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Abstract 

This paper reviews the importance of constraint assumptions to the predictions of 
static optimality models of insect clutch size. This allows us to identify predictions 
that distinguish between models embodying different constraints on female oviposi- 
tion behaviour and hence to determine which resources or other factors limit clutch 
size evolutionarily. We conclude that while some models may be distinguished using 
qualitative criteria, others require the testing of quantitative predictions. In a 
companion paper (Wilson 1994) these models are tested using the bruchid beetle 
Callosohruchus maculatus. 

Introduction 

Most animals lay their eggs in discrete batches, known as clutches, which may 
vary considerably in size both within and between species. Early theories of the 
evolution of clutch size centred on nidicolous birds (Lack, 1947) with later avian 
developments taking into account the cost of reproduction (Williams, 1966; 
Charnov and Krebs, 1974) and individual variation (Perrins and Moss, 1975; 
Hiigstedt, 1980). Theories concerned with the evolution of clutch size in insects 
grew independently out of optimal foraging models (Charnov, 1976; Parker and 
Stuart, 1976) and have often included the effects of more than one female 
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ovipositing in a resource patch (Parker and Courtney, 1984; Skinner, 1985; Smith 
and Lessells, 1985; see also Iwasa et al., 1984). Such multiple oviposition requires a 
game theoretical approach predicting the evolutionarily stable strategy (ESS) 
(Maynard Smith, 1982). 

Despite the independent origins of clutch size models for birds and insects, 
females of both taxa face the same problem of a diminishing rate of return in fitness 
when ovipositing. In birds this occurs because of the limitations imposed by 
parental care, and in insects because eggs are laid in patches of resource such as 
leaves, larvae or seeds that offer a finite food resource for the developing offspring. 
Thus, although the models presented below were sometimes formulated with 
particular insects in mind, and have been tested using granivorous beetles oviposit- 
ing on seeds (Wilson, 1994), they are appropriate to a wide range of ovipositing 
animals, including parasitoids laying on insect hosts, flies on dung pats or fallen 
fruit, lepidoptera on plants, amphibians in pools and fish, reptiles or birds in nests. 

One of the main functions of optimality models is in gauging the completeness of 
our understanding of a character by testing assumptions about selection pressures. 
These assumptions may be divided into currency assumptions and constraint 
assumptions (Cheverton et al., 1985; Stephens and Krebs, 1986; Krebs and Kacel- 
nik, 1991). Currencies are the criteria used for judging the merits of alternative 
values of a trait such as clutch size. Natural selection is expected to maximise the 
rate of increase of an allele, but optimality models generally use some other 
currency that can be more readily measured. Constraints determine how the 
currency is related to the trait, and may be either intrinsic or extrinsic to the 
individual. In models of the evolution of life history traits, such as clutch size, the 
most appropriate currency is often the intrinsic rate of increase (r) or reproductive 
value (RV), and the most important constraints are the cost of reproduction (the 
trade-off between current and future reproduction) and the trade-off between the 
number and fitness of offspring. However, in insects it is seldom possible, especially 
in the field, to measure the cost of reproduction completely in terms of future 
survival and fecundity and hence make quantitative predictions of the clutch size 
maximising RV. An alternative approach is to make predictions of the optimal 
clutch size under a number of constraint assumptions and determine which of these 
most closely resembles the behaviour of the ovipositing female. In essence, this 
amounts to asking what constraints females behave as though regarding important, 
and provides guidance as to what resources and other factors are limiting the 
evolution of clutch size. 

There are two conditions that must be fulfilled for this approach to identify 
correctly the fitness-surrogate being maximised and hence offer insights into the 
main selection pressures acting: first, a comprehensive range of models encompass- 
ing all reasonable constraints must be considered and, second, the predictions that 
distinguish between these models must be identified. For example, many of the 
models of clutch size oviposition predict that females will never lay clutches that are 
larger than the most productive; that clutch size will increase with host quality or 
host size; and that clutch size will decrease as the time interval between clutches gets 
shorter. Clearly, qualitative agreement with any of these predictions is not sufficient 
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to distinguish between different constraint assumptions; quantitative tests are 
needed. 

This paper therefore has two aims. First, to review previous insect clutch size 
models and construct novel models where necessary, and hence provide a compre- 
hensive framework within which to examine oviposition decisions. Second, to 
ascertain what qualitative or quantitative predictions are sufficient to distinguish 
between the constraint assumptions embodied in the models. Our review differs 
from its predecessors (e.g. Godfray, 1987a) in attempting to consider all reasonable 
constraint assumptions in conjunction with multiple oviposition. It concentrates on 
static models which can be solved analytically, but the results of some dynamic 
models are also referred to (e.g. Iwasa et al., 1984; Mangel, 1987, 1989). The 
predictions of the models reviewed here are tested on a bruchid beetle, Culloso- 
hruchus macularus, in a companion paper (Wilson, 1994). 

Assumptions of the models 

All of the models presented in this paper consider females ovipositing in patches 
of some sort, and ask what clutch size a female should lay if she is to maximise the 
total fitness of her offspring given certain constraints. These constraints include the 
kind of resource that limits her oviposition (e.g. eggs, oviposition sites, time, etc.) 
and the presence of other ovipositing females, but not the effects of parent-offspring 
conflict (Parker and Mock, 1987; Godfray 1987b), variation in sex allocation 
(Godfray, 1986) or egg size (Smith and Fretwell, 1974; Begon and Parker, 1986; 
Parker and Begon, 1986) or constraints associated with information or stochastic- 
ity (Godfray and Ives, 1987). In this section we describe the assumptions we have 
made about currencies and constraints. The symbols used to represent parameters 
of the models are given in Table 1. 

1. Currencies 

The currency of an optimality model is the unit used to judge the relative merits 
of alternative strategies (Cheverton et al., 1985; Stephens and Krebs, 1986; Krebs 
and Kacelnik, 1991). Given certain assumptions, maximising the intrinsic rate of 
increase (Y) or reproductive value (RV) is equivalent to maximising the rate of 
increase of an allele (Charlesworth, 1980; Caswell, 1989). If the population is 
neither decreasing nor increasing then maximising r or RV will also be equivalent 
to maximising the net reproductive rate (R,) (Williams, 1966; Taylor et al., 1974; 
Charlesworth, 1980; Yodzis, 1981; Goodman, 1982; Caswell, 1989). However, R, is 
not a complete measure of fitness if there are inter-generational effects (Andersson, 
1978); in other words, if offspring vary in their quality in a way that affects their 
reproductive prospects. Such inter-generational effects are particularly likely in 
invertebrates where developmental conditions, including the level of larval competi- 
tion, may have profound consequences for adult size (Salt, 1940; Klomp and 
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Table 1. Symbols used in the models 

Symbol Definition 

N 
N* 
fi 
E 

T 

T” 
T, 

s(N, @, x, i) 

s’(N, fl, x, i) 
TOF 

a, b 

‘ I 

x 

&mx 

Clutch size 
Most productive clutch size (Lack’s solution) 
Evolutionarily stable clutch size 
Total number of eggs available (potential fecundity) 
Total time available for laying (adult lifespan) 

Time taken to lay each egg 
time between successive encounters with hosts 
Larval fitness function, relating per capita offspring fitness 
to N, N, x and i 

First derivative, or partial derivative, of s(N, 8, x, i) with respect to N 
Total offspring fitness = N s(N, fi, X, i) 

Parameters used in linear and exponential larval fitness functions 

Current egg load of host 
Predicted maximum egg load of host 
Number of ovipositing females 
Conversion rate between time and eggs: slope of regression line for 

realised fecundity against adult lifespan 

Teerink 1967; Charnov and Skinner 1984), and hence for either the fecundity of 
females (Klomp and Teerink, 1967; Charnov and Skinner, 1984; Credland et al., 
1986) or the mating success of males (Partridge and Farquhar, 1983; McLain, 1985; 
Juliano, 1985). These effects of emergence weight must be incorporated into any 
prospective currency (Charnov and Skinner, 1984, 1985; Takagi, 1985; Skinner, 
1985; Smith and Lessells 1985). 

2. Constraints 

a) Larval competition: the trade-of between the number and fitness of individual 
ofipring: One of the major constraints on the evolution of life history traits is the 
trade-off between the number and fitness of offspring (Lack, 1947). In insects this 
trade-off occurs because competition between larvae within a host reduces their 
survival and future reproductive success. Clutch-productivity incorporating these 
effects on survival and fecundity will be referred to as ‘total offspring fitness’ 
(TOF). The relationship between TOF and the number of larvae in a host has been 
referred to as the ‘larval competition curve’ (Smith and Lessells, 1985; Credland et 
al., 1986; Wilson, 1994) or the ‘number fitness relationship’ (Skinner, 1985). 

The larval competition curve has been modelled using functions of a number of 
general forms, all of which share the property of a monotonic decrease in the per 
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capita fitness of eggs with increasing clutch size. Thus none of these functions 
considers the possibility of an ‘Allee effect’, in which per capita fitness of eggs 
increases with clutch size over the lower part of the range of clutch sizes. Except 
where explicitly stated, the consequences of an Allee effect have not been considered 
below. The general forms of the larval competition curves that are considered in 
this paper are: 

Linear larvaljtness function: s(N) = a - b . N, (where s(N) is the fitness of each 
egg, and N is the clutch size). This function originates from experimental studies of 
birds (Perrins and Moss, 1975) in which it often provides an adequate and simple 
fit to empirical data, despite the unrealistic feature that it becomes negative above 
clutch sizes of a/b (at which fitness of individual eggs is zero). 

Exponential larval f’itness function: s(N) = e PC N. This function originates from 
theoretical studies, where its main attraction is analytical tractability (Parker and 
Courtney, 1984; Smith and Lessells, 1985; Waage and Godfray, 1985). Using this 
function, the per capita fitness of eggs declines at a decreasing rate with increasing 
clutch size, and approaches zero asymptotically. 

Although our analyses have been restricted to models incorporating linear or 
exponential larval fitness functions, it should be noted that the predictions of these 
clutch size models are often sensitive to the precise fitness function used (Smith and 
Lessells, 1985; Waage and Godfray, 1985; Ives, 1989). This presents a problem that 
experimentalists should be aware of: the goodness-of-fit of these different functions 
to empirical data may be statistically indistinguishable, but the different functions 
yield quantitatively or qualitatively different predictions for female oviposition 
behaviour. In these circumstances, it is probably best to fit a range of functions and 
make predictions based on each of them. Of the functions generally considered, the 
exponential function tends to give predictions that differ qualitatively the most from 
other functions (Smith and Lessells, 1985; Waage and Godfray, 1985). 

Both functions considered in this paper are continuous and therefore assume that 
the fitness gain increases smoothly during oviposition, whereas it must accrue in 
discrete increments as eggs are laid. The problems that this raises are discussed by 
Kacelnik (1984) and Houston (1987) but are relatively minor and have generally 
been ignored below (but see model 3). 

6) Limiting resources: the cost of reproduction: The second major constraint on 
the evolution of life history traits is the trade-off between current and future 
reproduction, a trade-off known as the ‘cost of reproduction’ (Williams, 1966). This 
trade-off may occur because of some limiting resource which can be used only 
once, and if used for current reproduction is not available during future repro- 
ductive episodes. The major limiting resources that have been considered in 
clutch size models are oviposition sites (hosts), time and eggs. These may act singly 
or in combination and, if in combination, may or may not act independently of 
each other (Smith and Lessells, 1985). For instance, eggs and time might both 
potentially limit reproduction; individual females might run out of eggs or time. 
Moreover, these limiting resources might be independent of each other, so that a 
short fall in one resource could not be made good by excess of another, or they 
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might be dependent on each other, as would be the case if reserves of water, 
energy or other nutrients could be directed into either egg production or mainte- 
nance. The limiting resources that have been considered in the models below are 
as follows: 

Model 1: Oviposition sites (hosts). 
Model 2: Time. We have included under time constraints those models incorpo- 

rating mortality risks (e.g. Parker and Courtney, 1984; Charnov and Skinner, 
1985). This is because, regardless of whether time or mortality risk is the main 
constraint, the ovipositing female should convert time into fitness as efficiently as 
possible. 

Model 3: Eggs. 
Model 4: Reserves (i.e. eggs and time, dependently) 
Model 5: Eggs and time, independently. 
Model 6: Eggs and hosts, independently. 

c) Multiple oviposition: presence of other ovipositing females: Many of the early 
models of insect clutch size considered a single female laying in a patch that 
was not subsequently visited by other females. (Here, such ‘single oviposition’ 
models are referred to by the suffix a.) However, the optimal clutch size will 
be modified if more than one female lays in a patch (see below). In this paper, 
two approaches have been used to model the effects of ‘multiple oviposition’. The 
first approach (referred to by the suffix b) is to ask what clutch size a female 
would lay on a host that already contains some eggs, but on which she will be the 
last to lay (Charnov and Skinner, 1985; Skinner, 1985; Smith and Lessells, 1985). 
The second approach (referred to by the suffix c) is to ask what clutch size a 
female should lay if she is one of a group of females simultaneously laying on a 
host, each of whom knows how many other females are laying on that host 
(Smith and Lessells, 1985; Ives, 1989). (A third approach, employed by Parker 
and Courtney (1984) but not used here, is to ask what clutch size is optimal for a 
female to lay given a certain probability of a second female laying on that host. 
These authors concluded that the difference in clutch size between the first and 
second female is only weakly dependent on the frequency of double oviposition 
and can probably be ignored when there are several females, as it is in models of 

type c.1 

d) Behaviour and physiology of ovipositing females: The following constraints 
imposed by the behaviour and physiology of the ovipositing females are also 
included in the models (after Stephens and Krebs, 1986): 

i) Exclusivity of search and exploitation: females cannot search for new hosts 
while ovipositing. 

ii) Sequential Poisson encounters: hosts are encountered one at a time and the 
host encounter rate is constant. 

iii) Complete information: females recognise host-types and their gain curves 
immediately, and know their own expected lifespan and potential fecundity. 
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Table 2. General solutions for Optimal Clutch Size Models 

Limiting resource Optimal clutch size Authority 

I. Hosts 

2. Time 

I 4, 8. 9, App. 2 

I 9. App. 3 

3. Eggs ici=fl,=l 6. 7 

4. Reserves 3, 5. App. 4 

5. Eggs and time when: T/E > (T,, + T,) 15 = mfi, (see model 3) 

when: (T,, + T,) 2 T/E 2 (T,, + T,ifi, ) fi= T, 
(TIE) - T,p 

2, 6,9, App. 5 

when: T/E < (T,, + T, /fl,-) fi = Iv, (see model 2) 

6. Eggs and Hosts when: E/H < I A = is, {see model 3) 

when: I < E/H 5 fl, A = E/H 4. App. 6 

when: E/H > N,, A = IQ,, {see model I) 

For key to symbols see Table I. Authorities are: ( 1) Charnov and Skinner, 1984, (2) Parker and 
Courtney. 1984, (3) Charnov and Skinner, 1985, (4) Skinner, 1985, (5) Smith and Lessells, 1985, (6) 

Waage and Godfrdy, 1985. (7) Godfray, 1986, (8) Godfray 1987a. (9) Ives, 1989. 

Predictions of the models 

General solutions for the optimal clutch sizes for each of the models are given in 
Table 2, and specific solutions for models I-4, assuming linear or exponential 
larval fitness functions, are given in Table 3 (specific solutions for models 5 and 6 
may be deduced from these). In addition, predictions were made for each of the 
models on each of the following (Tab. 4): 

1. The range of optimal clutch sizes (fi). 
2. The maximum expected egg-load of a host (x,,,) when several females are 

ovipositing. 
3. The effect of host value on #. Survival from some hosts may be higher than 

from others for several reasons, the most obvious being that they are larger and 
hence offer more food to the developing larvae. Hosts that are associated with high 
larval survival compared with other hosts containing the same number of larvae are 
said to be of high value (Skinner, 1985). 

4. The effect of travel time between hosts (T,) on I?. 
5. The effect of oviposition time (T,,) on I?. T,, includes not only the time taken 

to lay an egg, but also any other time commitment resulting from the laying of an 
egg. For example, if females are unable to search while maturing an egg, this time 



346 Wilson and Lessells 
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h 
N 
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(which may be longer than the time needed to oviposit an egg) should also be 
included in T,,. 

6. The effect of the female’s total potential egg supply (E) on fi. 
7. The effect of the female’s expected lifespan (T) on 8. 
8. The effect of the current egg load of the host (x) on ti. 
9. The effect of increasing the number of ovipositing females (i) on A. 
In all cases where predictions are made on the effects of varying travel or 

oviposition time, host value, current egg-load and the number of ovipositing 
females, these are made for between rather than within habitat variation (Stephens 
and Krebs, 1986; see also Smith and Lessells (1985) for a comparison of these 
predictions for a reserves constraint model). 

Single Oviposition Models 

Model la: Hosts limiting: If opportunities to lay clutches are restricted, but the 
amount of time and number of eggs available are not limiting, natural selection will 
favour females that maximise fitness gain per clutch (or oviposition site) (Charnov 
and Skinner, 1984, 1985; Parker and Courtney, 1984; Skinner, 1985; Fig. la, 
Appendix 2). This situation probably rarely occurs, but will be approached in 
circumstances in which suitable oviposition sites are rarely encountered, or when 
the number of opportunities to breed is limiting, as when brood-guarding limits 
host-seeking. For instance, the bethylid wasp Goniozus nephantidis, a gregarious 
larval ectoparasitoid of the lepidopteran Opisina arenosella, guards its brood of 
developing larvae (from superparasitism, multiparasitism and hyperparasitism) 
until pupation. Thus, the amount of time and energy the female invests in each 
brood is large and apparently independent of brood size (Hardy and Blackburn 
1991). This means that there are strong a priori reasons for expecting the female to 
maximise fitness gain per host or brood (Hardy et al., 1992). The maximisation of 
brood fitness was first considered by Lack (1947) for birds, and the optimal 
solution has been referred to as the most productive brood size (Charnov and Krebs, 
1974) and Lack’s solution (Charnov and Skinner, 1984; Godfray, 1987a). Lack’s 
solution (N*) is important as a reference against which other predictions may be 
compared. 

The only parameter affecting N* is host value. Travel time (T,), oviposition time 
(T,), the egg supply of a female (E) and the total time available for oviposition (T) 
have no effect on N* (Tab. 4). 

Model 2a: Time limiting: Laying eggs takes time. For instance, many Lepidoptera, 
including the noctuid moth Spodoptera exempta, lay clutches comprising several 
hundred eggs, each of which is placed individually in an ordered sequence such that 
the female may oviposit for 2 h or more before her clutch is complete (K. Wilson 
pers. obs.). If the amount of time taken to lay a clutch is dependent on its size, as 
it is in S. exempta, then there will be a trade-off between time spent ovipositing on 
a host (N . T,) and 



Ta
ble

 
4.

 
Q

ua
lita

tiv
e 

pr
ed

ict
io

ns
 

of
 

cl
ut

ch
 

siz
e 

m
od

el
s 

Pr
ed

ict
io

n 
M

od
el 

(li
m

itin
g 

re
so

ur
ce

) 

1.
 

(H
os

ts
) 

2.
 

(T
im

e)
 

3.
 

(E
gg

s)
 

4.
 

(R
es

er
ve

s)
 

5.
 

(E
gg

s 
an

d 
Ti

m
e)

 
6.

 

(E
gg

s 
an

d 
Ho

st
s)

 

is
= 

x,,
,t(

 
LI

N)
 

= 
(E

XP
) 

= 

Ef
fe

cr
 

on
 

is 
of

 in
cre

as
ing

: 

Ho
st

 
va

lue
 

T,
 

7-
0 

E T
 

xt(
 

LI
N)

 

(E
W

 
it(L

IN
) 

(E
XP

) 

N*
 

2N
* cc

 

<N
* 

1 
2N

+ 
2N

+ 

cc
 

m
 

<N
+ 

2N
* ;c
 

SN
* 

2N
* m
 

SN
* 

2N
* io 

+I
 

0 0 0 0 -1
 0 -: 0 

+ + + - 0 0 

Fo
r 

ke
y 

to
 

sy
m

bo
ls 

se
e 

Ta
bl

e 
I. 

0 
= 

no
 

ef
fe

ct
; 

+ 
= 

@
 i

nc
re

as
es

; 
- 

= 
fl 

de
cr

ea
se

s.
 

t 
LI

N 
re

fe
rs

 
to

 
m

od
el

s 
th

at
 

in
clu

de
 

a 
lin

ea
r 

la
rv

al
 

fit
ne

ss
 

fu
nc

tio
n,

 
an

d 
EX

P 
to

 
an

 
ex

po
ne

nt
ia

l 
fu

nc
tio

n.
 

$ 
He

re
. 

th
e 

pr
ob

ab
ilit

y 
of

 
ho

st
 

ac
ce

pt
an

ce
 

is
 

af
fe

ct
ed

, 
ra

th
er

 
th

an
 

cl
ut

ch
 

siz
e 

pe
r 

se
. 

Fo
r 

au
th

or
itie

s 
se

e 
te

xt 
an

d 
Ta

bl
e 

2.
 

Al
l 

pr
ed

ict
io

ns
 

as
su

m
e 

m
on

ot
on

ica
lly

 
de

cr
ea

sin
g 

of
fs

pr
in

g 
pe

r 
ca

pit
a 

fit
ne

ss
 

fu
nc

tio
n.

 
< =:

 

: 



A review of clutch size models 349 

Fig. 1. Graphical solutions to models laa4a: predicted clutch sizes when hosts, time, eggs or reserves are 

limiting. Each curve represents a fitness gain function relating total offspring fitness (TOF) to oviposition 
effort. (a) Hosts limiting (mode1 la): ,@ = N*, the most preductive clutch size. Host 2 is of higher ‘value’ 
than Host 1 and therefore @* > fi,. (b) Time limiting (model 2a): optimal time spent ovipositing 

(N T,) is found by constructing a tangent from the travel time, T,, to the fitness gain curve. As I-, 
increases between environments (from T,, to T,,) so fl T,,, and hence the optima1 clutch size, increases 
(from @, r, to NZ r,J. (c) and (d) Eggs limiting (model 3a): fi is found by drawing a tangent from 
the origin to the larval competition curve, as represented by a step function. In (c), the larval fitness 

function decreases monotonically, and hence egg fitness peaks at I egg/host and 8 = 1. In (d), 
s’(N, @, X, i) is initially positive (i.e. there is an Allee effect) and egg fitness peaks at a clutch size greater 
than 1 so that i? > 1. (e) Reserves limiting (model 4a): as for (b) except that clutch size replaces time 

spent ovipositing and an ‘egg equivalent’ travel cost (p T,) replaces travel time. 

time spent searching for additional hosts (travel time, T,). This trade-off has been 
modelled both analytically and graphically using the marginal value theorem 
(MVT, Charnov 1976; Fig. 1 b and Appendix 3). These models seek the clutch size 
that maximises TOF per unit of time and predict that the optimum clutch size (fi) 
will be lower than N* when T, is short (relative to To) and will approach N* as T, 
approaches infinity (e.g. Parker and Courtney, 1984; Charnov and Skinner, 1984, 
1985; Skinner, 1985, see also Iwasa et al., 1984). In other words, the optimal clutch 
size will converge on Lack’s solution as the host encounter rate declines. Optimal 
clutch size also increases with increasing host value, but is unaffected by the egg 
supply of the female and the total time available to her (Tab. 4). 

Model 3~: Eggs limiting: In some situations the total number of eggs that a female 
can oviposit during her lifetime may be limiting. This will be the case if reserves 
limit egg production and cannot be diverted from other uses such as maintenance, 
and is particularly likely to occur in proovigenic species which emerge with their full 
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complement of eggs. These include many Lepidoptera such as bombycids, lymantri- 
ids and noctuids (see Englemann, 1970; Wigglesworth, 1972 and references therein). 
When eggs are limiting but time and oviposition sites are plentiful, the optimal 
solution is to maximise egg fitness (or TOF per egg). When per capita offspring 
fitness decreases monotonically with increasing clutch size, I? = I for accepted hosts 
(these on which eggs are laid) (Fig. 1 c). When there is an Allee effect and per cupitu 
fitness peaks at a clutch size greater than one (as it does in the bruchid beetle 
Zabrotes subfusciutus; Utida, 1967), R is greater than one (Fig. Id) and may 
coincide with N* (Godfray, 1987a). As in all the other models considered, host 
value has an effect on optimal oviposition behaviour; however, in the absence of an 
Allee effect this is manifested as an increased probability of laying a single egg on 
a host rather than an increase in clutch size. None of the other parameters (T,, T,,, 
E and T) have an effect on optimal oviposition behaviour (Tab. 4). 

Model 4u: Reserves limiting (eggs and time, dependently): Life history theory often 
assumes that there will be a trade-off between the amount of resources directed into 
reproduction and the amount directed into maintenance, such that the more eggs a 
female lays, the shorter is her lifespan (Williams, 1966; see review by Bell and 
Koufopanou, 1986). This sort of trade-off is likely to be particularly important to 
animals that do not feed as adults and whose resources are hence limited to those 
accumulated during larval development. For instance, in the seed-store environ- 
ment, the granivorous beetle Cuflosobruchus macularus has limited opportunities to 
feed as an adult and so its lifespan and fecundity are constrained by the amount of 
seed material that it can consume as a larva (Smith and Lessells, 1985; Credland et 
al., 1986; Wilson, 1994). Moreover an increase in either fecundity or longevity 
results in a concomitant decline in the other, suggesting that reserves can be 
directed into reproduction or maintenance, as required (Wilson, 1994). 

The cost of reproduction can be modelled using the marginal value theorem 
(MVT) by specifying a conversion rate between eggs and time (Smith and Lessells, 
1985) and is analogous to the time limiting model (above), except that the limiting 
resource has changed from time to egg-equivalents. The predictions of the two 
models are qualitatively the same (Tab. 4, Fig. le, Appendix 4); optimal clutch size 
is higher when travelling is expensive relative to oviposition and when host value is 
higher, but is unaffected by the egg reserves of the female or the total amount of 
time available to her (provided that the conversion rate between eggs and time does 
not vary with these two variables). However, because the cost of oviposition relative 
to travelling is likely to be greater when measured in eggs rather than time, a given 
change in travel time will produce smaller changes in N under a reserves constraint 
(this model) than under a time constraint (model 2). 

Model 5~: Eggs and time limiting, independently: This model considers the situation 
in which both eggs and time may be limiting, but a reduction in the number of eggs 
laid does not result in increased longevity, nor vice-versa. This is the situation in 
insects for whom egg production and maintenance are constrained by different 
resources such as protein and lipid, respectively, as is true of most leaf-feeding and 
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haematophagous insects (see Crawley, 1983; Strong et al., 1984; Wigglesworth, 
1972, and references therein). Under independent egg and time constraints, the 
optimal clutch size depends critically on the amount of time available for laying 
each egg (T/E) (Appendix 5). Two threshold values of T/E can be recognised: a 
lower threshold, below which the only limiting resource is time (because the amount 
of time required to lay all the eggs is more than that available); and an upper 
threshold, above which the only limiting resource is eggs (because the amount of 

Fig. 2. Graphical solutions to models 5a-c: effect of travel time, current egg-load, and number of 

ovipositing females on optimal clutch sizes when eggs and time are simultaneously and independently 
limiting. Figures (a)-(c) illustrate the effect of travel time (T,), current egg-load of the host (x) and 
number of ovipositing females (i). respectively, on the predicted optimal clutch sizes when the larval 
fitness function is linear. Figures (d))(f) illustrate their similar effects when the function is exponen- 

tial (see text). When eggs and time are independently and simultaneously limiting, the optimal clutch 
size (N) is critically dependent on the value of T/E. Above the upper threshold for T/E (when 

T/E > T,, + T,), eggs are the sole limiting resources and the optimal clutch size, fi = 1 (see model 3). 
Below the lower threshold (when T/E < To + T,/N,), time is the sole limiting resource and # = NT, 

where NT is the marginal value clutch size (model 2). Between these two thresholds, eggs and time are 
both limiting and @ = T,/(T/E - To). For both larval fitness functions, travel time, T,, affects both the 
position of the upper and lower thresholds, and the value of 8 at values of T/E i T,, + T, (Figs. (a) and 

(d)). Between the threshold values, # is independent of the egg load of the host (x) and the number of 
ovipositing females (i), but the lower threshold value of T/E may be sensitive to changes in both i and 
.Y depending on the shape of the larval fitness function (cf. Fig?. (b) and (c) with (e) and (f)). In the 

illustrated example, N* = 15, To = 2, T, = 10 (except in (a) and (d)), x = 0 (except in (b) and (e)), and 
i = I (except in (c) and (f)). (See Tables 2 and 3 and Appendix 5). 
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time needed to lay all the eggs is less than that available). Between these two 
thresholds the optimal clutch size is a non-linear function of T/E (Figs. 2a and 2d; 
Tab. 2; Appendix 5). In all cases, optimal clutch size (or probability of host 
acceptance) increases with host value. Above the upper threshold of T/E the 
optimal clutch size is independent of T,, T,, E or T. Between the thresholds, 
optimal clutch size is affected by all four of these parameters, while below the lower 
threshold it is unrelated to E and T, but increases with increasing T,/T, (Tab. 4). 

In some instances, for example if there is variation in the time-interval between 
host encounters, the ratio of remaining time to remaining eggs will vary in such a 
way that the optimal clutch size may change after oviposition. In this case, females 
should reassess their optimal clutch size after each clutch that they lay. As Mange1 
(1987) demonstrated using dynamic programming techniques, the temporal pattern 
of i? depends on the interaction between E and T. If clutches are laid in quick 
succession, the optimal clutch size will decrease over time (Parker and Courtney, 
1984; Begon and Parker, 1986; see also Iwasa et al., 1984; Mangel, 1987, 1989). 
However, if a female is deprived of hosts for some time, N may increase because the 
amount of time available for egg-laying decreases whilst the number of eggs 
available remains constant, resulting in time becoming more limiting (i.e. in T/E 
decreasing; see Fig. 2, Appendix 5). 

Model 62 Eggs and hosts limiting, independently: This model considers the case in 
which both eggs and hosts are potentially limiting, but a reduction in the number 
of eggs laid does not result in an increase in the number of hosts that can be found. 
For example, many drosophilids lay their eggs in ephemeral substrates, such as 
flower heads or fruiting bodies (e.g. Kambysellis and Heed, 1971). When suitable 
oviposition sites are present for only a short period, host availability may limit a 
female’s reproductive success, whereas when the flowering or fruiting period is 
extended, it may be a female’s egg supply that is the main limiting factor. As in the 
previous model, the optimal clutch size depends on the ratio of the two independent 
constraints (E/H in this case). When E/H is less than one, the model is equivalent 
to egg limitation (model 3) and the optimal clutch size is one egg, while if E/H is 
above an upper threshold, the model is equivalent to host limitation (model 1) and 
the optimal clutch size is equal to Lack’s solution, N*. Between these two 
thresholds, the optimal clutch size involves using up all available hosts and eggs 
(Mitchell, 1975; Skinner, 1985) and increases linearly from one to N* as the ratio 
of eggs to hosts (E/H) increases (Fig. 3, Appendix 6). In all cases, optimal clutch 
size (or probability of host acceptance) increases with host value, and is indepen- 
dent of T,, T, and T. Between the two thresholds, but not below the lower or above 
the higher threshold, the optimal clutch size varies with E (Tab. 4). 

Multiple Oviposition Models 

Model 1: Hosts limiting: lb) The optimal clutch size (N) for a female that is the last 
to lay on a host already bearing x eggs depends on the shape of the larval fitness 
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Fig. 3. Graphical solution to models 6aac: effect of current egg-load and number of ovipositing females 

on optimal clutch sizes when eggs and hosts are simultaneously and independently limiting. Figures (a) 
and (b) illustrate the effect of the egg-load of the host (x) and the number of ovipositing females (i), 
respectively, on the optimal clutch size when the larval fitness function is linear. Figures (c) and (d) 
illustrate similar effects when the function is exponential (see text). When eggs and hosts are both 
potentially independently limiting, the optimal clutch size, fl, is determined by the value of E/H. the 

number of eggs available per host. Below the lower threshold, when E/H < 1, eggs are the sole constraint 
and fl = 1 (see model 3). Above the upper threshold, when E/H > N,, hosts are the sole limiting 
resource and /5 = N,,. the optimal clutch size when hosts are limiting (see model 1). Between these two 
thresholds, eggs and hosts both constrain clutch size and fl= E/H. fi is not dependent on the value of 

E/H between the thresholds, but the position of the upper threshold is sensitive to the egg load of the 
host (x) and the number of ovipositing females (i) when the larval fitness function is linear (Figs. (a) and 
(b)), but not when it is exponential (Figs. (c) and (d)). In the illustrated example, N* = 15. (See Tables 

2 and 3 and Appendix 6). 

function for individual larvae. When this function is the linear function described 
earlier, A is Lack’s solution minus half the current egg-load of the host (Tab. 3) 
and because clutch fitness equals zero at some finite clutch size (2N*), there is an 
upper limit to the total number of eggs expected on a host (Tab. 4; Appendix 2). 

However, when the larval fitness function is exponential, @ is independent of the 
current egg-load, and is affected only by the severity of larval competition (Tab. 3). 
Consequently, with this fitness function, there is no upper limit to the number of 
eggs expected when all hosts have the same egg-load (Tab. 4). However, clutch size 
will be egg-load dependent when egg-loads vary within the environment (see Smith 
and Lessells’ (1985) model 1 b). This result does not hold for all non-linear fitness 
functions (unpublished analysis), and serves to underline the warning made by 
Smith and Lessells ( 1985) about making generalisations from specific functions (see 
also Ives, 1989). In summary, if the female behaves as if she is the last to lay on a 
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particular host and hosts are the major constraint on clutch size, then the female 
should be sensitive to both the shape of the larval fitness function and to the current 
egg-load of the host. 

Skinner (1985) made the additional prediction that if progeny fitness declines as 
a function of the age of competing larvae in the host (as is true for some bruchid 
beetles, Bellows, 1982) then clutch size will decline with time between successive 
female visits. 

Ic) This model considers the number of eggs a female should lay given that 
(i - 1) other females also oviposit on the same host. For the linear larval fitness 
function, N is equal to 2N*/(i + I) (Tab. 3, Appendix 2). In other words, N 
decreases as the number of laying females (i) increases and the predicted maximum 
number of eggs per host is equal to twice Lack’s solution (2N*). However, this 
conclusion is not general; N may increase with i under some circumstances (Ives, 
1989), or may remain unaltered, as when the larval fitness function is exponential 
(Tab. 3, Appendix 2). 

For all of the remaining models, when the larval fitness function is exponential 
the optimal clutch size is unaffected by the number of ovipositing females or the 
egg-load of the host (and hence xmax always equals infinity). Therefore, discussion 
will be limited to models that encompass a linear larval fitness function. 

Model 2: Time limiting: 2b) When time is the major constraint, the optimal clutch 
size declines as the initial egg-load of the host increases (Tab. 3 and 4, Appendix 3). 
This is because the MVT predicts that N will decrease as host value decreases, and 
the value of the host is reduced by the current egg-load of the host (see above). The 
optimal clutch size of the second female is smaller than that of the first, provided 
that the first and second females take the same length of time to find hosts (Skinner, 
1985). When the larval fitness function is linear, the maximum number of eggs expected 
on a host (x~,,) is the same as that when hosts are limiting (i.e. 2N*, model lb). 

2c) When a female is one of i females to lay on a host, her optimal clutch size is 
dependent on the shape of the fitness function, on the cost of travelling between 
hosts, and on the number of females ovipositing (Parker and Courtney, 1984) (Tab. 
1). Again, when the larval fitness function is linear, x,,, approaches 2N* as the 
number of ovipositing females approaches infinity. 

Model 3: Eggs limiting: 3b) If time and hosts are not limiting, then, in an environment 
in which all hosts have the same value and egg-load, a female that assumes that she 
is the last to lay should always lay one egg on each host, irrespective of its egg-load. 
However, in an environment with variable egg-loads, the problem is analogous to 
diet choice (Iwasa et al., 1984) and the optimal probability of laying on a host will 
be negatively correlated with the number of eggs on its surface. 

3c) When i females are laying on the same host, the optimal clutch size is one. This 
result is more or less independent of the value of i (although if the fitness function 
becomes zero at some value of i, N will equal zero for equal or greater values of i). 

Model 4: Reserves limiting (eggs and time, dependently): 4b) The predictions under 
a reserve constraint are qualitatively simlar to those under a time constraint. The 
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optimal clutch size decreases monotonically with increasing egg-load and, for larval 
fitness functions that intercept the abscissa at some point, there is a maximum 
expected egg-load (Smith and Lessells, 1985). 

4c) If the female behaves as if other females will also lay on the same host, then 
the ES clutch size will be a decreasing function of the number of females ovipositing 
(i) and of the search costs (T,) (Appendix 4). As i and T, increase, so the maximum 
number of eggs expected on a host approaches 2N*. (Note that this solution differs 
from that derived by Smith and Lessells (1985) which is incorrect; M. Sjerps 
personal communication.) 

Model 5: Eggs and time limiting, independently: 5b) The optimal clutch size when 
eggs and time are independently limiting is dependent on the ratio T/E. As in model 
5a, there are two threshold values of T/E: below the lower threshold (T/ 
E < T,, + T,fiT), time is the major constraint and the optimal clutch size is A,, the 
egg-load dependent marginal value clutch size (which decreases as egg-load in- 
creases; see model 2b). Above the upper threshold (T/E > T, + T,), eggs are the 
major constraint, and the optimal clutch size is unaffected by egg-load and is equal 
to one (see model 3b). At intermediate values of T/E, intermediate values of @ are 
predicted (see model 5a) which are independent of egg-load (Fig. 2b). As the 
egg-load of the host increases, the slope of the transition curve from & = 1 to 
fi = fi7 remains constant, but the critical value of T/E at which fi diverges from N7 
increases (see Appendix 5). The situation becomes more complicated if egg-loads 
vary within environments: fi is then dependent on the frequency of low egg-load 
hosts in the environment (analogous to an optimal diet choice model). 

5c) The predictions of this model are qualitatatively the same as for the model 
above when all hosts have the same egg-load (see Fig. 2c and Appendix 5). 

Model 6: Eggs and hosts limiting, independently: 6b) and c) The optimal clutch size 
when eggs and host are limiting depends on the ratio E/H (the number of eggs 
available per potential host; see model 6a and Appendix 6). Increasing the egg-load 
of the current host (x) or the number of females laying (i) effectively reduces the value 
of N* (see model 1 b) and hence lowers the upper threshold value of E/H (Fig. 3a). 
When x or i are sufficiently large, i? will equal one and be independent of E/H. 

As for model 5b and c, quantitative predictions become more difficult if egg-loads 
vary within an environment, but one would expect A to decrease as the current 
egg-load increases, and that for some hosts the optimal clutch size will be zero, i.e. 
hosts will be rejected. 

Discussion 

Our main aim in reviewing models of insect clutch size was to determine whether 
such models could be distinguished by qualitative criteria alone or whether quanti- 
tative predictions must be tested. This cannot be considered without first discussing 
the role of phenotypic plasticity. Traits are said to be phenotypically plastic when 
a single genotype produces a range of phenotypes depending on the environment. 
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If the optimal phenotype (in this case clutch size) varies with the environment (e.g. 
host value, travel time, or the number of other ovipositing females), a match 
between phenotype and environment may be achieved either by genetic differentia- 
tion or by phenotypic plasticity. 

Phenotypic plasticity is particularly advantageous when the environment changes 
on a small scale geographically, or at the same or shorter interval than a generation 
time (Bradshaw, 1965). An obvious example is foraging behaviour, where it is often 
tacitly assumed that individuals will show adaptive phenotypic plasticity in response 
to variation in environmental parameters such as patch quality or travel time. 
Conversely, genetic differentiation is more likely when associations between popula- 
tions and environments persist over many generations (e.g. Karban, 1989). How- 
ever, the evolution of adaptive phenotypic plasticity depends on the existence of 
environmental cues that accurately predict future conditions. The upshot is that 
individuals may not show phenotypic plasticity even when it would be adaptive for 
them to do so. They may instead produce a more or less fixed phenotype which is 
adapted to their average environmental conditions (for instance the average level of 
multiple oviposition). Thus, if an organism shows phenotypic plasticity, we can 
reject hypotheses that predict a constant phenotype, but if the reverse occurs ~ the 
organism shows no phenotypic plasticity - we cannot reject those hypotheses which 
predict phenotypic plasticity. This is an important consideration in the testing of 
most optimality models, but is seldom discussed. 

Returning to the task of discriminating between the models of oviposition 
behaviour, two of the single oviposition models make extreme predictions: under an 
oviposition site constraint (model la) optimal clutch size equals Lack’s solution 
(N*), the value of which can be determined experimentally by measuring the larval 
competition curve or larval fitness function (Tab. 4). In contrast, under an egg 
constraint (model 3a) the optimal clutch size is one egg, while under the 4 other 
models (2a, 4a, 5a, 6a) optimal clutch size ranges from 1 to N*. Moreover, in both 
the extreme cases, as well as for model 6a, the optimal clutch size is independent of 
travel time between oviposition sites, whereas in the other cases the optimal clutch 
size increases with travel time. Thus if clutch size shows phenotypic plasticity with 
respect to the encounter rate with hosts, models la, 3a and 6a can be rejected, 
though the converse is not true if there is no phenotypic plasticity (see above). 
Models 2a and 5a predict that clutch size should be sensitive to oviposition time; 
this, however, is likely to be of limited utility in testing the models because it is not 
easily manipulated. Models 5a and 6a predict that clutch size will vary with the egg 
supply of the female; again, the existence of phenotypic plasticity may be used only 
to reject the remaining models, but a lack of phenotypic plasticity cannot be used 
to reject models 5a and 6a. Only model 5a predicts that clutch size will be sensitive 
to variation in the female’s lifespan, or her residual lifespan. Lastly, all of the 
models predict variation in clutch size (or the probability of laying a single egg) 
with host value; this prediction is therefore useless in qualitative tests of the models. 
In conclusion, the existence of phenotypic plasticity with respect to some parame- 
ters (7’,, T,, E, T) allows some of the models to be rejected, but in many cases 
quantitative tests will be needed to distinguish between the models. 
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The multiple oviposition models offer no additional qualitative criteria for 
distinguishing between oviposition sites, eggs or time, or combinations of these as 
constraints. When the female is the last to lay on a host (type b models), optimal 
clutch size may generally decrease with increasing current egg-load of the host (but 
not when the larva1 fitness function is exponential; Tab. 4). Similarly, when the 
female is one of i females to oviposit on the host, optimal clutch size decreases with 
increasing i. So if clutch size is phenotypically plastic with respect to current 
egg-load of the host or number of ovipositing females, the single oviposition models 
may be rejected. Care should be taken, however, in interpreting a response to an 
increased number of co-ovipositing females; interference competition may have 
energetic costs (e.g. Wightman, 1978) resulting in a change in the conversion rate, 
in energetic terms, between travelling and ovipositing. Yet again, a lack of pheno- 
typic plasticity does not exclude the multiple oviposition models. 

In conclusion, the clutch size models presented here cannot be adequately tested 
using qualitative information alone; if the main selection pressures acting on clutch 
size are to be elucidated then precise quantitative predictions must be examined. 
This is attempted in a companion paper (Wilson, 1994) using bruchid beetles 
ovipositing on cowpeas. 
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Appendices 

Wilson and Lessells 

Appendix 1. Finding the Optimul Clutch Size 

(i) The rate of fitness gain relative to the limiting resource, W, is expressed as a 
function of the clutch size laid per host, N. 

(ii) The evolutionarily stable clutch size, N, is then given by the solution of the 
equation (Oster and Wilson, 1978; Parker and Begon, 1986; Ives, 1989) 

awjalv = OIN=/s (1) 

provided that 

d2W/aN2<0(,v=fi (2) 

In general, fi is a function of the fitness of each offspring, itself a function 
(s(N, A, x, i)) of N, A, the number of females laying on a single host (i) and the 
egg-load of the host (x) before any of these i females begin to oviposit. Primes 
denote the first partial derivative with respect to N. fi can be found for specific 
larval fitness functions by substituting those functions and their first derivatives into 
the general solutions. 

(iii) Linear ,firnction: 

s(N,I?,x,i)=a-h[N+(i-l).fi+x] 

s’(N, @, x, i) = -h 

(iv) Exponential,function: 

s(N,$?x,j)=e ~[N+(i-I).fi+d 

s’(N, @,x, i) = -c epdN+ (1 1) fi+.yl 

(3) 

(4) 

(5) 

(6) 

(v) 2 for models u, h and c respectively (Table 2) can be found by substituting 
(a) i = 1, x = 0; (b) i = 1; (c) x = 0; into the general solutions. 

(vi) The maximum egg-load expected per host (x,,,; Table 4) can be found for 
h models by setting fi = 0 and solving for x, and for c models by finding i . fi as 
i tends to infinity. If fi is independent of x or i respectively (i.e. optimal clutch size 
is independent of the current egg-load of a host or of the number of other females 
ovipositing), then x,,% is infinite. 

These steps are followed in Appendices 2-4, and used to derive the solutions 
given in Tables 2 and 3. 

Appendix 2. Hosts Limiting 

(i) The rate of fitness gain per clutch 

F(N, fi, x, i) = N . s(N, fl, x, i) 

(ii) 

(7) 

I$ = -s(N, J?, x, i)/s’(N, fl, x, i)lN=k (8) 
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When a single female oviposits per host (mode1 la), # is equal to the most 
productive clutch size, N* (also referred to as Lack’s solution). Values of 8 for 
other models can frequently be expressed, by substitution, as functions of N*. For 
the linear function for the fitness of each offspring: 

N* = a/2b (8) 

and, for the exponential function: 

N* = l/c (9) 

(iii) For the linear larva1 fitness function: 

fi = (a - bx)/[b(i + l)] 

= (2N* - x)/(i + I) (10) 

(iv) For the exponential larval fitness function: 

#= l/c =N* (11) 

Appendix 3. Time Limiting 

(i) The rate of fitness gain with respect to time 

G(N) = N . s(N, fi, x, i)/(T, + N * T,) 

(ii) 

fi= -s(N, A, x, i) T, 
s’(N,$,x,i) ‘(T,+N.T,),=fi 

(iii) 

R = - T,(i + 1) + J[T:(i + l)‘+ 4(a/b - x)T, . To] 

2To 

- T,(i + 1) + ,/[Tf(i + l)2 -I- 4(2N* - x)T, To] 

2 r, 

(iv> 
B = - T, + &-: + 4T, . To/cl 

27-o 

- T, + J[T: + 4N* T, T,] = 
2To 

Appendix 4. Reserves Limiting 

(12) 

(13) 

(14) 

(15) 

(i) The rate of fitness gain with respect to reserves measured as ‘egg equivalents’ 

H(N) = N. s(N, fi, x, i)/(p . T, + N) (16) 
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(17) 

(iii) 

H = -/I . T,(i + 1) + &I’. T;(i + 1)2 + 4(2N* -x) . /I . r,] 

2 (18) 

(iv) 
fi = -fi . T, + J[fi2 . T: + 4N P . T,] 

2 (19) 

Appendix 5. Eggs and Time Limiting 

If the female uses all the eggs, E, and time, T, available to her, she will lay a 
clutch of size 

N(E, T) = (E . T,)/(T - E To) 

and her total fitness 

(20) 

W = E . s(N(E, T), 8, x, i) (21) 

Females should use all of the time available at all values of T for which 8 W/aT 2 0. 

aWlaT = -s’(N(E, T), fl, x, i) . T,/(T/E - To)* (22) 

In the absence of an Allee effect (i.e. when s’(N, 8, x, i) is negative for all N), this 
expression is positive for all values of T, implying that as T increases females should 
use all of T and hence lay smaller clutches. However, clutches are constrained to 
integer values, hence the smallest clutch size is one egg. When females lay clutches 
of one, they use a total of T/(T, + To) eggs. Hence, females cease to use all of the 
available time (and eggs are the only constraint; model 3) when 

TIE 2 T, + T,, (23) 

Females should use all of the eggs available at all values of E for which 8 W/aE 2 0. 

a W/aE = s’(N(E, T), @, x, i) . (N(E, T)*/T,) . (T/E) + s(N(E, T), 8, x, i) (24) 

Substituting s(N, @, x, i)/s’(N, fi, x, i) from (13) equating N(E, T) with flT (the 
optimal clutch size when time is limiting), and solving for 8 WjaE, females cease to 
use all of the available eggs (and time is the only constraint; model 2) when 

TIE <VI&) + To (25) 

Below this threshold, Y’? = fiT. Between the thresholds given by (23) and (25) 
females should use all available time and eggs and the optimal clutch size is thus 
given by (20). This optimum is not a function of x or i and hence, between the 
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thresholds, i? is independent of the egg-load of the host and the number of 
ovipositing females. However, both the position of the lower threshold (25) optimal 
clutch sizes below it ( 17) are functions of x and i, and hence may depend on the 
current egg-load of the host or the number of ovipositing females, depending on the 
specific larval fitness function used (see Figures 2b and 2~). 

Appendix 6. Eggs and Hosts Limiting 

If a female uses all of the eggs, E, and hosts, H, available to her, she will lay a 
clutch size 

N(E, H) = E/H (26) 

and her total fitness 

W = E . s(N(E, H), i?, x, i) (27) 

Females should use all of the hosts available at all values of H for which 
8W/?IH20 

a WjaH = -s’(N(E, H), 8, X, i) . E2/H2 (28) 

This expression is positive for all H, but because clutch sizes are constrained to 
integer values, eggs will become the only constraint (model 3) and optimal clutch 
size one egg when 

E/H < 1 (29) 

Similarly, females should use all of their eggs at values of E for which a Wji3E 2 0. 

8 W/aE = s’(N(E, H), fi, x, i) . E/H + s(N(E, H), fl, x, i) (30) 

Substituting s(N, Z?, x, i)/s’(N, I?, x, i) from (8), and solving for lJW/aE 5 0, fe- 
males cease to use all of their eggs (and hosts are the only constraint; model 1) 
when 

E/H > N* (31) 

Above this threshold, fi = N*. Between the thresholds given by (29) and (31), 
females should use all available time and eggs and N is given by (26). As in model 
5, this optimum is independent of the number of females laying (i) and the current 
egg-load of the hosts (x). However, the position of the upper threshold (31) and 
optimal clutch sizes above it, are sometimes dependent on i or x, depending on the 
specific larval fitness function (see Appendix 2 and Fig. 3). 


