include respiratory infection, diarrhoea, polyuria
and conjunctivitis (Vanrompay, Ducatelle & Haesebrouck,
1995). In poultry, avian chlamydiosis can either be
asymptomatic, or may manifest itself as a disease of high
morbidity and mortality, which can be economically
devastating to poultry producers (Andersen & Vanrompay,
2000). Once within a flock, C. psittaci is primarily spread
between birds by inhalation of desiccated droppings and
secretions, both ocular and nasal, from infected birds, or
through ingestion of contaminated faeces (Page, 1959;
Takahashi, Takashima & Hashimoto, 1988). The infection
may be transmitted to fledglings in the nest by parent birds
that are shedding the organism (Burnet, 1935) and there is
evidence of transmission through eggs (Vanrompay et al.,
1995). Additionally, blood-sucking ectoparasites have been
shown to transfer the bacterium between birds, probably as
mechanical rather than biological vectors (Shewen, 1980).
The mechanism for introduction of avian chlamydiosis to
poultry flocks is poorly understood, though wild birds are
thought to play a major role in disease transmission
(Andersen & Vanrompay, 2000). Free-living wild birds are
important as reservoirs of C. psittaci (Brand, 1989), evidence
of exposure to chlamydiae most frequently being reported
in Charadriiformes, Passeriformes, and Anseriformes
(Brand, 1989; Franson & Pearson, 1995). Both diseased
birds and sub-clinically infected birds can shed chlamydiae
and are therefore a potential threat to both human and
animal health (Brand, 1989; Franson & Pearson, 1995;
Roberts & Grimes, 1978; Wobeser & Brand, 1982). Since
the same strains occur in both wild birds and domestic
poultry flocks, wild birds may be a potential source of
infection and should therefore be prevented from coming
into contact with poultry (Grimes, 1978; Page, 1976).

The importance of poultry as a source of infection for
humans became evident in the 1950s, when outbreaks
occurred in humans due to contact with infected birds
(Graber & Pomeroy, 1958; McCulloh, 1955; Meyer &
Eddie, 1953), though most infections in humans are due to
exposure to psittacine birds and pigeons (Andersen &
Vanrompay, 2000). Psittacosis in humans is typically
transmitted through inhalation of aerosolized bird excreta
(Moroney et al., 1998), and those most prone to the disease
are usually owners of pet birds, or those exposed to birds by
occupation, including pet shop employees, aviary workers,
veterinarians, employees in poultry slaughtering and
processing plants, farmers and zoo workers (Longbottom &
Coulter, 2003).

(b ) Mycoplasma gallisepticum

The bacterium Mycoplasma gallisepticum is frequently associ-
ated with respiratory tract disease, debilitation and carcass
condemnation, as well as reduced egg production in domes-
tic poultry (Bradbury, 2001; Jordan, Pattison & Alexander,
2001; Mohammed, Carpenter & Yamamoto, 1987).
Historically, M. gallisepticum has not been considered a
naturally occurring pathogen of wild birds, though incidents
have been reported to occur in various species, such as wild

turkeys Meleagris gallopavo, and captive reared ring-necked
pheasants, chukar partridges Alectoris chukar and peafowl
Pavo cristatus (Cookson & Shivaprasad, 1994; Fritz, Thomas &
Yuill 1992). Serological surveys and experimental infections
have suggested that house sparrows may act as transient
carriers of the bacterium (Kleven & Fletcher, 1983).

An epidemic of conjunctivitis in eastern house finches
Carpodacus mexicanus occurred in suburban Washington DC,
USA, in 1994, since when the disease has become
widespread throughout the eastern USA and Canada
(Fischer et al., 1997). Diagnostic testing confirmed the
symptoms to be caused by a new strain of the non-zoonotic
poultry pathogen M. gallisepticum (Ley, Berkhoff & McLaren,
1996; Luttrell et al., 1996). By the end of 1995, the disease
had spread, not only geographically, but also to other
species such as the American goldfinch Carduelis tristis,
purple finches C. purpureus, evening grosbeaks Coccothraustes
vespertinus and pine grosbeaks Pinicola enucleator (Faustino
et al., 2004; Fischer et al., 1997). The reason that house
finches first became infected with M. gallisepticum remains
unknown (Dhondt, Tessaglia & Slothower, 1998), as do the
modes of transmission, though it is suspected that social and
foraging behaviour at bird feeders and other sites of
abundant food may facilitate transmission through direct
contact (Dhondt et al., 1998; Hartup, Mohammed, Kollias
et al., 1998). M. gallisepticum continues to spread across the
United States and has been confirmed in the native western
range of house finches (Faustino et al., 2004). If feeders do
play a significant role in the transmission of the disease,
either as a fomite or by acting as a focal point for diseased
birds unable to successfully secure natural food sources,
appropriate strategies that modify bird feeding activities
may help to decrease the spread of mycoplasmal conjunc-
tivitis in wild populations (Hartup et al., 1998).

(c ) Avian botulism

Avian botulism is a neuroparalytic, often fatal, disease of
birds that results from the ingestion of toxin produced by
the bacterium Clostridium botulinum. There are seven distinct
types of toxin, designated A-G (Hauschild & Dodds, 1993),
of which almost all birds are susceptible to type C botulism,
though waterfowl and shorebirds are most notably affected
(Borland, Moryson & Smith, 1977; Brand et al., 1988; Ortiz &
Smith, 1994). Widespread outbreaks have resulted from
birds eating toxin-laden maggots that have been feeding on
the carcasses of other birds dead from botulism (Hauschild &
Dodds, 1993). Among waterbirds, such as gulls, loons and
grebes, outbreaks have been caused by type E toxin,
probably as a result of ingestion of toxic fish (Hauschild &
Dodds, 1993). Spores of C. botulinum are common in marsh
soil and can persist there for years (Smith, Oliphant &
White, 1982), and animals living in marsh areas ingest
spores frequently (Reed & Rocke, 1992). Decaying animal
material provides a suitable substrate for C. botulinum growth
(Bell, Sciple & Hubert, 1955), vertebrate carcasses being of
particular importance (Smith & Turner, 1987). When an
animal containing C. botulinum spores dies, putrefaction,
invasion of tissues by C. botulinum from the gut, and
associated toxin production occurs (Notermans, Dufrenne &
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Kovacki, 1980; Smith & Turner, 1987). The larvae of
sarcophagus flies Sarcophaga spp., feeding on the carcasses,
are not affected by the toxins and effectively act to
concentrate the toxin (Duncan & Jensen, 1976). Birds that
ingest these maggots may die of intoxication and their
carcasses become substrates for the generation of further
toxins and more maggots, thus perpetuating the cycle.
Despite its microbiology being well understood, manage-
ment of the disease still primarily consists of carcass
collection during epizootics (Wobeser, 1997) rather than
any form of preventative management.

(d ) Tick-borne bacterial pathogens

Various human pathogenic microorganisms have been
detected in ticks collected from migratory birds, including
the causative agents of Lyme disease, rickettsiosis and
human granulocytic ehrlichiosis (Alekseev et al., 2001;
Bjöersdorff et al., 2001; Parola & Raoult, 2001). Rick-
ettsioses are infectious diseases, and the implication of birds
in their dissemination through tick dispersal seems highly
likely (Fournier, Gouriet, Brouqui et al., 2005; Fournier,
Tissot-Dupont & Gallais, 2000). The involvement of birds
in the ecology and epidemiology of ehrlichiosis, however,
has yet to be established (Parola & Raoult, 2001).

Lyme disease is caused by three different species of
spirochetes in the Borrelia burgdorferi sensu lato genogroup, and
is transmitted to humans and other animals via Ixodid ticks
(Barbour, 1998). Numerous studies have investigated the
possible roles of wild birds in the perpetuation of enzootic
cycles of the disease and the expansion of endemic ranges
(Anderson et al., 1986; Kurtenbach et al., 1998; Olsen,
Jaenson & Bergström, 1995). Of the tick species known to
parasitize wild birds, Ixodes species are the most likely to
carry B. burgdorferi in Europe and North America, and
commonly infest a wide range of bird species (Anderson
et al., 1986; Anderson, Magnarelli & Stafford, 1990; Olsen
et al., 1995; Smith et al., 1996).

The ticks attach themselves to their host for 24-48 h
whilst acquiring a blood meal (Tsiodrasa et al., 2008). This
allows ample time for migrating birds to travel hundreds or
even thousands of miles before the ticks finish feeding and
drop off (Reed et al., 2003), thereby depositing the infectious
tick in a new geographical area. There is evidence of trans-
hemispheric exchange of spirochete-infected ticks by sea-
birds, indicating the capacity for wild birds to carry infected
ticks over long distances (Olsen et al., 1995). Even if the
relative ectoparasite load is small, the number of birds
transporting tick vectors could contribute substantially to
local tick populations (Ginsberg et al., 2005), thereby
affecting disease dynamics. Birds can also carry infections
in their bloodstream, which can then be introduced to local
populations of ticks at other sites (Humair, 2002; Richter
et al., 2000). Birds appear to play an important role not only
in maintaining B. burgdorferi in areas where the pathogen
is already established, but also by spreading the disease
agent through migration, by spreading ticks both within
and between continents (Ishiguro et al., 2000; Scott et al.,
2001; Smith et al., 1996).

(3) Drug-resistant bacteria in wild birds

Antibiotics are used in animals to control bacterial
infections, with the result that resistance in both pathogenic
bacteria and the endogenous flora of exposed individuals or
populations occurs (Hinton, Al Chalaby & Allen, 1982;
Howe, Linton & Osborne, 1976; Van den Bogaard, 1997).
The use of antibiotics is deemed to be the most important
factor promoting the emergence, selection and dissemina-
tion of antibiotic-resistant microorganisms in both veteri-
nary and human medicine (Neu, 1992; Witte, 1998). In
animals such as broilers and turkeys, antimicrobial agents
are often continuously supplied as antimicrobial growth
promoters, and this has resulted in increased antibiotic
selection pressure for resistant bacteria, resulting in their
faecal flora containing a relatively high proportion of
resistant bacteria (Van den Bogaard & Stobberingh, 1999).
Antimicrobial drug resistance is relatively commonplace in
poultry, but has also been described in bacteria isolated
from wild birds (Cole et al., 2005; Middleton & Ambrose,
2005; Sjölund et al., 2008). Arctic birds are known to
contain multi-drug-resistant bacteria, indicating that migra-
tion behaviour may be responsible for the introduction and
transfer of drug-resistant bacteria to geographically remote
areas (Sjölund et al., 2008). Canada geese Branta canadensis
containing antibiotic-resistant E. coli use farmland for
grazing, creating the opportunity for transfer of drug-
resistant bacteria to cattle and other livestock (Cole et al.,
2005). Although wild animals do not naturally come into
contact with antibiotics, they can become infected with
resistant bacteria disseminated by wild birds, and act as
reservoirs and vectors of resistant bacterial pathogens,
encouraging new health problems in wildlife populations to
emerge, as well as novel reservoirs of zoonotic disease to
form (Cole et al., 2005; Hudson et al., 2000; Sayah et al.,
2005).

III. SUSCEPTIBILITY OF BIRDS
TO BACTERIAL INFECTION

Birds are vulnerable to pathogenic infection at all stages of
their life cycle, both before and after hatching. Although
eggs present physical and chemical barriers that protect
against microbial invasion (Board, 1966; Board & Fuller,
1974), bacteria can penetrate the eggshell and infect the
contents (Cook et al., 2003). Once hatched, nestlings are
inoculated by microorganisms from the environment via
food provided by parents, ingestion of adult saliva and from
nest materials (Berger, Disko & Gwinner, 2003; Kyle &
Kyle, 1993; Mills, Lombardo & Thorpe, 1999; Singleton &
Harper, 1998). During the breeding season, almost any
bacterial pathogen present in the gut may become sexually
transmitted through the cloacal passage (Reiber, McInroy &
Conner, 1995; Sheldon, 1993), which functions as a channel
for both gamete transfer and excretion. Birds congregating
at high-density communal roosts are potentially vulnerable
to the spread of disease, both through direct contact and
through the contamination of food and water sources by
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diseased individuals (Rappole & Hubálek, 2006). Appar-
ently healthy birds, carrying low numbers of potential
pathogens, in addition to symptomatically infected birds,
may act as a source of disease. In addition, heterogeneities
within the host population, including age, sex and body size,
may affect the susceptibility of some bird species to bacterial
disease (Fig. 1).

Most disease outbreaks are recorded in winter (Faddoul
et al., 1966; Hurvell, 1973; Refsum et al., 2002), possibly as
a direct result of lowered immune function due to harsh
weather conditions (Nelson & Demas, 1996). As local
feeding densities increase, interactions between individual
birds at food patches intensify, and stress associated with
increased competition over reduced quantity and quality of
natural food may occur. Feeding densities have been shown
to influence aggressive interaction rates in both wild and
domestic birds, and increased densities are often associated
with higher levels of aggression (e.g. Metcalfe, 1989, but see
Dawkins, Donnelly & Jones, 2003). Higher densities can
also induce greater stress in birds (e.g. Nephew & Romero,
2003; Dickens, Nephew & Romero, 2006), which could
result in reduced immune function by increasing cortico-
steroid levels (e.g. Saino et al., 2003). Population turnover
might further impact on density effects if dominance ranks
need to be continually established or are absent (Banks,
1984; Cristal, 1995). The relationship between stress and
population density in regard to bacterial disease epidemi-
ology remains unclear. Further research is required to
elucidate the relationships between density, individual
interactions and susceptibility to disease.

(1) Sex differences

In a wide range of animal taxa, including birds, males and
females differ in their physiology and behaviour and,
consequently, they frequently differ in their exposure and
susceptibility to pathogens (e.g. Poulin, 1996; Schalk &
Forbes, 1997; Wedekind & Jakobsen, 1998; Moore & Wilson,
2002; Arnold et al., 2003; Tschirren, Fitze & Richner, 2003;
Wilson, Moore & Owens, 2003; Ferrari et al., 2004; Seeman
& Nahrung, 2004; Robb & Forbes, 2006). During the
breeding season, for example, males and females of most, if
not all, bird species are differentially exposed to bacterial
pathogens, and suffer diverse pressures that may affect their
susceptibility to infection (Fig.1). In the majority of bird
species, males lack an intromittent copulatory organ (Briskie
& Montgomerie, 1997), and sperm transfer occurs through
very brief cloacal contact (Sheldon, 1993). Given the brevity
of copulation, males should have a relatively small chance of
contracting bacterial pathogens from contact with the
female cloaca. Females, however, have prolonged exposure
to the ejaculate once it enters the reproductive tract, and
the ejaculate may serve to infect females with any
pathogenic gastrointestinal bacteria it may have become
contaminated with on passing through the male cloaca
(Sheldon, 1993). Cloacal transmission of microbes during
copulation has been documented in domestic fowl (Perek,
Elian & Heller, 1969) and red-winged blackbirds Agelaius
phoeniceus (Westneat & Rambo, 2000), and is also suggested

to occur in tree swallows Tachycineta bicolor (Lombardo
et al., 1996). Such sex-specific asymmetry of exposure
to bacterial transmission through copulation should
render males less susceptible than females to sexually
transmitted bacterial infections during the breeding
season. In polygamous mating systems, individuals with
more mating partners are expected to contract more
infections (Thrall, Antonovics & Dobson, 2000); this
applies both to females in polyandrous relationships, and
to males in polygynous ones.

As well as differences in exposure, the sexes also differ in
their physiological response to pathogens. Males commonly
experience raised levels of the hormone testosterone during
the breeding season (Wingfield et al., 1990), which may
increase their susceptibility to infection (Folstad & Karter,
1992; Grossman, 1989), though the exact immunosuppres-
sive role of testosterone in birds is far from clear (Roberts,
Buchanan & Evans, 2004). Though it has been demon-
strated that male birds and mammals have significantly
higher parasite prevalence than females overall (Poulin,
1996; Schalk & Forbes, 1997; Moore & Wilson 2002),
analysis of data by parasite taxon showed that although
male birds had higher parasite prevalence (percentage of
hosts that are infected), female birds displayed a higher
intensity (mean number of parasites per infected host) than
males for certain parasites (Poulin, 1996). Interestingly, the
sex bias in the ability to cope with infection was stronger in
experimental studies than in field studies (Schalk & Forbes,
1997), suggesting that differences may lie in the host
immune response rather than the infection process itself.

Not only is there potential sex-biased susceptibility to
infection during the breeding season, but other factors may
contribute throughout the life cycle. Competition between
the sexes over food resources may lead to differences in
exposure to food-borne bacteria. It has been observed that
Salmonella spp. carriage by female herring gulls Larus
argentatus (22% of 1433 birds examined) is more than
double that of males (10%) in the non-breeding season,
which may reflect differences in feeding ecology between
the two sexes (Monaghan et al., 1985). Male herring gulls
tend to dominate food resources at refuse tips and, when
competition is severe (e.g. in winter, or when the weather is
harsh during the breeding season), males monopolise freshly
dumped material, leaving the females to feed on older, more
putrid food (Kihlman & Larsson, 1974; Monaghan, 1980;
Spaans, 1971). During the summer, male herring gulls tend
to make use of other food sources, for example those
presented by the fishing industry, so females are more
abundant on refuse tips and encounter less competition for
resources (Monaghan et al., 1985). In competitive feeding
situations, individuals at the lower end of the pecking order
are thus perhaps more likely to ingest infectious material
than are the more dominant individuals, and these
individuals may be more likely to be female. Alternatively,
the proximate cause of these sex-specific patterns may stem
from copulation behaviour during the breeding season.
Further work is needed to quantify the sex differences in
bacterial infections, and to identify the mechanisms
underpinning those differences.
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(2) Body size

Body size may influence susceptibility to pathogens if
bacterial acquisition occurs predominantly through forag-
ing, as larger individuals should eat more, and hence
experience increased exposure to infected food (Arneberg,
Skorping & Read, 1998; Moore & Wilson, 2002; Zuk &
McKean, 1996). In mammals displaying sexual size
dimorphism, there is good evidence for a positive relation-
ship between host size and parasite load (Arneberg et al.,
1998; Moore & Wilson, 2002), and it might be reasonable
to expect a similar pattern in birds. However, a comparative
analysis of over 30 studies of blood parasitism rates in birds
concluded that there was no evidence for a sexual size
dimorphism effect on the prevalence or intensity of
infections (McCurdy et al., 1998). To our knowledge, there
is a distinct lack of data regarding within-species correla-
tions between body size and bacterial pathogen suscepti-
bility in birds, which may be an area worth exploring.

(3) Age

Variation in age-related infection may be influenced by
a range of factors, including parasite-induced host mortality,
acquired immunity, age-related exposure and age-related
predisposition to infection (Wilson et al., 2002). Determining
accurate age-related infection patterns in wild populations
is difficult and they may also vary geographically (Gregory,
1992; Quinnel, Grafen & Woolhouse, 1995). Established
age-related infection patterns come primarily from studies
of humans, domesticated ruminants and laboratory animals
(Anderson & May, 1992; Anderson & May, 1985; Crombie &
Anderson, 1985); there remains a need for similar studies to
characterise such patterns in birds, especially as age effects
might interact with life-history factors that underpin
population changes. Studies to date suggest that avian
infection levels may vary amongst age groups (Butterfield
et al., 1983; Cicho, Sendecka & Gustafsson, 2003; Čižek
et al., 1994; Glünder et al., 1991; Literák, Čižek & Honza,
1992; MacDonald & Brown, 1974; Sixl et al., 1997), though
current data are not available from rigorous longitudinal
studies.

Accurately assessing the age of birds can be extremely
difficult once adult plumage is attained, and little is known
about the distribution of pathogenic prevalence across avian
age groups. Although a few studies indicate that young or
immature birds display higher bacterial carriage rates than
mature birds (Butterfield et al., 1983; Čižek et al., 1994;
Glünder et al., 1991; Literák et al., 1992; MacDonald &
Brown, 1974; Sixl et al., 1997), there are several potential
explanations for the apparent susceptibility of younger birds
to bacterial infection. Nestlings of species that breed in
colonies (e.g. gulls) occur at high population density and,
consequently, may have an increased likelihood of disease
transmission until they fledge. Acquired immunity should
act to reduce susceptibility to infection in older individuals,
as populations subject to high rates of pathogen trans-
mission should have higher peak levels of infection
occurring in younger age classes (Scott & Smith, 1994).
Few studies have clearly demonstrated acquired immunity

in wildlife populations (Wilson et al., 2002); rigorous
longitudinal studies would be required to demonstrate that
susceptibility of wild birds to pathogens is influenced by
acquired immunity (Beal et al., 2004). Colonisation of
nestlings by environmental microbes begins soon after
hatching (Lucas & Heeb, 2005) and bacterial diversity
increases with nestling age (Mills et al., 1999). Over time,
faecal matter from nestlings will build up in the nests of
some species, increasing exposure levels of nestlings to
faecal bacteria. Adults and fledged young ought, therefore,
to have lower exposure levels, as they are not reduced to
spending all their time in what may be relatively highly
contaminated areas. However, to our knowledge, no studies
have yet tested this hypothesis.

It is evident that gulls pick up pathogenic bacteria from
sewage and human refuse, though they appear, as adults, to
have low susceptibility to infection from many of the
pathogens in question. Immature gulls tend to feed at
coastal, untreated sewage outfalls more often than adults
and are thus exposed to higher levels of enteropathogens
(Monaghan, 1980). Higher carriage rates would therefore
be expected in younger individuals than in adults, although
there is currently little evidence to support this idea. Despite
older birds remaining apparently healthy on ingesting
pathogenic bacteria, they may experience breeding losses by
harbouring infectious organisms and transferring them
from feathers and/or cloacae to the eggshell, which can
then kill the embryo upon penetrating and multiplying
inside the egg (Steiniger, 1970). Infected parent birds may
also pass bacterial pathogens on to their nestlings through
the food-provisioning process. Immunity developed in
response to accumulated exposure to infections (Wilson
et al., 2002) is likely to affect susceptibility to pathogens.
Young birds may be more susceptible to disease due to the
lack of such acquired immunity. However, it is possible that
the pathogen load is sufficiently low for an individual to
remain apparently healthy without necessarily having
acquired immunity (for a more detailed review of avian
immune defence and life-history trade-offs, see Norris &
Evans, 2000). Detection of a pathogen in an apparently
healthy individual is not, in itself, sufficient to determine
whether acquired immunity is preventing the individual
from becoming ill. Complementing detection of pathogens
with testing for antibodies would give a clearer picture of
how age and acquired immunity affect susceptibility to
pathogenic bacteria.

IV. EXPOSURE OF BIRDS TO
ENTERIC BACTERIA

Feeding ecology appears to be the main factor influencing
exposure of many wild bird species to enteric bacteria, and
involves infection from disparate sources such as garden
feeders, sewage, rubbish tips, carrion, drinking water and
feed contaminated by the faeces of other animals (Cornelius,
1969; Fenlon, 1983; Williams et al., 1976). For example,
raptors are exposed to high levels of enteric bacteria and
other potential pathogens from the intestines of the prey
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they ingest, while species that scavenge on carrion have the
added risk of contracting bacterial infection from carcasses,
which may be an inherently rich source of pathogens.
Waterfowl which feed solely on vegetable matter appear to
have low enteropathogen prevalence, while enteropatho-
genic bacteria are frequently found in waterfowl that feed
on animals or strain mud to obtain nutrition (Luechtefeld
et al., 1980). Ground-foraging species may ingest contami-
nated food in a variety of ways, for example, from food
contaminated by bird droppings under feeders, or from
eating filter-feeding molluscs living in sewage-contaminated
habitats.

Gulls are notorious scavengers of sources prolific in
bacteria, and studies have tended to concentrate on
detecting and comparing types of bacteria found in both
birds and their food. Often, distinct groups of bacteria have
been targeted, resulting in a sound understanding of the
correlation between recently consumed food and consumer
prevalence of bacteria, but information on inherent
bacterial presence in the birds remains lacking. This applies
not only to studies of gulls, but also to those of other groups
of birds that primarily scavenge on human waste. Many
studies focus on birds foraging in environments likely to
have high densities of pathogens, and it is important to bear
in mind that variation in the spatial distribution of infective
organisms will affect exposure rates of hosts to infection. If
infectious agents are distributed unevenly in the environ-
ment, and hosts vary in their use of the environment,
heterogeneities in host exposure rates are a likely result
(Wilson et al., 2002). An equally important factor to consider
when studying exposure to bacterial pathogens is the
virulence of the infective organism, since pathogens differ in
their capacity to cause disease once ingested. Organisms
with low virulence require the ingestion of high numbers for
an infection to become established, whereas highly virulent
organisms require much lower numbers (10-100 cells) to
infect a host (Blaser & Newman, 1982; Tuttle et al., 1999).

(1) Feeding stations

A variety of bacterial diseases are associated with passerine
mortalities, including listeriosis, conjunctivitis, salmonellosis
and staphylococcosis. Finch species and house sparrows are
most frequently recorded with these infections (Fischer et al.,
1997), although a range of other species may also be affec-
ted (Borg, 1985; Prescott et al., 1998). Passerine species suf-
fering from the same bacterial diseases often share common
symptoms, and post-mortem examinations can determine the
causal agent. Sick birds habitually continue feeding until the
time of death, and outbreaks of disease are primarily detec-
ted at feeding stations when carcasses start appearing. Con-
sequently, garden-feeding passerines have been the focus of
studies investigating the relationships amongst infectivity,
feeding behaviour and population density (Brittingham &
Temple, 1986; Hurvell, 1973; Kirkwood, 1998).

When disease outbreaks and mortalities occur at feeding
stations, there is a limit to the extent to which the diseased
birds can contaminate their surroundings. Once dead, the
birds will not actively spread the causative organism, so any
further direct infection will only be transmitted to

scavenging animals. Healthy individuals that feed from
the same food source may, however, be at risk of ingesting
contaminated food, spreading the causative agent to others,
and potentially dying from the pathogen themselves, though
conclusive evidence for this is lacking. When large amounts
of food are made available at feeding stations, a build-up of
pathogens can occur around the feeders (MacDonald,
Everett & Maule, 1968; Pennycott, 1998), and animals
other than birds may also be attracted by the abundance
of food. Rats and mice, both of which are recognised
vectors of salmonellae and E. coli (Guard-Petter et al., 1997;
Henzler & Opitz, 1992; Hilton, Willis & Hickie, 2002), may
contaminate the ground around feeding areas with infected
faeces, which could affect ground-foraging birds. Although
incidents of mice acting as carriers of salmonellae in poultry
houses are well documented (Davies & Wray, 1995, 1996;
Guard-Petter et al., 1997), there appears to be little or no
work investigating bacterial transmission from rodents to
wild birds and, whilst logistically challenging, this may be an
avenue worth exploring.

Most pathogens are assumed to be transmitted in
a density-dependent manner (Anderson & May, 1992),
such that as the degree of crowding increases, so too does
the probability of pathogen transmission between infected
and susceptible hosts (Fig. 1). Thus, the high concentration
of birds at feeding stations could potentially increase their
exposure to infection; birds carrying pathogens may
contaminate both food and feeding surfaces, thereby
facilitating the spread of disease to otherwise healthy
individuals. Numerous studies have found an association
between the intensity of provisioning at feeding sites and
mortality in wild birds feeding at bird tables, caused by
S. Typhimurium and E. coli (Cornelius, 1969; Kirkwood,
1998; MacDonald & Cornelius, 1969; Pennycott, 1998;
Pennycott et al., 2002; Wilson & MacDonald, 1967).
Although the extent of these studies is somewhat limited,
they do suggest that disease outbreaks are, in part, related to
the intensity of provisioning by humans and the density of
birds at feeding sites. It is possible, however, that multiple
deaths occur in populations of non-provisioned birds, but
that incidents are not recognised because the populations
are not concentrated in areas where people are likely to find
and report sick or dead birds. Lack of information on
disease prevalence in non-provisioned populations makes it
difficult to assess accurately the correlation between disease
incidence and intensity of feeding.

(2) Sewage

Gulls (Larus spp.) are drawn to sewage outfalls as a source of
food (Raven & Coulson, 2001), and have regularly been
associated with the carriage of salmonellae (Edel, van
Schothorst & Kampelmacher, 1976; Edel et al., 1978;
Fenlon, 1981; Fricker & Metcalfe, 1984; Williams et al.,
1976; Table 2). Studies investigating the range of Salmonella
serotypes in faeces from gulls feeding on sewage sludge
(Fricker & Metcalfe, 1984) or near sewage outfalls
(Butterfield et al., 1983; Fenlon, 1981) have found a close
association between the two. The birds appear to pick up
the bacteria through feeding, but tend not to excrete the
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organism for long periods after ingestion, suggesting that
gulls can carry infected material without becoming
colonised. This could be due to the rapid passage time of
food through the bird gut (Fenlon, 1981), combined with
the possibility that the caecal contents of healthy adult birds
may prevent Salmonella infection (Barnes, 1979). Salmonel-
lae from the human population tend to appear in sewage
(McCoy, 1979), resulting in similar ranges and frequencies
of serotypes in the faeces of gulls feeding at sewage outfalls
(Fenlon, 1981, 1983). Ingestion of Listeria species by gulls
feeding at sewage works follows a pattern similar to that of
Salmonella species (Fenlon, 1985). Thermophilic campylo-
bacters are commonly associated with sewage effluent
(Fricker & Park, 1989) and are probably also an important
commensal component of the gull gut flora (Hatch, 1996).
The optimum growth temperature of these bacteria
coincides with the body temperature of birds (40–42°C),
so higher rates may be excreted than are ingested, thereby
amplifying the potential spread of the pathogen. If gulls
feeding at sewage outfalls pick up pathogens from human
sources, there is a danger that these may be reintroduced to
the human population by contamination of, for example,
water supplies, and facilitate the further spread of infection.

Most studies concerning transmission of bacterial patho-
gens from sewage to birds focus on gulls, though a few
encompass other shoreline-foraging species that consume
filter-feeding invertebrates, such as bivalve molluscs. When
sewage effluents are present in the habitat of the filter
feeder, some pathogens may become concentrated in the
organism, and it may thereby act as an infection source to
predators. Both shoreline-foraging birds feeding on inver-
tebrates (Waldenström et al., 2002) and various wading
birds, including oystercatchers Haematopus ostralegus, which
feed mainly on bivalve molluscs (Fricker & Metcalfe, 1984),
have been shown to have high carriage rates of Campylobacter
species (Table 2). This may be a reflection of contamination
of their food sources by sewage (Fricker & Metcalfe, 1984).
By contrast, a study of predominantly wild passerines,
feeding at a sewage treatment works, showed no association
between bacteria found in birds and those present in the
sewage (Plant, 1978). Despite six serotypes of Salmonella
appearing in sewage samples, only one bird of the 599
tested, a dunnock Prunella modularis, was actively excreting
the bacterium (Table 2). No gulls were included in the study,
and the lack of active Salmonella excretors in the samples
may be indicative of different adaptations of the passerine
and gull guts to the introduction of salmonellae.

(3) Human refuse

Landfill sites provide scavengers with a ready supply of
household refuse, and attract large flocks of birds (Bowes,
Lack & Fletcher, 1984; Sol, Arcos & Senar, 1995). Gulls
scavenging on rubbish tips often roost on nearby fields,
pastures and reservoirs, (Benton et al., 1983; Monaghan
et al., 1985), and wash in local water bodies, and bacteria
ingested at feeding sites may enter other food chains once
excreted by the birds. A range of bacterial pathogens,
including Vero cytotoxin-producing E. coli 0157, salmonel-
lae, listerias and campylobacters have been isolated from

the faeces or cloacae of gulls (Larus spp.), lapwings Vanellus
vanellus and corvids feeding at refuse sites (Edel, 1976, 1978;
Quessy & Messier, 1992; Wallace, Cheasty & Jones, 1997;
Willumsen & Hole, 1987). Comparative studies of gull
feeding habitats have isolated higher rates of Campylobacter
and Salmonella species from gulls feeding at rubbish dumps
than from coastal- and island-dwelling birds (Glünder et al.,
1991; Williams et al., 1976). This suggests that landfill sites
may be an important source of avian pathogens: they
contain materials such as soiled nappies and decaying food,
items expected to be an attractive source of nutrition to
birds, and certain to contain high numbers of bacteria.
Correlations between the incidence of different Salmonella
serotypes in gulls and in the local human population reflect
environmental contamination of the gulls’ feeding sites. The
variety and high prevalence of bacterial serotypes in gulls
and other scavenging species may be related to their choice
of feeding grounds, the presence of multiple serotypes being
consistent with food acquired from numerous sources.
Although birds may introduce pathogens to the human
population, humans likewise introduce infected material to
birds, often through taking poor measures to decontaminate
and contain waste sufficiently.

Species scavenging in urban habitats may be a likely
source of human infection, as they are often found in public
spaces where children play and are susceptible to contact
with the birds and/or their excrement (Casanovas et al.,
1995). Feral pigeons and crows (Corvidae) scavenge on litter
and rubbish from waste containers, and harbour pathogens
such as salmonellae, campylobacters, enterococci and
streptococci (Table 2; Baele, Devriese & Haesebrouck,
2001; Bouttefroy, Lemaı̂tre & Rousset, 1997; Casanovas
et al., 1995; Kapperud & Rosef, 1983; Müller, 1965; Shetty
et al., 1990), all of which can cause disease in humans. A
variety of bacterial pathogens have been isolated from
starling Sturnus vulgaris faeces, and there is circumstantial
evidence that they can transmit a number of diseases to
humans and other animals, including the fungal disease
histoplasmosis (Berger et al., 2003; Bullough, 1942; Craven
et al., 2000; D’Alessio et al., 1965; Palmgren et al., 1997;
Smibert, 1969). Starlings, which often congregate in large,
city-based communal roosts, can cause concentrated faecal
contamination of public areas (Feare, 1984; Grimes et al.,
1979), and as such, may pose a health threat to humans.

(4) Domestic animals

The role of birds as vectors of disease transmission to
domestic livestock has been attributed to environmental
contamination of, amongst others, water supplies ( Johnston
et al., 1979; Jones, Smith & Watson, 1978), pastureland
(Coulson et al., 1983; Williams et al., 1976) and feed (Fenlon,
1985) by avian faeces. Rooks, carrion crows and gulls have
tested positive for various Campylobacter and Listeria species
(Bouttefroy et al., 1997; Fenlon, 1985; Hatch, 1996;
Kapperud & Rosef, 1983; Willumsen & Hole, 1987) and
there is a concern that grazing cattle may be exposed to
pathogens deposited by these birds, as they commonly
frequent fields where livestock graze (Coulson et al., 1983;
Williams et al., 1976). Incidents of disease transmission, from

Bacterial pathogens in wild birds 361

Biological Reviews 84 (2009) 349–373 � 2009 The Authors Journal compilation � 2009 Cambridge Philosophical Society



one species to another, through environmental contamina-
tion of grazing pastures, have been documented in
mammals. Badgers Meles meles have been blamed by some
authors for the infection of cattle with the tuberculosis-
causing bacterium Mycobacterium bovis (Clifton-Hadley et al.,
1995; Delahay, Cheeseman & Clifton-Hadley, 2001;
Máirtı́n et al., 1998), whereas Yellowstone bison Bison bison
are perceived as a threat to the local cattle industry as
vectors of Brucella abortus (Baskin, 1998). However, it was
infected cattle that originally introduced B. abortus to the
bison (Dobson & Meagher, 1996), and the evidence for
transmission of tuberculosis from badgers to cattle is
contentious, as transmission could equally be from cattle
to badgers (Cleaveland et al., 2002; Woodroffe et al., 2006).
Birds have been implicated in the faecal contamination of
silage with Listeria species (Fenlon, 1985), although spec-
ulations that birds are the source of the pathogen are not
supported by the evidence. Alternatively, it could be argued
that birds foraging on silage may acquire the pathogen from
the feed, as Listeria appears to be commonly associated with
silage, especially when anaerobic conditions are not
maintained (Grønstøl, 1979). Both Salmonella and Campylo-
bacter species have been isolated from pig slurry (Watabe
et al., 2003), while Campylobacter species have been isolated
from bovine slurry, dung and cattle bedding, all sources
which may be scavenged by wild birds (Stanley & Jones,
2003). Despite these potential sources of pathogens being
accessible to wild birds, enabling the spread of pathogens
from domestic animals, via birds, to other hosts, there is little
evidence supporting this route of transmission. It has also
been suggested that wild birds may introduce bacterial
pathogens to poultry houses, and act as vectors between
them (Craven et al., 2000; Goodchild & Tucker, 1968).
Whether wild birds actually introduce infectious agents, or
simply have the potential to transfer already existing disease
organisms, remains to be determined.

V. AVIAN FAECAL POLLUTION OF WATER

Birds not only acquire pathogens from the environment, but
also return them via excretion, potentially facilitating the
dissemination of pathogenic organisms to both humans and
other animals, especially through water. Livestock on many
farms rely on rivers, streams and other untreated water
sources for at least part of their drinking water (Reilly,
1981), and wild birds roosting in large numbers on or near
water may contribute to its contamination and the spread of
disease to other animals. Since many of the pathogens
found in bird faeces originate from human sewage, it should
follow that humans are highly susceptible to infection when
the bacteria re-enter the human food chain through
drinking water supplies and bathing water.

(1) Drinking water

Waterfowl and gulls tend to congregate in large numbers
and roost on reservoirs, especially during winter (Bowes
et al., 1984), and are therefore a possible source of

contamination for drinking water supplies. Geese are
notorious for their ability to leave abundant amounts of
faecal matter whilst grazing and roosting. They are
predominantly vegetarian, however, and there are no data
to suggest that geese are an important source of salmo-
nellae, though they have been shown to shed large quanti-
ties of enterobacteria and campylobacters (Alderisio &
DeLuca, 1999; Varslot et al., 1996); both pathogens that can
cause disease in humans.

Gulls are capable of carrying bacterial pathogens whilst
remaining apparently unaffected (Butterfield et al., 1983;
Monaghan et al., 1985), and move between feeding grounds
and roosts (Fenlon, 1983), carrying bacteria with them,
often over considerable distances (Coulson, Butterfield &
Thomas, 1983; Wuthe, 1973). Birds roosting in large
numbers on reservoirs have been reported to carry bacterial
pathogens and contaminate domestic water supplies
(Alderisio & DeLuca, 1999; Mitchell & Ridgewell, 1971),
though some argue that the level of pathogens harboured
by birds is too low to present a major health hazard to
humans (Girdwood et al., 1985). It has been suggested that
wild birds could mediate environmental contamination of
surface waters with campylobacters, which might represent
a risk to public health in places where the water is
consumed untreated or is used for recreational purposes
(Moore et al., 2002; Obiri-Danso, Paul & Jones, 2001). High
isolation rates of C. jejuni in free-living and migratory
waterfowl indicate that Anseriformes (ducks and geese) can
serve as important carriers of Campylobacter infection
(Table 2; Luechtefeld et al., 1980; Pacha et al., 1988;
Yogasundram, Shane & Harrington, 1989), which may be
of public health importance through the contamination
of water, or when these birds are used as food (Luechtefeld
et al., 1980). Indeed, incidents of water-borne outbreaks of
C. jejuni infections in humans have been attributed to the
contamination of untreated drinking water by the droppings
of pink-footed geese Anser brachyrhynchus (Varslot et al., 1996).
Although it has been demonstrated that contamination of
reservoirs with faecal coliforms and salmonellae may be
significantly reduced when gulls are discouraged from
roosting (Benton et al., 1983), indicating that the birds are
a probable source of the pathogens, it has been argued that
gulls may not actually be an important factor in the
aetiology of human salmonellosis because they do not shed
the bacteria for long periods after ingestion (Girdwood et al.,
1985). A better understanding of the rates and duration of
bacterial shedding in birds would provide insight into the
relative importance of birds as pathogenic vectors.

(2) Bathing water

It has been argued that shorebirds may contaminate
bathing waters (Jones, 2001; Obiri-Danso et al., 2001),
although the evidence is limited. Campylobacters in
intertidal sediments are generally absent in warm summer
months, while they are consistently present in colder winter
months (Jones, Betaieb & Telford, 1990; Teunis et al., 1997).
The bacteria are unable to multiply in water; survival is
short and is both temperature and UV-B dependent (Blaser
et al., 1980; Davies & Evison, 1991; Rollins & Colwell,
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1986), and the presence of campylobacters in sediment is
indicative of recent faecal contamination (Obiri-Danso &
Jones, 1999b). C. lari from bird faeces is better able to
survive in sea water than C. jejuni, which is found in sewage
effluent, and is also mainly deposited on or near the shore
where bathers might encounter it, rather than further
offshore, as is the case for most sewage effluent (Obiri-
Danso et al., 2001). It has been suggested that the presence
of C. lari and urease-positive thermophilic campylobacters,
in the absence of C. jejuni, is due to the presence of birds
rather than contamination from sewage (Obiri-Danso &
Jones, 2000). Campylobacters were reported in greater
numbers in winter, concomitant with large flocks of
migratory birds (Obiri-Danso & Jones, 2000), though no
avian faecal samples were tested for the presence of the
bacteria. It could equally be that higher numbers of
campylobacters found in winter are due to longer survival
rates facilitated by reduced temperatures and lower UV-B
levels, and that the increased presence of birds is
coincidental. Regardless of the source of the campylo-
bacters, it appears doubtful that the levels of contamination
are sufficient to pose a threat to human health, since
recreational use of beaches diminishes during winter. It is
also noteworthy that C. jejuni is the species that causes
human disease, whereas C. lari, the dominant species
isolated from coastal bathing waters and birds, rarely causes
disease in humans (Hatch, 1996).

Shorebirds have often been cited as a direct source of
E. coli (Fogarty et al., 2003; Jones & Smith, 2004; Levesque et al.,
2000; Whitman & Nevers, 2003), salmonellae (Whitman &
Nevers, 2003) and other faecal coliforms (Jones & Obiri-
Danso, 1999; Standridge et al., 1979) found in both sand
and marine water. Conversely, fresh-water bathing sites are
mainly at risk from contamination by wildfowl, which have
been shown to be substantive reservoirs of pathogenic bac-
teria for rivers (Obiri-Danso & Jones, 1999a; Yogasundram
et al., 1989). Beach visitors spend the majority of their time
in contact with sand, and hence any associated contami-
nation of the shoreline. Bacteria persist longer in sand than
in water because they adhere to sediment particles, which
provide a stable, non-starvation environment (Howell,
Coyne & Cornelius, 1996; Whitman & Nevers, 2003).
Thus, sediment may serve as a reservoir for pathogenic
organisms (Obiri-Danso & Jones, 2000), especially to
children who may be exposed to infection whilst digging
and playing in wet sand. Recreational use of the water in
general disturbs the sediment, releasing faecal coliforms
into the overlying water (Obiri-Danso & Jones, 1999b),
increasing the risk of contact for humans.

VI. METHODS FOR DETECTING AVIAN
ENTERIC BACTERIA

There is a current lack of quantitative data on the amounts
of enteropathogenic bacteria shed by wild birds, as much of
the information is restricted to the presence or absence of
specific pathogens (i.e. pathogen prevalence). Since selec-
tion of specific bacteria is a limiting factor in traditional

microbiological methods, studies may be biased towards
testing for the types of bacterial pathogens suspected to be
present, resulting in others being overlooked (Fig. 1). This
makes it extremely difficult to tell whether the birds are
important zoonotic reservoirs, and are major health risks
and contributors to pollution, or whether they are simply
passive carriers of the bacteria and relatively unimportant in
this regard.

Most studies investigating the presence of bacterial
enteropathogens in wild birds have applied traditional
microbiological techniques, which use selective agars and
broths, to isolate target species from faecal matter or cloacal
swabs (Brittingham et al., 1988; Kapperud & Rosef, 1983;
Waldenström et al., 2002). These methods are not only
highly time consuming and labour intensive, but are also
associated with various problems in regard to culturing
bacteria from faeces, as it contains a mixed population of
numerous different bacterial types; a number of authors has
stated that only a minority of bacterial species visualised by
direct microscopic counting methods can be cultivated
(Amann, Wolfgang & Schleifer, 1995; Head, Saunders &
Pickup, 1998; Vaughan et al., 2000). Reasons for this
anomaly include a lack of knowledge concerning growth
requirements, the necessity for strictly anoxic growth
conditions for some species, selectivity of media used, and
the intricacies of reproducing the interactions of bacteria
with other microorganisms and host cells in their natural
environment. Thus, characterising microbial communities
exclusively on the basis of culturable bacteria may be
misleading, especially for environmental bacteria that have
not been extensively studied.

The inability to culture the majority of bacteria has led to
the development of various culture-independent methodol-
ogies, particularly those relating to small subunit (SSU)
ribosomal RNA (rRNA) typing, for studying complex
microbial ecosystems such as that of the mammalian
intestinal tract (Tannock, 1999). Several fingerprinting
techniques utilising SSUs have been developed to monitor
bacterial community shifts and to compare bacterial
communities. These techniques include denaturing gradient
gel electrophoresis (DGGE), temperature gradient gel
electrophoresis (TGGE), single strand conformation poly-
morphism (SSCP) and terminal-restriction fragment length
polymorphism (T-RFLP) analysis. To date, these finger-
printing techniques have been used successfully to charac-
terise and monitor a variety of gastrointestinal bacterial
communities, including those in insects (Hongoh, Ohkuma &
Kudo, 2003; Mohr & Tebbe, 2006), rodents (Deplancke et al.,
2000; Inoue & Ushida, 2003; McCracken et al., 2001;
Walter et al., 2000), dogs (Simpson et al., 2002; Suchodolski,
et al., 2004), pigs (Konstantinov et al., 2003; Simpson et al.,
2000; Simpson et al., 1999), cattle (Kocherginskaya, Aminov &
White, 2001), poultry (Chambers et al., 2001; Gong et al.,
2002; Van der Wielen et al., 2002; Zhu et al., 2002) and
humans (Seksik et al., 2003; Tannock et al., 2000; Zoetendal,
Akkermans & de Vos, 1998). As a great deal of the work on
the shedding of enteropathogens by wild birds is restricted
to relatively basic phenotypic analysis, the need remains to
implement these contemporary molecular methods to
complement and expand current data. Extraction of rRNA
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from avian faeces for examination of bacterial presence is
relatively rapid, sensitive and specific, is more reliable and
reproducible than traditional culturing methods (Chambers
et al., 2001), and enables the detection of pathogens that
are present even in relatively low concentrations (Murray
et al., 1996; Muyzer, de Waal & Uitterlinden, 1993). The
alternating, interspecific, variable and highly conserved
regions of the SSUs enables the detection, identification and
enumeration of microbial species (Muyzer & Smalla, 1998;
Vaughan et al., 2000). Though exploring microbial popu-
lations with molecular techniques encompasses its own set
of biases and limitations (Muyzer & Smalla, 1998), a wider
range of organisms can be scrutinised than when using
culture-dependent methods. Although culture-independent
techniques are readily accessible, and have been used to
study microbial communities in both mammals and poultry
(see above), there is a paucity of similar studies in wild birds.
The most likely explanations for this are the high costs
associated with using modern molecular techniques coupled
with commercially unimportant bird species.

The use and further development of molecular techni-
ques, which enable a greater degree of species detection
when studying complex bacterial communities, should
facilitate a better understanding of the normal intestinal
flora of wild birds. In so doing, it should be possible to
determine more effectively how microbes affect avian
health, life-history trade-offs and perhaps even the dynam-
ics of bacterial transmission (both pathogenic and non-
pathogenic) amongst birds, and between birds and other
taxa (Fig. 1).

VII. CONCLUSIONS

(1) In light of the emergence of new infectious diseases in
wildlife, it is currently of great interest to address the
implications of birds as potential vectors of pathogenic
bacteria. Though diverse studies have examined the
bacterial enteropathogens found in wild birds, there
remains a paucity of quantitative data regarding the
amounts of avian enteropathogenic bacteria in apparently
healthy populations. This renders it difficult to determine
whether wild birds pose a major health hazard and
contribute significantly to pollution, or whether they are
relatively unimportant in this regard. Use of culture-
independent methods for studying avian microbial com-
munities could prove invaluable for expanding our current
knowledge, and facilitate a better understanding of the
complexities and interactions of the genera inherently
present in the avian gut, and with those acquired from the
environment.
(2) Various factors appear to bias our current knowledge of
pathogen prevalence in wild birds, including:

(a) Selective isolation of pathogens of interest, thereby
potentially excluding the detection of other equally
important infectious organisms;
(b) Concentrating prevalence studies on provi-
sioned populations of wild birds, thus excluding non-
provisioned birds from the potential host population;

(c) Concentrating studies and reports on birds that have
died from disease, excluding apparently healthy indi-
viduals that may be carrying the pathogens;
(d) Studies with small sample sizes, which may result in
abnormally high or low prevalences due to sampling
biases.

Future studies should aim to avoid these factors, and, as
far as possible, exclude as many variables as possible that
are likely to bias results.
(3) Although there is evidence of wild birds acquiring
pathogens through foraging on contaminated material,
there appears to be little or no evidence that once infected,
the birds in turn transmit the causative agent to other birds
through contamination of feeding areas. This has implica-
tions for the relative importance of feeding stations as foci
for disease transmission, and merits further exploration in
light of the increase in the amount of provisioning of wild
birds.
(4) Birds are vulnerable to pathogenic infection at all stages
of life, and although heterogeneities within host populations
may affect the susceptibility of birds to bacterial disease,
more rigorous, longitudinal studies are required to deter-
mine the relative importance of host intrinsic effects on
susceptibility to bacterial infection.
(5) Because wild birds may be vectors of disease, it is
important to understand the true source of the infectious
organisms. By identifying the extent of pathogenic contam-
ination of the environment through human activity,
measures may be taken to reduce the scope for acquisition,
and thus spread of disease, by birds.
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MÜLLER, G. (1965). Salmonella in bird faeces. Nature 207, 1315.

MURRAY, G., HOLLIBAUGH, J. T., DOBBS, F. C. & KARL, D. M.

(1996). Phylogenetic compositions of bacterioplankton from two

California estuaries compared by denaturing gradient gel

electrophoresis of 16S rDNA fragments. Applied and Environmental

Microbiology 62, 2676–2680.

MUYZER, G., DE WAAL, E. C. & UITTERLINDEN, A. G. (1993).

Profiling of complex microbial populations by denaturing

gradient gel electrophoresis analysis of polymerase chain

reaction-amplified genes encoding for 16S rRNA. Applied and

Environmental Microbiology 59, 695–700.

MUYZER, G. & SMALLA, K. (1998). Application of denaturing

gradient gel electrophoresis (DGGE) and temperature gradient

gel electrophoresis (TGGE) in microbial ecology Antonie van

Leeuwenhoek 73, 127–141.

NELSON, K. E., WILLIAMS, C. M. & GRAHAM, N. M. H. (2005).

Infectious disease epidemiology. Jones & Bartlett Publishers, Inc.,

Sudbury, MA.

NELSON, R. J. & DEMAS, G. E. (1996). Seasonal changes in immune

function. Quarterly Review of Biology 71, 511–548.

NEPHEW, B. C. & ROMERO, L. M. (2003). Behavioral, physiological,

and endocrine responses of starlings to acute increases in

density. Hormones and Behavior 44, 222–232.

NEU, H. C. (1992). The crisis in antibiotic resistance. Science 257,

1064–1073.
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