Photoelectron counting in quantum optics

Tobias Brandes

Manchester
7th January 2006
(1) Introduction
(2) Photoelectric counting: classical field

- Mandel formula
(3) Photo-count formula in quantum optics
- Mandel formula generalisation: discussion
(4) Some quantum optics techniques
- Master equations and quantum dissipation
- Application: microscopic field-detector theory
- Quantum optics techniques: P-representation

Overview: photons, photon-counting, fluctuations

 Counting photons- Counting photons, but...
- ...'the eternal question: what is a photon'.
- 'What is light ?'

Overview: photons, photon-counting, fluctuations

 Counting photons- Counting photons, but...
- ...'the eternal question: what is a photon'.
- 'What is light ?'

Einstein 1951: '...these days every fool pretends to know what a photon is. I have been thinking about this for the whole of my life, and I haven't found the answer'.

Overview: photons, photon-counting, fluctuations

 Counting photons- Counting photons, but...
- ...'the eternal question: what is a photon'.
- 'What is light ?'

Einstein 1951: '...these days every fool pretends to know what a photon is. I have been thinking about this for the whole of my life, and I haven't found the answer'.
...cavity mode $H=\omega a^{\dagger} a, n$-photon eigenstate $|n\rangle$.

Overview: photons, photon-counting, fluctuations

 Counting photons- Counting photons, but...
- ...'the eternal question: what is a photon'.
- 'What is light ?'

Einstein 1951: '...these days every fool pretends to know what a photon is. I have been thinking about this for the whole of my life, and I haven't found the answer'.
...cavity mode $H=\omega a^{\dagger} a$, n-photon eigenstate $|n\rangle$.
...photon as gauge-boson of QED .

Overview: photons, photon-counting, fluctuations Irony of history: quantum mechanics

- 'No photons' for the photoelectric effect.
- Quantum mechanics was discovered in its own classical limit.

Overview: photons, photon-counting, fluctuations Irony of history: quantum optics

- Big breakthrough: Hanbury Brown, Twiss experiment: intensity correlations, 'photon bunching'.
- Correlation functions (a^{\dagger} creates cavity mode):

$$
\begin{align*}
G^{(1)}(t, t+\tau) & =\left\langle a^{\dagger}(t) a(t+\tau)\right\rangle \tag{1}\\
G^{(2)}(t, t+\tau) & =\left\langle a^{\dagger}(t) a^{\dagger}(t+\tau) a(t+\tau) a(t)\right\rangle \tag{2}
\end{align*}
$$

- But not yet a complete triumph for quantum optics...

Triumph came with resonance fluorescence: photon antibunching,

Overview: photons, photon-counting, fluctuations

 Photon counting: some issues- Count photo-electrons instead of photons.
- Counting statistics: correct theory for

$$
p_{n}(t, t+T) \text { probability for } n \text { photo-electrons in }[t, t+T) .
$$

- Detector back-action. System-bath problem 'with two baths'.
- ... no entirely trivial!

Semiclassical theory for $p_{n}(t, t+T)$: Mandel formula

Photodetector model: ionize single atom

- Classical electromagnetic field, vector potential $\mathbf{A}(\mathbf{r}) e^{-i \omega t}+\mathbf{A}^{*}(\mathbf{r}) e^{i \omega t}$.

$$
\underline{\underline{\underline{\underline{~}}}} \mid \mathrm{E}>
$$

$$
-\left|\mathrm{E}_{0}\right\rangle
$$

Semiclassical theory for $p_{n}(t, t+T)$: Mandel formula
Photodetector model: ionize single atom

- Classical electromagnetic field, vector potential $\mathbf{A}(\mathbf{r}) e^{-i \omega t}+\mathbf{A}^{*}(\mathbf{r}) e^{i \omega t}$.

$$
\underline{\underline{\underline{\underline{2}}}}|\mathrm{E}\rangle
$$

Probability $p_{1}(t, t+\Delta t)$ of one count: Fermi's Golden Rule

$$
\begin{align*}
p_{1}(t, t+\Delta t) & \left.=\int_{0}^{\infty} d E \nu(E)\left|\langle E| \frac{e}{m} \mathbf{p A}(\mathbf{r})\right| E_{0}\right\rangle\left.\right|^{2} D_{\Delta t}\left(E-E_{0}-\omega\right) \\
& =\eta I(\mathbf{r}) \Delta t, \quad I(\mathbf{r})=|A(\mathbf{r})|^{2}(\text { intensity }) \tag{1}
\end{align*}
$$

- $D_{\Delta t}(\varepsilon) \equiv\left(\left[\sin \frac{1}{2} \varepsilon \Delta t\right] /\left[\frac{1}{2} \varepsilon\right]\right)^{2}, \Delta t \rightarrow 0$. Polarisation $\mathbf{A}(\mathbf{r})=\vec{\varepsilon} A(\mathbf{r})$.

Mandel formula: many counts

How to obtain probability of n transitions $p_{n}(t, t+T)$

- Short-time probability $p_{1}(t, t+\Delta t)=\eta I(\mathbf{r}) \Delta t$ for single electron transition $(\eta I(\mathbf{r})$ transition rate).
- Long-time probability of n transitions $p_{n}(t, t+T) \leftrightarrow n$ electrons.

Mandel formula: many counts

How to obtain probability of n transitions $p_{n}(t, t+T)$

- Short-time probability $p_{1}(t, t+\Delta t)=\eta I(\mathbf{r}) \Delta t$ for single electron transition $(\eta I(\mathbf{r})$ transition rate).
- Long-time probability of n transitions $p_{n}(t, t+T) \leftrightarrow n$ electrons.
- Individual transitions are statistically independent...
- \rightsquigarrow Poisson distribution.
- Characterized by average \bar{n} only \rightsquigarrow

$$
\begin{equation*}
p_{n}(t, t+T)=\frac{\bar{n}^{n}}{n!} e^{-\bar{n}}, \quad \bar{n}=\eta I(\mathbf{r}) T \tag{2}
\end{equation*}
$$

Mandel formula: many counts

How to obtain probability of n transitions $p_{n}(t, t+T)$

- Short-time probability $p_{1}(t, t+\Delta t)=\eta I(\mathbf{r}) \Delta t$ for single electron transition ($\eta I(\mathbf{r})$ transition rate).
- Long-time probability of n transitions $p_{n}(t, t+T) \leftrightarrow n$ electrons.
- Markovian master equation for probabilities. $p_{n}(t) \equiv p_{n}(0, t)$,

$$
\begin{align*}
p_{n}(t+d t) & =p_{n}(t) \times[1-\eta I(\mathbf{r}) d t]+p_{n-1}(t) \times \eta I(\mathbf{r}) d t \tag{2}\\
\frac{d}{d t} p_{n}(t) & =\eta I(\mathbf{r})\left[p_{n-1}(t)-p_{n}(t)\right] . \tag{3}
\end{align*}
$$

- Generating function $G(s, t) \equiv \sum_{n=0}^{\infty} s^{n} p_{n}(t)$,

$$
\partial_{t} G(s, t)=\eta I(\mathbf{r})(s-1) G(s, t) .
$$

- Solve with $p_{0}(0)=1, p_{n}(0)=0, n>0, G(s, 0)=1$.
- Thus $G(s, t)=\exp [\eta I(\mathbf{r}) t(s-1)]=\sum_{n=0}^{\infty} s^{n} \frac{\bar{n}^{n}}{n!} e^{-\bar{n}}, \bar{n}=\eta l(\mathbf{r}) t$.

Mandel formula: many counts

How to obtain probability of n transitions $p_{n}(t, t+T)$

- Short-time probability $p_{1}(t, t+\Delta t)=\eta I(\mathbf{r}) \Delta t$ for single electron transition ($\eta I(\mathbf{r})$ transition rate).
- Long-time probability of n transitions $p_{n}(t, t+T) \leftrightarrow n$ electrons.

SUMMARY so far:

- Classical photo-electron counting formula (Mandel formula)

$$
p_{n}(t, t+T)=\frac{\bar{n}^{n}}{n!} e^{-\bar{n}}, \quad \bar{n}=\eta I(\mathbf{r}) T .
$$

- Poisson process.
- Generating function $G(s, t) \equiv \sum_{n=0}^{\infty} s^{n} p_{n}(t)=\exp [\eta I(\mathbf{r}) t(s-1)]$.
- Nothing said here about PHOTONS! This is a DETECTOR theory.

‘Quantum Mandel formulas'

Kelley-Kleiner, Carmichael, etc. version

- $p_{n}(t, t+T)=\left\langle: \frac{\hat{\Omega}^{n}}{n!} e^{-\hat{\Omega}}:\right\rangle$ with $\hat{\Omega} \equiv \xi \int_{t}^{t+T} d t^{\prime} \hat{E}^{-}\left(t^{\prime}\right) \hat{E}^{+}\left(t^{\prime}\right)$.
- No backaction of detector on field.
- 'Non-absorbed photons escape, open system.'
- Typically many field degrees of freedom, field is a 'BIG QUANTUM SYSTEM'.

‘Quantum Mandel formulas'

Kelley-Kleiner, Carmichael, etc. version

- $p_{n}(t, t+T)=\left\langle: \frac{\hat{\Omega}^{n}}{n!} e^{-\hat{\Omega}}:\right\rangle$ with $\hat{\Omega} \equiv \xi \int_{t}^{t+T} d t^{\prime} \hat{E}^{-}\left(t^{\prime}\right) \hat{E}^{+}\left(t^{\prime}\right)$.
- No backaction of detector on field.
- 'Non-absorbed photons escape, open system.'
- Typically many field degrees of freedom, field is a 'BIG QUANTUM SYSTEM'.

Mollow; Scully/Lamb; Srivinas/Davies; Ueda etc. version

- Backaction of detector leads to damping (continuous measurement) of the field.
- 'Eventually all photons absorbed, closed system.'
- Typically few field degrees of freedom, field is a 'SMALL QUANTUM SYSTEM'

Scully-Lamb photodetector

M. Scully, W. Lamb Jr., Phys. Rev. 179, 368 (1969)

- 'Photon statistics' means (reduced) density operator $\rho(t)$ of a light field (more generally: boson field).
- 'Photon statistics' is inferred by photoelectric counting techniques.

Fig. 1. Pictorial representation of photodetector consisting of N independent atoms. Each atom in detector has a ground state $|g\rangle$ and continuum of excited states $|k\rangle$. Atoms are labeled by indexing atomic state with particle number, e.g., $|k(m)\rangle$.

System-bath theory

Divide 'total universe' into system S and bath B ,

$$
\begin{aligned}
\mathcal{H} & =\mathcal{H}_{\mathrm{S}}+\mathcal{H}_{\mathrm{B}}+\mathcal{H}_{\mathrm{SB}} \\
& \equiv \mathcal{H}_{0}+V, \quad V \equiv \mathcal{H}_{\mathrm{SB}} .
\end{aligned}
$$

Total density matrix $\chi(t)$ obeys the Liouville-von-Neumann equation

$$
\begin{equation*}
\frac{d}{d t} \chi(t)=-i[\mathcal{H}, \chi(t)] \tag{3}
\end{equation*}
$$

Master equation

- Effective density matrix of the system $\rho(t) \equiv \operatorname{Tr}_{B}[\chi(t)]$.
- Interaction picture with respect to H_{0},

$$
\frac{d}{d t} \tilde{\rho}(t)=-i \operatorname{Tr}_{B}[\tilde{V}(t), \chi(t=0)]-\int_{0}^{t} d t^{\prime} \operatorname{Tr}_{B}\left[\tilde{V}(t),\left[\tilde{V}\left(t^{\prime}\right), \tilde{\chi}\left(t^{\prime}\right)\right]\right]
$$

- Born approximation, $\tilde{\chi}\left(t^{\prime}\right) \approx R_{0} \otimes \tilde{\rho}\left(t^{\prime}\right), R_{0}$ bath density matrix.
- System-bath interaction as $V=\sum_{k} S_{k} \otimes B_{k}$,
- Bath correlation functions $C_{k l}\left(t, t^{\prime}\right) \equiv \operatorname{Tr}_{B}\left[\tilde{B}_{k}(t) \tilde{B}_{l}\left(t^{\prime}\right) R_{0}\right]$, $\operatorname{Tr}_{B} \tilde{B}_{k}(t) R_{0}=0$.

Master equation

- Effective density matrix of the system $\rho(t) \equiv \operatorname{Tr}_{B}[\chi(t)]$.
- Interaction picture with respect to H_{0},

$$
\frac{d}{d t} \tilde{\rho}(t)=-i \operatorname{Tr}_{B}[\tilde{V}(t), \chi(t=0)]-\int_{0}^{t} d t^{\prime} \operatorname{Tr}_{B}\left[\tilde{V}(t),\left[\tilde{V}\left(t^{\prime}\right), \tilde{\chi}\left(t^{\prime}\right)\right]\right]
$$

- Born approximation, $\tilde{\chi}\left(t^{\prime}\right) \approx R_{0} \otimes \tilde{\rho}\left(t^{\prime}\right), R_{0}$ bath density matrix.
- System-bath interaction as $V=\sum_{k} S_{k} \otimes B_{k}$,
- Bath correlation functions $C_{k l}\left(t, t^{\prime}\right) \equiv \operatorname{Tr}_{B}\left[\tilde{B}_{k}(t) \tilde{B}_{l}\left(t^{\prime}\right) R_{0}\right]$, $\operatorname{Tr}_{B} \tilde{B}_{k}(t) R_{0}=0$.

$$
\begin{align*}
\frac{d}{d t} \tilde{\rho}(t) & =-\int_{0}^{t} d t^{\prime} \sum_{k l}\left[C_{k l}\left(t-t^{\prime}\right)\left\{\tilde{S}_{k}(t) \tilde{S}_{l}\left(t^{\prime}\right) \tilde{\rho}\left(t^{\prime}\right)-\tilde{S}_{l}\left(t^{\prime}\right) \tilde{\rho}\left(t^{\prime}\right) \tilde{S}_{k}(t)\right\}\right. \\
& \left.+C_{l k}\left(t^{\prime}-t\right)\left\{\tilde{\rho}\left(t^{\prime}\right) \tilde{S}_{l}\left(t^{\prime}\right) \tilde{S}_{k}(t)-\tilde{S}_{k}(t) \tilde{\rho}\left(t^{\prime}\right) \tilde{S}_{l}\left(t^{\prime}\right)\right\}\right] \tag{4}
\end{align*}
$$

Scully-Lamb Photodetector

Detector model

- System: single photon mode a and N detector single level 'quantum dots' j with one $\left(|1\rangle_{j}\right)$ or zero $\left(|0\rangle_{j}\right)$ electrons.
- Photon absorption empties dots into bath: leads $j, c_{\alpha j}^{\dagger}|v a c\rangle$.

$$
\begin{equation*}
\mathcal{H}_{\mathrm{SB}}=\sum_{\alpha j}\left(V_{\alpha}^{j} c_{\alpha j}^{\dagger}|0\rangle_{j}\langle 1| a+\bar{V}_{\alpha}^{j} c_{\alpha j}|1\rangle_{j}\langle 0| a^{\dagger}\right) \equiv \sum_{k} S_{k} \otimes B_{k} . \tag{5}
\end{equation*}
$$

Scully-Lamb Photodetector

Detector model

- System: single photon mode a and N detector single level 'quantum dots' j with one $\left(|1\rangle_{j}\right)$ or zero $\left(|0\rangle_{j}\right)$ electrons.
- Photon absorption empties dots into bath: leads $j, c_{\alpha j}^{\dagger}|v a c\rangle$.

$$
\begin{equation*}
\mathcal{H}_{\mathrm{SB}}=\sum_{\alpha j}\left(V_{\alpha}^{j} c_{\alpha j}^{\dagger}|0\rangle_{j}\langle 1| a+\bar{V}_{\alpha}^{j} c_{\alpha j}|1\rangle_{j}\langle 0| a^{\dagger}\right) \equiv \sum_{k} S_{k} \otimes B_{k} . \tag{5}
\end{equation*}
$$

Scully-Lamb Photodetector

Detector model

- System: single photon mode a and N detector single level 'quantum dots' j with one $\left(|1\rangle_{j}\right)$ or zero $\left(|0\rangle_{j}\right)$ electrons.
- Photon absorption empties dots into bath: leads $j, c_{\alpha j}^{\dagger}|v a c\rangle$.

$$
\begin{equation*}
\mathcal{H}_{\mathrm{SB}}=\sum_{\alpha j}\left(V_{\alpha}^{j} c_{\alpha j}^{\dagger}|0\rangle_{j}\langle 1| a+\bar{V}_{\alpha}^{j} c_{\alpha j}|1\rangle_{j}\langle 0| a^{\dagger}\right) \equiv \sum_{k} S_{k} \otimes B_{k} . \tag{5}
\end{equation*}
$$

Master equation: trace out the leads

- Terms $C_{k l}\left(t-t^{\prime}\right) \tilde{S}_{k}(t) \tilde{S}_{l}\left(t^{\prime}\right) \tilde{\rho}\left(t^{\prime}\right) ; C_{k l}\left(t-t^{\prime}\right)=\left\langle\tilde{B}_{k}(t) \tilde{B}_{l}\left(t^{\prime}\right)\right\rangle$.
- 'Broadband detection' at all energies, $\sum_{\alpha}\left|V_{\alpha}^{j}\right|^{2} \delta\left(\varepsilon-\varepsilon_{\alpha j}\right)=\nu$.

$$
\frac{d}{d t} \tilde{\rho}_{t}=-\pi \nu \sum_{j}\left\{|1\rangle_{j}\langle 1| a^{\dagger} a \tilde{\rho}_{t}+\tilde{\rho}_{t} a^{\dagger} a|1\rangle_{j}\langle 1|-2|0\rangle_{j}\langle 1| a \tilde{\rho}_{t} a^{\dagger}|1\rangle_{j}\langle 0|\right\} .
$$

Scully-Lamb Photodetector

State with m excitations

- Detector states $|m ; \lambda\rangle \equiv \hat{\Pi}_{\lambda}|0\rangle_{1} \ldots|0\rangle_{m}|1\rangle_{m+1} \ldots|1\rangle_{N}$. Permutations
- m-resolved field 'pseudo' density matrix $\tilde{\rho}_{t}^{(m)} \equiv \sum_{\lambda}\langle m ; \lambda| \tilde{\rho}_{t}|m ; \lambda\rangle$.

Scully-Lamb Photodetector

State with m excitations

- Detector states $|m ; \lambda\rangle \equiv \hat{\Pi}_{\lambda}|0\rangle_{1} \ldots|0\rangle_{m}|1\rangle_{m+1} \ldots|1\rangle_{N}$. Permutations - m-resolved field 'pseudo' density matrix $\tilde{\rho}_{t}^{(m)} \equiv \sum_{\lambda}\langle m ; \lambda| \tilde{\rho}_{t}|m ; \lambda\rangle$.

$$
\begin{aligned}
\frac{d}{d t} \tilde{\rho}_{t}= & -\pi \nu \sum_{j}\left\{|1\rangle_{j}\langle 1| a^{\dagger} a \tilde{\rho}_{t}+\tilde{\rho}_{t} a^{\dagger} a|1\rangle_{j}\langle 1|-2|0\rangle_{j}\langle 1| a \tilde{\rho}_{t} a^{\dagger}|1\rangle_{j}\langle 0|\right\} \\
& \sum_{j}\langle m ; \lambda| \tilde{\rho}_{t}|1\rangle_{j}\langle 1 \mid m ; \lambda\rangle=(N-m)\langle m ; \lambda| \tilde{\rho}_{t}|m ; \lambda\rangle
\end{aligned}
$$

$$
\sum_{j}\langle m ; \lambda \mid 0\rangle_{j}\langle 1| \tilde{\rho}_{t}|1\rangle_{j}\langle 0 \mid m ; \lambda\rangle=\sum_{\lambda^{\prime}}^{m \text { terms }}\left\langle m-1 ; \lambda^{\prime}\right| \tilde{\rho}_{t}\left|m-1 ; \lambda^{\prime}\right\rangle
$$

$$
\frac{d}{d t} \tilde{\rho}_{t}^{(m)}=-\pi \nu\left\{(N-m)\left[a^{\dagger} a \tilde{\rho}_{t}^{(m)}+\tilde{\rho}_{t}^{(m)} a^{\dagger} a\right]-2(N-m+1) a \tilde{\rho}_{t}^{(m-1)} a^{\dagger}\right\}
$$

Scully-Lamb Photodetector

State with m excitations

- Detector states $|m ; \lambda\rangle \equiv \hat{\Pi}_{\lambda}|0\rangle_{1} \ldots|0\rangle_{m}|1\rangle_{m+1} \ldots|1\rangle_{N}$. Permutations
- m-resolved field 'pseudo' density matrix $\tilde{\rho}_{t}^{(m)} \equiv \sum_{\lambda}\langle m ; \lambda| \tilde{\rho}_{t}|m ; \lambda\rangle$.
$N \gg m, \gamma \equiv 2 \pi N \nu \rightsquigarrow$

$$
\begin{equation*}
\frac{d}{d t} \rho_{t}^{(m)}=-i\left[\mathcal{H}_{\mathrm{F}}, \rho_{t}^{(m)}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \rho_{t}^{(m)}+\rho_{t}^{(m)} a^{\dagger} a-2 a \rho_{t}^{(m-1)} a^{\dagger}\right) . \tag{5}
\end{equation*}
$$

Scully-Lamb Photodetector

State with m excitations

- Detector states $|m ; \lambda\rangle \equiv \hat{\Pi}_{\lambda}|0\rangle_{1} \ldots|0\rangle_{m}|1\rangle_{m+1} \ldots|1\rangle_{N}$. Permutations
- m-resolved field 'pseudo' density matrix $\tilde{\rho}_{t}^{(m)} \equiv \sum_{\lambda}\langle m ; \lambda| \tilde{\rho}_{t}|m ; \lambda\rangle$.
$N \gg m, \gamma \equiv 2 \pi N \nu \rightsquigarrow$

$$
\begin{equation*}
\frac{d}{d t} \rho_{t}^{(m)}=-i\left[\mathcal{H}_{\mathrm{F}}, \rho_{t}^{(m)}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \rho_{t}^{(m)}+\rho_{t}^{(m)} a^{\dagger} a-2 a \rho_{t}^{(m-1)} a^{\dagger}\right) \tag{5}
\end{equation*}
$$

- Now counting statistics as $p_{m}(t) \equiv \operatorname{Tr} \rho_{t}^{(m)}$!

Jump super-operator $J, J \rho \equiv \gamma a \rho a^{\dagger}$, time evolution generator \mathcal{L}_{0}

- Define $\mathcal{L}_{0} \rho \equiv Y \rho+\rho Y^{\dagger}$ with $Y \equiv-i \mathcal{H}_{\mathrm{F}}-\frac{\gamma}{2} a^{\dagger} a$.

$$
\begin{equation*}
\dot{\rho}_{t}^{(m)}=\mathcal{L}_{0} \rho_{t}^{(m)}+J \rho_{t}^{(m-1)} \tag{6}
\end{equation*}
$$

Summary: counting statistics in Scully-Lamb detector model

m-resolved field density matrix
$\dot{\rho}_{t}^{(m)}=\mathcal{L}_{0} \rho_{t}^{(m)}+J \rho_{t}^{(m-1)}$.

- Counting statistics as $p_{m}(t) \equiv \operatorname{Tr} \rho_{t}^{(m)}$!

Summary: counting statistics in Scully-Lamb detector model
m-resolved field density matrix
$\dot{\rho}_{t}^{(m)}=\mathcal{L}_{0} \rho_{t}^{(m)}+J \rho_{t}^{(m-1)}$.

- Counting statistics as $p_{m}(t) \equiv \operatorname{Tr} \rho_{t}^{(m)}$!

Generating operator $\hat{G}(s, t)$

- Define $\hat{G}(s, t) \equiv \sum_{m=0}^{\infty} s^{m} \rho_{t}^{(m)}$, s : counting variable.
- Usually s complex, e.g. $s=e^{i \phi}$ with real ϕ.
- Infinite set of master equations now becomes a single equation,

$$
\begin{equation*}
\frac{\partial}{\partial t} \hat{G}(s, t)=\left(\mathcal{L}_{0}+s J\right) \hat{G}(s, t) \tag{7}
\end{equation*}
$$

Solve $\frac{d}{d t} \hat{G}=-i\left[\mathcal{H}_{\mathrm{F}}, \hat{G}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \hat{G}+\hat{G} a^{\dagger} a-2 s a \hat{G} a^{\dagger}\right)$

Solve $\frac{d}{d t} \hat{G}=-i\left[\mathcal{H}_{\mathrm{F}}, \hat{G}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \hat{G}+\hat{G} a^{\dagger} a-2 s a \hat{G} a^{\dagger}\right)$

Solve $\frac{d}{d t} \hat{G}=-i\left[\mathcal{H}_{\mathrm{F}}, \hat{G}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \hat{G}+\hat{G} a^{\dagger} a-2 s a \hat{G} a^{\dagger}\right)$

Solve $\frac{d}{d t} \hat{G}=-i\left[\mathcal{H}_{F}, \hat{G}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \hat{G}+\hat{G} a^{\dagger} a-2 s a \hat{G} a^{\dagger}\right)$

P-representation in harmonic oscillator Hilbert space

- Glauber introduced coherent states $|z\rangle, a|z\rangle=z|z\rangle$.
- Glauber-Sudarshan representation of operators such as \hat{G} as $\hat{G}=\int d^{2} z P\left(\hat{G} ; z, z^{*}\right)|z\rangle\langle z|$.
- z and z^{*} independent variables. Short form $P(z)$ instead $P\left(\hat{G} ; z, z^{*}\right)$.
- Rules $a \hat{G} a^{\dagger} \leftrightarrow z z^{*} P(z), a^{\dagger} a \hat{G} \leftrightarrow\left(z^{*}-\partial_{z}\right) P(z)$, $\hat{G} a^{\dagger} a \leftrightarrow\left(z-\partial_{z^{*}}\right) P(z)$.

Solve $\frac{d}{d t} \hat{G}=-i\left[\mathcal{H}_{F}, \hat{G}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \hat{G}+\hat{G} a^{\dagger} a-2 s a \hat{G} a^{\dagger}\right)$
P-representation in harmonic oscillator Hilbert space

- Glauber introduced coherent states $|z\rangle, a|z\rangle=z|z\rangle$.
- Glauber-Sudarshan representation of operators such as \hat{G} as $\hat{G}=\int d^{2} z P\left(\hat{G} ; z, z^{*}\right)|z\rangle\langle z|$.
- z and z^{*} independent variables. Short form $P(z)$ instead $P\left(\hat{G} ; z, z^{*}\right)$.
- Rules $a \hat{G} a^{\dagger} \leftrightarrow z z^{*} P(z), a^{\dagger} a \hat{G} \leftrightarrow\left(z^{*}-\partial_{z}\right) P(z)$, $\hat{G} a^{\dagger} a \leftrightarrow\left(z-\partial_{z^{*}}\right) P(z)$.

PDE for P-function of generating operator

- Field Hamiltonian $\mathcal{H}_{\mathrm{F}}=\Omega a^{\dagger} a$.

$$
\begin{align*}
\frac{\partial}{\partial t} P_{s}(z, t) & =\left[-y z \partial_{z}-y^{*} z^{*} \partial_{z^{*}}+\gamma\left(1+|z|^{2}(s-1)\right)\right] P_{s}(z, t) \\
y & \equiv-i \Omega-\frac{\gamma}{2} \tag{8}
\end{align*}
$$

Solve $\frac{\partial}{\partial t} P_{s}=\left[-y z \partial_{z}-y^{*} z^{*} \partial_{z^{*}}+\gamma\left(1+|z|^{2}(s-1)\right)\right] P_{s}$

Case $s=1$: simply damped harmonic oscillator

- 1st order PDE's are solved by method of characteristics

$$
\begin{equation*}
P_{1}(z, t)=e^{\gamma t} P^{(0)}\left(z e^{i(\Omega-i \gamma / 2) t}\right) \tag{9}
\end{equation*}
$$

Example $\left(G(s, t=0) \equiv \rho^{(0)}(t=0)=\left|z_{0}\right\rangle\left\langle z_{0}\right|\right)$

$$
\begin{align*}
& P_{1}(z, t=0)=\delta^{(2)}\left(z-z_{0}\right) \rightsquigarrow \tag{10}\\
& P_{1}(z, t>0)=e^{\gamma t} \delta^{(2)}\left(z e^{i(\Omega-i \gamma / 2) t}-z_{0}\right)=\delta^{(2)}\left(z-z_{0} e^{-i(\Omega-i \gamma / 2) t}\right)
\end{align*}
$$

(two-dimensional Delta-function!). State spirals into the origin.

Solve $\frac{\partial}{\partial t} P_{s}=\left[-y z \partial_{z}-y^{*} z^{*} \partial_{z^{*}}+\gamma\left(1+|z|^{2}(s-1)\right)\right] P_{s}$

Arbitrary s :

$P_{s}(z, t)=e^{\gamma t} P^{(0)}\left(z e^{i(\Omega-i \gamma / 2) t}\right) \exp \left\{-|z|^{2}(s-1)\left(1-e^{\gamma t}\right)\right\}$

- Now $\operatorname{Tr} \hat{G}(s, t) \equiv \sum_{m=0}^{\infty} s^{m} \operatorname{Tr} \rho_{t}^{(m)}$, read off photoelectron counting distribution $p_{m}(t) \equiv \operatorname{Tr} \rho_{t}^{(m)}$.

$$
\begin{aligned}
\operatorname{Tr} \hat{G}(s, t) & =\int d^{2} z P_{s}(z, t)=\int d^{2} z P^{(0)}(z) e^{-|z|^{2}(s-1)\left(e^{-\gamma t}-1\right)} \\
& =\sum_{m=0}^{\infty} s^{m} \int d^{2} z P^{(0)}(z) \frac{\left(|z|^{2} \eta_{t}\right)^{m}}{m!} e^{-|z|^{2} \eta_{t}}, \quad \eta_{t} \equiv 1-e^{-\gamma t}
\end{aligned}
$$

- Use normal ordering property of P-representation,

$$
\begin{equation*}
p_{m}(t)=\operatorname{Tr} \rho(0): \frac{\left(a^{\dagger} a \eta_{t}\right)^{m}}{m!} e^{-a^{\dagger} a \eta_{t}}: \quad \eta_{t} \equiv 1-e^{-\gamma t} \tag{11}
\end{equation*}
$$

Single-mode counting formula: discussion of

$$
p_{m}(t)=\operatorname{Tr} \rho(0): \frac{\left(a^{\dagger} a \eta_{t}\right)^{m}}{m!} e^{-a^{\dagger} a \eta_{t}}:, \quad \eta_{t} \equiv 1-e^{-\gamma t}
$$

- Coherent state $\rho(0)=\left|z_{0}\right\rangle\left\langle z_{0}\right| \rightsquigarrow$

$$
p_{m}(t)=\frac{\left(\langle n\rangle \eta_{t}\right)^{m}}{m!} e^{-\langle n\rangle \eta_{t}}
$$

- Poisson-distribution.
- Average $\langle n\rangle \equiv\left\langle a^{\dagger} a\right\rangle=\left|z_{0}\right|^{2}$.
- Coincides with semiclassical Mandel formula for $\gamma t \ll 1$.
- Fock-state $\rho(0)=|n\rangle\langle n| \rightsquigarrow$

$$
p_{m}(t)=\binom{n}{m} \eta_{t}^{m}\left(1-\eta_{t}\right)^{n-m}, \quad n \geq m
$$

- Bernoulli-distribution.
- m successful events (counts), $n-m$ failures (no counts) regardless of order.

Summary part 1

Done so far

- Photon counting: photo-electron counting.
- Semiclassical Mandel formula.
- Photo-detector theory: Scully/Lamb.
- Some techniques: quantum master equations, P-representation, counting variables and generating functions/operators.

Summary part 1

Done so far

- Photon counting: photo-electron counting.
- Semiclassical Mandel formula.
- Photo-detector theory: Scully/Lamb.
- Some techniques: quantum master equations, P-representation, counting variables and generating functions/operators.

Still to do

- More general situations.
- Sources, fields, and detectors.

Photoelectron counting in quantum optics

Tobias Brandes

Manchester
7th January 2006
(5) Correlation functions
(6) Source-field dynamics and counting

- Quantum optics basics
- Quantum sources of light
- Resonance fluorescence: driven spontaneous emission
(7) Master equations and quantum jumps
- Counting the jumps
- Quantum trajectories

Revision: towards a counting formula in quantum optics

- Mandel (Poissonian)

$$
p_{n}(t, t+T)=\frac{\bar{n}^{n}}{n!} e^{-\bar{n}}, \quad \bar{n}=\eta l(\mathbf{r}) T .
$$

- Classical field with intensity $I(\mathbf{r})$. Golden rule (photo-electric effect).
- Mollow, Scully-Lamb single mode

$$
p_{n}(0, t)=\operatorname{Tr} \rho(0): \frac{1}{n!}\left(a^{\dagger} a \eta_{t}\right)^{n} \exp \left(-a^{\dagger} a \eta_{t}\right):, \quad \eta_{t} \equiv 1-e^{-\gamma t} .
$$

- Correctly describes detector backaction. 'Closed system'. Free cavity fields only, no sources.
- 'Quantum Mandel', Kelley-Kleiner

$$
p_{n}(t, t+T)=\left\langle: \frac{\hat{\Omega}^{n}}{n!} e^{-\hat{\Omega}}:\right\rangle .
$$

- Heisenberg operators, $\Omega \equiv \xi \int_{t}^{t+T} d t^{\prime} \hat{E}^{-}\left(t^{\prime}\right) \hat{E}^{+}\left(t^{\prime}\right)$.
- Not correct for long times. 'Open system'. Various generalisations on the market.

Coherence functions

Definitions

Notation $x=(\mathbf{r}, t)$.

$$
\begin{align*}
G^{(1)}\left(x, x^{\prime}\right) & \equiv\left\langle E^{(-)}(x) E^{(+)}\left(x^{\prime}\right)\right\rangle \tag{12}\\
G^{(2)}\left(x_{1}, x_{2}, x_{2}^{\prime}, x_{1}^{\prime}\right) & \equiv\left\langle E^{(-)}\left(x_{1}\right) E^{(-)}\left(x_{2}\right) E^{(+)}\left(x_{2}^{\prime}\right) E^{(+)}\left(x_{1}^{\prime}\right)\right\rangle \tag{13}
\end{align*}
$$

- Based on photon absorption \rightsquigarrow intensity $\langle I(x)\rangle=G^{(1)}(x, x)$.
- $G^{(1)}$ describes first order coherence: Mach-Zehnder (Young, Michelson) interference.
- $G^{(2)}$ describes second order coherence: Hanbury Brown, Twiss.

Coherence functions

Special cases, normalised versions, single-mode example $H=\omega a^{\dagger} a$

$$
\begin{align*}
G^{(1)}(t, t+\tau) & \equiv\left\langle E^{(-)}(t) E^{(+)}(t+\tau)\right\rangle \tag{12}\\
G^{(2)}(t, t+\tau) & \equiv\left\langle E^{(-)}(t) E^{(-)}(t+\tau) E^{(+)}(t+\tau) E^{(+)}(t)(13)\right. \\
g^{(2)}(t, t+\tau) & \equiv \frac{G^{(2)}(t, t+\tau)}{G^{(1)}(t, t) G^{(1)}(t+\tau, t+\tau)} \tag{14}
\end{align*}
$$

number state $\rho(0)=|n\rangle\langle n| \rightsquigarrow g^{(2)}(\tau)=\frac{n(n-1)}{n^{2}}=1-\frac{1}{n}$
coherent state $\rho(0)=|z\rangle\langle z| \rightsquigarrow g^{(2)}(\tau)=\frac{z^{*} z^{*} z z}{\left|z^{*} z\right|^{2}}=1$.

Definition (bunching, antibunching; sub/super-Poissonian)

- Bunching: $g^{(2)}(\tau)<g^{(2)}(0)$, anti-bunching $g^{(2)}(\tau)>g^{(2)}(0)$.
- Super-P. $g^{(2)}(0)>1$, sub-P. $g^{(2)}(0)<1$: relation to $p_{n}(t, t+T)$.

Coherence functions

Example for bunching: cavity mode a^{\dagger} in thermal bath (temperature β^{-1})

- Mode angular frequency ω, damping κ.
- Master equation.
- Use quantum regression theorem.
- Long-time limit, $t \rightarrow \infty, n_{\mathrm{B}}=\left[e^{\beta \omega}-1\right]^{-1}$

$$
\begin{align*}
\lim _{t \rightarrow \infty}\left\langle a^{\dagger}(t) a(t+\tau)\right\rangle & =n_{\mathrm{B}} e^{-(\kappa+i \omega) \tau} \tag{12}\\
\lim _{t \rightarrow \infty}\left\langle a^{\dagger}(t) a^{\dagger}(t+\tau) a(t+\tau) a(t)\right\rangle & =n_{\mathrm{B}}^{2}\left(1+e^{-2 \kappa \tau}\right) \tag{13}
\end{align*}
$$

- Thus, $g^{(2)}(\tau)=1+e^{-2 \kappa \tau}$ and $g^{(2)}(\tau)<g^{(2)}(0)$: photon bunching. (cf. Carmichael book etc.)

Now from single mode a^{\dagger} to many modes a_{Q}^{\dagger}.

Quantization of Maxwell's equations

- Vector potential in Coulomb gauge.
- Fourier expansion into field modes $\mathbf{u}_{Q}(\mathbf{r})$, mode index Q.

$$
\left(\nabla^{2}+\omega_{Q}^{2}\right) \mathbf{u}_{Q}(\mathbf{r})=0 .
$$

- Quantization, annihilation operator a_{Q}, creation operator a_{Q}^{\dagger}.
- Electric field operator

$$
\mathbf{E}(\mathbf{r})=i \sum_{Q}\left(\frac{\hbar \omega_{Q}}{2 \varepsilon_{0}}\right)^{1 / 2} \mathbf{u}_{Q}(\mathbf{r}) a_{Q}+\text { H.c. }=\mathbf{E}^{(+)}(\mathbf{r})+\mathbf{E}^{(-)}(\mathbf{r})
$$

The most basic case: two-level atom...

Spontaneous emission from a two-level atom

Two-level atom with states $|1\rangle,|0\rangle$

$$
\begin{equation*}
H=\frac{\omega_{0}}{2} \sigma_{z}+\sum_{Q} \gamma_{Q}\left(\sigma_{+} a_{Q}+\sigma_{-} a_{Q}^{\dagger}\right)+\sum_{Q} \omega_{Q} a_{Q}^{\dagger} a_{Q} . \tag{14}
\end{equation*}
$$

Pauli matrices, photon creation operators a_{Q}^{\dagger}.

Spontaneous emission from a two-level atom

Two-level atom with states $|1\rangle,|0\rangle$

$$
\begin{equation*}
H=\frac{\omega_{0}}{2} \sigma_{z}+\sum_{Q} \gamma_{Q}\left(\sigma_{+} a_{Q}+\sigma_{-} a_{Q}^{\dagger}\right)+\sum_{Q} \omega_{Q} a_{Q}^{\dagger} a_{Q} . \tag{14}
\end{equation*}
$$

Pauli matrices, photon creation operators a_{Q}^{\dagger}.
Algebra of Pauli matrices

$$
\begin{align*}
\sigma_{x} & \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y} \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\sigma_{-} & \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \sigma_{+} \equiv\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \\
\sigma_{ \pm} & =\frac{1}{2}\left(\sigma_{x} \pm i \sigma_{y}\right), \quad \sigma_{x}=\sigma_{+}+\sigma_{-}, \quad \sigma_{y}=-i\left(\sigma_{+}-\sigma_{-}\right) \\
{\left[\sigma_{+}, \sigma_{-}\right] } & =\sigma_{z}, \quad\left[\sigma_{z}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm} . \tag{15}
\end{align*}
$$

Spontaneous emission from a two-level atom

Two-level atom with states $|1\rangle,|0\rangle$

$$
\begin{equation*}
H=\frac{\omega_{0}}{2} \sigma_{z}+\sum_{Q} \gamma_{Q}\left(\sigma_{+} a_{Q}+\sigma_{-} a_{Q}^{\dagger}\right)+\sum_{Q} \omega_{Q} a_{Q}^{\dagger} a_{Q} . \tag{14}
\end{equation*}
$$

Pauli matrices, photon creation operators a_{Q}^{\dagger}.

- Schrödinger equation for total wave function

$$
\begin{equation*}
|\Psi(t)\rangle=c(t)|1\rangle|\mathrm{vac}\rangle+\sum_{Q} b_{Q}(t)|0\rangle a_{Q}^{\dagger}|\mathrm{vac}\rangle, \quad c(0)=1 \tag{15}
\end{equation*}
$$

- Can be solved (Wigner-Weisskopf) within some approximations. In particular, $c(t)=e^{-\Gamma t / 2-i \omega_{0} t}$.
- No re-absorption of any emitted photon \leftrightarrow single mode model (only one Q, Jaynes-Cummings Hamiltonian, revivals).

Spontaneous emission from a two-level atom

Two-level atom with states $|1\rangle,|0\rangle$

$$
\begin{equation*}
H=\frac{\omega_{0}}{2} \sigma_{z}+\sum_{Q} \gamma_{Q}\left(\sigma_{+} a_{Q}+\sigma_{-} a_{Q}^{\dagger}\right)+\sum_{Q} \omega_{Q} a_{Q}^{\dagger} a_{Q} . \tag{14}
\end{equation*}
$$

Pauli matrices, photon creation operators a_{Q}^{\dagger}.

- Electric field $\mathbf{E}^{(+)}(\mathbf{r}, t)=\mathbf{E}_{f}^{(+)}(\mathbf{r}, t)+\mathbf{E}_{s}^{(+)}(\mathbf{r}, t)$, source field in terms of source operators
- Heisenberg EOM $\dot{a}_{Q}(t)=-i \omega_{Q} a_{Q}(t)-i \gamma_{k} \sigma_{-}(t) \rightsquigarrow$

$$
\begin{equation*}
a_{Q}(t)=a_{Q} e^{-i \omega_{Q} t}-i \gamma_{Q} \int_{0}^{t} d t^{\prime} \sigma_{-}\left(t^{\prime}\right) e^{-i \omega_{Q}\left(t-t^{\prime}\right)} . \tag{15}
\end{equation*}
$$

Spontaneous emission from a two-level atom

Two-level atom with states $|1\rangle,|0\rangle$

$$
\begin{equation*}
H=\frac{\omega_{0}}{2} \sigma_{z}+\sum_{Q} \gamma_{Q}\left(\sigma_{+} a_{Q}+\sigma_{-} a_{Q}^{\dagger}\right)+\sum_{Q} \omega_{Q} a_{Q}^{\dagger} a_{Q} . \tag{14}
\end{equation*}
$$

Pauli matrices, photon creation operators a_{Q}^{\dagger}.

- Field at the detector in terms of atom dipole operator

$$
\begin{align*}
\frac{\mathbf{E}_{s}^{(+)}(\mathbf{r}, t)}{} & =\int_{0}^{t} d t^{\prime}\left[\sum_{Q} \mathbf{f}_{Q}(\mathbf{r}) e^{-i \omega_{Q}\left(t-t^{\prime}\right)}\right] \sigma_{-}\left(t^{\prime}\right) \tag{15}\\
& \approx \int_{0}^{t} d t^{\prime}\left[\mathcal{E}(\hat{\mathbf{r}}) \delta\left(t-t^{\prime}-r / c\right)\right] \sigma_{-}\left(t^{\prime}\right)=\underline{\mathcal{E}(\hat{\mathbf{r}}) \sigma_{-}(t-r / c)}
\end{align*}
$$

- Note dipole form of $\mathcal{E}(\hat{\mathbf{r}})$.

Spontaneous emission from a two-level atom

Two-level atom with states $|1\rangle,|0\rangle$

$$
\begin{equation*}
H=\frac{\omega_{0}}{2} \sigma_{z}+\sum_{Q} \gamma_{Q}\left(\sigma_{+} a_{Q}+\sigma_{-} a_{Q}^{\dagger}\right)+\sum_{Q} \omega_{Q} a_{Q}^{\dagger} a_{Q} . \tag{14}
\end{equation*}
$$

Pauli matrices, photon creation operators a_{Q}^{\dagger}.

- Not too much can be learned here: transient process, exponentially decaying probability.
- We want to describe stationary processes \rightsquigarrow 'driven spontaneous emission' (resonance fluorescence).
- Analogy to tunneling of a single electron from a single level quantum dot.

Resonance fluorescence: analogy to single electron tunneling

Resonance fluorescence

CB dot, tunneling

Resonance fluorescence model

- Spontaneous emission from TLS plus driving with classical field $E \cos \left(\omega_{L} t\right)$, Rabi-frequency $\Omega \equiv d E / \hbar$, d dipole moment.

$$
\begin{equation*}
\mathcal{H}_{t} \equiv \mathcal{H}_{\mathrm{SE}}+\frac{\Omega}{2}\left(e^{-i \omega_{L} t} \sigma_{+}+e^{i \omega t} \sigma_{-}\right), \quad(\mathrm{RWA}) \tag{15}
\end{equation*}
$$

- Time-dependent unitary trafo leaves Liouville-v.Neumann equation invariant

$$
\begin{equation*}
\overline{\mathcal{H}}_{t} \equiv-i U_{t}^{\dagger} \frac{\partial U_{t}}{\partial t}+U_{t}^{\dagger} \mathcal{H}_{t} U_{t}, \quad \bar{\rho}_{t} \equiv U_{t}^{\dagger} \rho_{t} U_{t} \tag{16}
\end{equation*}
$$

- The form $U_{t}=\exp \left(-i \hat{N}_{F} \omega_{L} t\right) \operatorname{diag}\left(e^{-i \omega_{L} t}, 1\right)$ leads to $\left(\omega_{0}=\omega_{L}\right)$

$$
\begin{equation*}
\overline{\mathcal{H}}_{t} \equiv \frac{\Omega}{2}\left(\sigma_{+}+\sigma_{-}\right)+\sum_{Q} \gamma_{Q}\left(\sigma_{+} a_{Q}+\sigma_{-} a_{Q}^{\dagger}\right)+\sum_{Q}\left(\omega_{Q}-\omega_{L}\right) a_{Q}^{\dagger} a_{Q} \tag{17}
\end{equation*}
$$

Master equation for TLS-‘source' density operator ρ_{t}
$\dot{\rho}_{t}=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho_{t}\right]-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}+\rho_{t} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t} \sigma_{+}\right)$

- Spontaneous emission rate $\beta=\pi \sum_{Q} \gamma_{Q}^{2} \delta\left(\omega_{L}-\omega_{Q}\right)$, effect of driving in β neglected (\leftrightarrow 'intra-collisional field effect).
- Compare with our previous detector equation,

$$
\dot{\rho}_{t}^{(m)}=-i\left[\mathcal{H}_{\mathrm{F}}, \rho_{t}^{(m)}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \rho_{t}^{(m)}+\rho_{t}^{(m)} a^{\dagger} a-2 a \rho_{t}^{(m-1)} a^{\dagger}\right) .
$$

Master equation for TLS-‘source' density operator ρ_{t}
$\dot{\rho}_{t}=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho_{t}\right]-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}+\rho_{t} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t} \sigma_{+}\right)$

- Spontaneous emission rate $\beta=\pi \sum_{Q} \gamma_{Q}^{2} \delta\left(\omega_{L}-\omega_{Q}\right)$, effect of driving in β neglected (\leftrightarrow 'intra-collisional field effect).
- Compare with our previous detector equation,

$$
\dot{\rho}_{t}^{(m)}=-i\left[\mathcal{H}_{\mathrm{F}}, \rho_{t}^{(m)}\right]-\frac{\gamma}{2}\left(a^{\dagger} a \rho_{t}^{(m)}+\rho_{t}^{(m)} a^{\dagger} a-2 a \rho_{t}^{(m-1)} a^{\dagger}\right) .
$$

- Remember spontaneous emission: field at the detector in terms of atom dipole operator,

$$
\mathbf{E}_{s}^{(+)}(\mathbf{r}, t) \approx \mathcal{E}(\hat{\mathbf{r}}) \sigma_{-}(t-r / c)
$$

- Thus $a \sim \mathbf{E}_{s}^{(+)} \sim \sigma_{-}$.
- \rightsquigarrow detector photon absorption \sim electron jumps from up to down, σ_{-}.

Cook's 'counting at the source'

R. J. Cook PRA 23, 1243 (1981)
n-resolved master equation for resonance fluorescence of driven TLS
$\dot{\rho}_{t}^{(n)}=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho_{t}^{(n)}\right]-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}^{(n)}+\rho_{t}^{(n)} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t}^{(n-1)} \sigma_{+}\right)$

- Splitting up $\rho_{t}=\sum_{n=0}^{\infty} \rho_{t}^{(n)}, n$ photon emissions.

Cook's 'counting at the source'

R. J. Cook PRA 23, 1243 (1981)
n-resolved master equation for resonance fluorescence of driven TLS
$\dot{\rho}_{t}^{(n)}=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho_{t}^{(n)}\right]-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}^{(n)}+\rho_{t}^{(n)} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t}^{(n-1)} \sigma_{+}\right)$

- Splitting up $\rho_{t}=\sum_{n=0}^{\infty} \rho_{t}^{(n)}, n$ photon emissions.

- Cook's original idea: momentum transfers between atom and driving field.
- Count number of discrete displacements $n \hbar k$.
- Alternatively, count number of spontaneous emission events.

Cook's 'counting at the source'

R. J. Cook PRA 23, 1243 (1981)
n-resolved master equation for resonance fluorescence of driven TLS
$\dot{\rho}_{t}^{(n)}=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho_{t}^{(n)}\right]-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}^{(n)}+\rho_{t}^{(n)} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t}^{(n-1)} \sigma_{+}\right)$

- Splitting up $\rho_{t}=\sum_{n=0}^{\infty} \rho_{t}^{(n)}, n$ photon emissions.
- Jump super-operator J with $J \rho=2 \beta \sigma_{-} \rho \sigma_{+}=2 \beta|-\rangle\langle+| \rho|+\rangle\langle-\rangle$.
- Generating operator as usual, $G(s, t) \equiv \sum_{n=0}^{\infty} s^{n} \rho_{t}^{(n)}$; counting variable s.
- Counting statistics as $p_{n}(0, t)=\operatorname{Tr} \rho_{t}^{(n)}$.
- Photons are integrated out: just 4 by 4 equation
$\partial_{t} G=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, G\right]-\beta\left(\sigma_{+} \sigma_{-} G+G \sigma_{+} \sigma_{-}-2 s \sigma_{-} G \sigma_{+}\right)$.

Cook's 'counting at the source'

R. J. Cook PRA 23, 1243 (1981)
n-resolved master equation for resonance fluorescence of driven TLS
$\dot{\rho}_{t}^{(n)}=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho_{t}^{(n)}\right]-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}^{(n)}+\rho_{t}^{(n)} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t}^{(n-1)} \sigma_{+}\right)$

- Splitting up $\rho_{t}=\sum_{n=0}^{\infty} \rho_{t}^{(n)}, n$ photon emissions.
- Solution $G=\exp \left\{\left(\mathcal{L}_{0}+s J\right) t\right\} \rho(0)$, needs diagonalisation.
- In Laplace space, $\hat{G}(s, z)=\left[z-\mathcal{L}_{0}-s J\right]^{-1} \rho(0)$, needs Laplace inversion.
- \hat{G} as vector, resolvent matrix

$$
\left[z-\mathcal{L}_{0}-s J\right]^{-1}=\left(\begin{array}{cccc}
z+2 \beta & 0 & 0 & -\Omega \\
-2 \beta s & z & 0 & \Omega \\
0 & 0 & z+\beta & 0 \\
\frac{\Omega}{2} & -\frac{\Omega}{2} & 0 & z+\beta
\end{array}\right)
$$

Cook's 'counting at the source'

R. J. Cook PRA 23, 1243 (1981)
n-resolved master equation for resonance fluorescence of driven TLS
$\dot{\rho}_{t}^{(n)}=i \frac{\Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho_{t}^{(n)}\right]-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}^{(n)}+\rho_{t}^{(n)} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t}^{(n-1)} \sigma_{+}\right)$

- Splitting up $\rho_{t}=\sum_{n=0}^{\infty} \rho_{t}^{(n)}$, n photon emissions.

Result in Laplace space

$$
\begin{align*}
& \operatorname{Tr} \hat{G}(s, z)= \tag{18}\\
& \frac{(z+\beta)(z+2 \beta)+\Omega^{2}+(s-1) 2 \beta\left[(z+\beta) \rho_{0}^{++}+\Omega \operatorname{Im} \rho_{0}^{+-}\right]}{z(z+\beta)(z+2 \beta)+\Omega^{2}[z+\beta(1-s)]}
\end{align*}
$$

Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

$$
\operatorname{Tr} \hat{G}(s, z)=\frac{f(z)}{z f(z)+\beta \Omega^{2}(1-s)}, \quad f(z) \equiv(z+\beta)(z+2 \beta)+\Omega^{2} .
$$

Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

$$
\operatorname{Tr} \hat{G}(s, z)=\frac{f(z)}{z f(z)+\beta \Omega^{2}(1-s)}, \quad f(z) \equiv(z+\beta)(z+2 \beta)+\Omega^{2} .
$$

- Need to transform back into time-domain.

$$
\begin{align*}
p_{n}(0, t) & =\left.\frac{\partial^{n}}{\partial s^{n}} \operatorname{Tr} G(s, t)\right|_{s=0} \tag{19}\\
\langle n\rangle_{t} & =\left.\frac{\partial}{\partial s} \operatorname{Tr} G(s, t)\right|_{s=1} \quad \text { 1st moment. } \tag{20}\\
\left\langle n(n-1)_{t}\right\rangle & =\left.\frac{\partial^{2}}{\partial s^{2}} \operatorname{Tr} G(s, t)\right|_{s=1} \quad \text { 2nd factorial moment.(21) } \tag{21}
\end{align*}
$$

Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

$$
\operatorname{Tr} \hat{G}(s, z)=\frac{f(z)}{z f(z)+\beta \Omega^{2}(1-s)}, \quad f(z) \equiv(z+\beta)(z+2 \beta)+\Omega^{2} .
$$

- Large t : pole z_{0} closest to $z=0$.
- Expand $z_{0}=\sum_{m=1}^{\infty} c_{m}(s-1)^{m}$

$$
\begin{align*}
\rightsquigarrow\langle n\rangle_{t \rightarrow \infty} & =\frac{\beta \Omega^{2}}{2 \beta^{2}+\Omega^{2}} t \tag{19}\\
\rightsquigarrow \sigma_{t}^{2} \equiv\left\langle\Delta n^{2}\right\rangle_{t \rightarrow \infty} & =\langle n\rangle_{t \rightarrow \infty}\left[1-\frac{6 \beta^{2} \Omega^{2}}{\left(2 \beta^{2}+\Omega^{2}\right)^{2}}\right] .
\end{align*}
$$

- Negative Mandel Q-parameter $Q \equiv F-1$, Fano factor $F \equiv\left\langle\Delta n^{2}\right\rangle /\langle n\rangle<1$.

Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

$$
\operatorname{Tr} \hat{G}(s, z)=\frac{f(z)}{z f(z)+\beta \Omega^{2}(1-s)}, \quad f(z) \equiv(z+\beta)(z+2 \beta)+\Omega^{2} .
$$

- Large $t \gg \beta^{-1}$: counting statistics $p_{n}(t)$ becomes a Gaussian!

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p_{n}(t)=\frac{1}{\sqrt{2 \pi \sigma_{t}^{2}}} e^{-\left(n-\bar{n}_{t}\right)^{2} / 2 \sigma_{t}^{2}} \tag{19}
\end{equation*}
$$

(D. Lenstra, PRA 26, 3369 (1982)).

Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

$$
\operatorname{Tr} \hat{G}(s, z)=\frac{f(z)}{z f(z)+\beta \Omega^{2}(1-s)}, \quad f(z) \equiv(z+\beta)(z+2 \beta)+\Omega^{2} .
$$

Counting in quantum optics: towards a counting formula...

 Short revision- Direct 'counting at the source': the savest option...
- n-resolved master equations with 'jumpers' $J \rightarrow s J$, generating operators. Cook 81 (Lesovik 89, Gurvitz 99, Bagrets/Nazarov 03 ...)
- Mandel (Poissonian) $p_{n}(t, t+T)=\frac{\bar{n}^{n}}{n!} e^{-\bar{n}}, \quad \bar{n}=\eta l(\mathbf{r}) T$.
- Classical field with intensity I(r).
- Golden rule (photo-electric effect) plus Markov.
- Mollow, Scully-Lamb single mode
$p_{n}(0, t)=\operatorname{Tr} \rho(0): \frac{1}{n!}\left(a^{\dagger} a \eta_{t}\right)^{n} \exp \left(-a^{\dagger} a \eta_{t}\right):, \quad \eta_{t} \equiv 1-e^{-\gamma t}$.
- Correctly describes detector backaction. 'Closed system'.
- Free cavity fields only, no sources.
- 'Quantum Mandel', Kelley-Kleiner $p_{n}(t, t+T)=\left\langle: \frac{\hat{\Omega}^{n}}{n!} e^{-\hat{\Omega}}:\right\rangle$.
- Heisenberg operators, $\Omega \equiv \xi \int_{t}^{t+T} d t^{\prime} \hat{E}^{-}\left(t^{\prime}\right) \hat{E}^{+}\left(t^{\prime}\right)$.
- Not correct for long times. 'Open system'. Various generalisations on the market.

Three parties (source, field, detector).

Ueda's photodetector theory

M. Ueda PRA 41, 3875 (1990). (Relatively) consistent attempt to put everything together ?

- Source-field interaction.
- Detector-field backaction.

Three parties (source, field, receiver/detector).

Multi-mode photodetector

$$
\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{\mathrm{D}}+\mathcal{H}_{\mathrm{FD}}, \mathcal{H}_{0}=\mathcal{H}_{\mathrm{S}}+\mathcal{H}_{\mathrm{FS}}+\mathcal{H}_{\mathrm{F}}
$$

$$
\mathcal{H}_{\mathrm{FD}}=\sum_{Q k j}\left(V_{k}^{Q} c_{k j}^{\dagger}|0\rangle_{j}\langle 1| a_{Q}+\text { H.c. }\right), \quad \text { field-detector interactio(19) }
$$

Multi-mode photodetector

$$
\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{\mathrm{D}}+\mathcal{H}_{\mathrm{FD}}, \mathcal{H}_{0}=\mathcal{H}_{\mathrm{S}}+\mathcal{H}_{\mathrm{FS}}+\mathcal{H}_{\mathrm{F}}
$$

$$
\mathcal{H}_{\mathrm{FD}}=\sum_{Q k j}\left(V_{k}^{Q} c_{k j}^{\dagger}|0\rangle_{j}\langle 1| a_{Q}+H . c .\right), \quad \text { field-detector interactio(19) }
$$

- Neglect $\mathcal{H}_{\mathrm{FS}}$ in deriving non-unitary part of master equation for χ_{t} (field-source density operator).

$$
\begin{aligned}
\frac{d}{d t} \chi_{t}^{(m)} & =-i\left[\mathcal{H}_{0}, \chi_{t}^{(m)}\right] \\
& -\frac{1}{2} \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}}\left(a_{Q}^{\dagger} a_{Q^{\prime}} \chi_{t}^{(m)}+\chi_{t}^{(m)} a_{Q}^{\dagger} a_{Q^{\prime}}-2 a_{Q^{\prime}} \chi_{t}^{(m-1)} a_{Q}^{\dagger}\right)
\end{aligned}
$$

- Assumes 'broadband detection', $\gamma_{Q Q^{\prime}}=2 \pi N \sum_{k} V_{k}^{Q} \bar{V}_{k}^{Q^{\prime}} \delta\left(\varepsilon-\varepsilon_{k j}\right)$, $N \gg m$ detector atoms.

Formal solution

Generating operator G, 'damper' \mathcal{L}_{0}, 'jumper' J.

- Write $\partial_{t} G=\mathcal{L}_{0} G+s J G, G(s, t) \equiv \sum_{m=0}^{\infty} s^{m} \chi_{t}^{(m)}$.
- $\mathcal{L}_{0} X \equiv Y X+X Y^{\dagger}, Y \equiv-i \mathcal{H}_{0}-\frac{1}{2} \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q}^{\dagger} a_{Q^{\prime}}$.
- $J X \equiv \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q^{\prime}} X a_{Q}^{\dagger}$.

Formal solution

Generating operator G, 'damper' \mathcal{L}_{0}, 'jumper' J.

- Write $\partial_{t} G=\mathcal{L}_{0} G+s J G, G(s, t) \equiv \sum_{m=0}^{\infty} s^{m} \chi_{t}^{(m)}$.
- $\mathcal{L}_{0} X \equiv Y X+X Y^{\dagger}, Y \equiv-i \mathcal{H}_{0}-\frac{1}{2} \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q}^{\dagger} a_{Q^{\prime}}$.
- $J X \equiv \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q^{\prime}} X a_{Q}^{\dagger}$.
- Interaction picture $G(s, t) \equiv S_{t} \tilde{G}(s, t), S_{t} \equiv e^{\mathcal{L}_{0} t}$.
- Here, $S_{t} X \equiv e^{\mathcal{L}_{0} t} X=e^{Y t} X e^{Y^{\dagger} t}$.
- Counting and jumping in interaction picture,

$$
\begin{equation*}
\partial_{t} \tilde{G}(s, t)=s e^{-\mathcal{L}_{0} t} J e^{\mathcal{L}_{0} t} \tilde{G}(s, t) \tag{21}
\end{equation*}
$$

Formal solution

Generating operator G, 'damper' \mathcal{L}_{0}, 'jumper' J.

- Write $\partial_{t} G=\mathcal{L}_{0} G+s J G, G(s, t) \equiv \sum_{m=0}^{\infty} s^{m} \chi_{t}^{(m)}$.
- $\mathcal{L}_{0} X \equiv Y X+X Y^{\dagger}, Y \equiv-i \mathcal{H}_{0}-\frac{1}{2} \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q}^{\dagger} a_{Q^{\prime}}$.
- $J X \equiv \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q^{\prime}} X^{\dagger}{ }_{Q}^{\dagger}$.

Solution of $\partial_{t} \tilde{G}(s, t)=s e^{-\mathcal{L}_{0} t} J e^{\mathcal{L}_{0} t} \tilde{G}(s, t)$ as formal power series,

$$
\begin{align*}
\tilde{G}(s, t) & =\tilde{G}(s, 0)+\int_{0}^{t} d t^{\prime} s e^{-\mathcal{L}_{0} t^{\prime}} J e^{\mathcal{L}_{0} t^{\prime}}\left\{\tilde{G}(s, 0)+\int_{0}^{t^{\prime}} d t^{\prime \prime} s \ldots\right\} \\
& =\sum_{m=0}^{\infty} s^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1} S_{-t_{m}} J S_{t_{m}-t_{m-1}} J \ldots J S_{t_{m}} \chi(0) \\
G(s, t) & =\sum_{m=0}^{\infty} s^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1} S_{t-t_{m}} J S_{t_{m}-t_{m-1}} J \ldots J S_{t_{m}} \chi(0) \tag{21}
\end{align*}
$$

Formal solution

Generating operator G, 'damper' \mathcal{L}_{0}, 'jumper' J.

- Write $\partial_{t} G=\mathcal{L}_{0} G+s J G, G(s, t) \equiv \sum_{m=0}^{\infty} s^{m} \chi_{t}^{(m)}$.
- $\mathcal{L}_{0} X \equiv Y X+X Y^{\dagger}, Y \equiv-i \mathcal{H}_{0}-\frac{1}{2} \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q}^{\dagger} a_{Q^{\prime}}$.
- $J X \equiv \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q^{\prime}} X^{\dagger}{ }_{Q}^{\dagger}$.

Single-mode case first for simplicity $\left(A(t) \equiv e^{-Y t} a e^{Y t}\right)$:

$$
\begin{aligned}
\tilde{\rho}_{t}^{(m)} & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1} A\left(t_{m}\right) \ldots A\left(t_{1}\right) \chi(0) A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) \\
\rho_{t}^{(m)} & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1} e^{Y t} A\left(t_{m}\right) \ldots A\left(t_{1}\right) \chi(0) A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) e^{Y^{\dagger} t} .
\end{aligned}
$$

Formal solution

Generating operator G, 'damper' \mathcal{L}_{0}, 'jumper' J.

- Write $\partial_{t} G=\mathcal{L}_{0} G+s J G, G(s, t) \equiv \sum_{m=0}^{\infty} s^{m} \chi_{t}^{(m)}$.
- $\mathcal{L}_{0} X \equiv Y X+X Y^{\dagger}, Y \equiv-i \mathcal{H}_{0}-\frac{1}{2} \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q}^{\dagger} a_{Q^{\prime}}$.
- $J X \equiv \sum_{Q Q^{\prime}} \gamma_{Q Q^{\prime}} a_{Q^{\prime}} X a_{Q}^{\dagger}$.

Single mode case, taking traces:

$$
\begin{aligned}
\operatorname{Tr} \tilde{\rho}_{t}^{(m)} & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1}\left\langle A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) A\left(t_{m}\right) \ldots A\left(t_{1}\right)\right\rangle \\
\operatorname{Tr} \rho_{t}^{(m)} & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1}\left\langle A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) e^{Y^{\dagger} t} e^{Y t} A\left(t_{m}\right) \ldots A\left(t_{1}\right)\right\rangle
\end{aligned}
$$

Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

$$
\begin{align*}
p_{m}^{\mathrm{U}}(t) & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1}\left\langle A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) e^{Y \dagger t} e^{\gamma t} A\left(t_{m}\right) \ldots A\left(t_{1}\right)\right\rangle \\
p_{m}^{\mathrm{KK}}(t) & =\left\langle: \frac{\hat{\Omega}^{m}}{m!} e^{-\hat{\Omega}}:\right\rangle, \quad \hat{\Omega} \equiv \xi \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right) \tag{21}
\end{align*}
$$

Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

$$
\begin{align*}
p_{m}^{\mathrm{U}}(t) & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1}\left\langle A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) e^{Y^{\dagger} t} e^{Y t} A\left(t_{m}\right) \ldots A\left(t_{1}\right)\right\rangle \\
p_{m}^{\mathrm{KK}}(t) & =\left\langle: \frac{\hat{\Omega}^{m}}{m!} e^{-\hat{\Omega}}:\right\rangle, \quad \hat{\Omega} \equiv \xi \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right) \tag{21}
\end{align*}
$$

- No detector backaction in KK.
- Replace damped time-evolution $A(t) \equiv e^{-Y t} a e^{Y t}$ by free time-evolution $a(t) \equiv e^{i \mathcal{H}_{0} t} a e^{-i \mathcal{H}_{0} t}$.
- Remember single mode case (Mollow, Scully-Lamb) $p_{m}(t)=\operatorname{Tr}\left\{\rho(0): \frac{1}{m!}\left(a^{\dagger} a \eta_{t}\right)^{m} \exp \left(-a^{\dagger} a \eta_{t}\right):\right\}, \eta_{t} \equiv 1-e^{-\gamma t}$.
- KK is short-time limit $\gamma t \ll 1 \rightsquigarrow \eta_{t}=\gamma t$.

Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

$$
\begin{align*}
p_{m}^{\mathrm{U}}(t) & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1}\left\langle A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) e^{Y^{\dagger} t} e^{\curlyvee t} A\left(t_{m}\right) \ldots A\left(t_{1}\right)\right\rangle \\
p_{m}^{\mathrm{KK}}(t) & =\left\langle: \frac{\hat{\Omega}^{m}}{m!} e^{-\hat{\Omega}}:\right\rangle, \quad \hat{\Omega} \equiv \xi \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right) \tag{21}
\end{align*}
$$

Up to first order in γ

$$
\begin{align*}
e^{\gamma^{\dagger} t} e^{\gamma t} & =\left(1+\frac{\gamma}{2} \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right) \ldots\right)\left(1+\frac{\gamma}{2} \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right) \ldots\right) \\
& =\left(1+\gamma \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right) \ldots\right) \\
& =: \exp \left(\gamma \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right)\right): \tag{22}
\end{align*}
$$

Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

$$
\begin{align*}
p_{m}^{\mathrm{U}}(t) & =\gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1}\left\langle A^{\dagger}\left(t_{1}\right) \ldots A^{\dagger}\left(t_{m}\right) e^{\gamma^{\dagger} t} e^{\curlyvee t} A\left(t_{m}\right) \ldots A\left(t_{1}\right)\right\rangle \\
p_{m}^{\mathrm{KK}}(t) & =\left\langle: \frac{\hat{\Omega}^{m}}{m!} e^{-\hat{\Omega}}:\right\rangle, \quad \hat{\Omega} \equiv \xi \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right) \tag{21}
\end{align*}
$$

- Sum-rule $\sum_{m=0}^{\infty} p_{m}(0, t)=0$ fulfilled for

$$
\begin{align*}
& p_{m}(0, t) \equiv \operatorname{Tr} \rho_{t}^{(m)}= \tag{22}\\
= & \gamma^{m} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1}\left\langle: a^{\dagger}\left(t_{1}\right) a\left(t_{1}\right) \ldots a^{\dagger}\left(t_{m}\right) a\left(t_{m}\right) e^{\gamma \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right)}:\right\rangle \\
= & \left\langle: \frac{1}{m!}\left[\gamma \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right)\right]^{m} e^{\gamma \int_{0}^{t} d t^{\prime} a^{\dagger}\left(t^{\prime}\right) a\left(t^{\prime}\right)}:\right\rangle .
\end{align*}
$$

Multi-mode form

$$
\begin{aligned}
& p_{m}(0, t) \equiv \operatorname{Tr} \rho_{t}^{(m)}=\sum_{Q_{1} Q_{1}^{\prime} \ldots Q_{m} Q_{m}^{\prime}} \gamma_{Q_{1} Q_{1}^{\prime} \ldots \gamma_{Q_{m} Q_{m}^{\prime}} \times} \\
& \times \quad \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{1}} d t_{1} \operatorname{Tr}\left(\chi_{0} a_{Q_{1}}^{\dagger}\left(t_{1}\right) \ldots a_{Q_{m}}^{\dagger}\left(t_{m}\right) e^{Y^{\dagger} t} e^{Y t} a_{Q_{m}^{\prime}}\left(t_{m}\right) \ldots a_{Q_{1}^{\prime}}\left(t_{1}\right)\right) .
\end{aligned}
$$

- Somewhat impractical ...
- Counting-at-source method much simpler.
- Alternative: integrate out fields in $\partial_{t} G=\mathcal{L}_{0} G+s J G(?)$

Quantum trajectories: this should now be easy...

Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)
$\dot{\rho}_{t}=-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}+\rho_{t} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t} \sigma_{+}\right)$

Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)
$\dot{\rho}_{t}=-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}+\rho_{t} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t} \sigma_{+}\right)$

- Jump super-operator J with $J \rho=2 \beta \sigma_{-} \rho \sigma_{+}$
- Solve $\partial_{t} \rho_{t}=\left(\mathcal{L}_{0}+J\right) \rho_{t}$.
- Interaction picture with respect to $\mathcal{L}_{0}: \rho_{t} \equiv S_{t} \tilde{\rho}_{t}, S_{t} \equiv e^{\mathcal{L}_{0} t}$.

Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)
$\dot{\rho}_{t}=-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}+\rho_{t} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t} \sigma_{+}\right)$

- Jump super-operator J with $J \rho=2 \beta \sigma_{-} \rho \sigma_{+}$
- Solve $\partial_{t} \rho_{t}=\left(\mathcal{L}_{0}+J\right) \rho_{t}$.
- Interaction picture with respect to $\mathcal{L}_{0}: \rho_{t} \equiv S_{t} \tilde{\rho}_{t}, S_{t} \equiv e^{\mathcal{L}_{0} t}$.
- Solution of $\partial_{t} \tilde{\rho}(t)=e^{-\mathcal{L}_{0} t} J e^{\mathcal{L}_{0} t} \tilde{\rho}(t)$ as formal power series,

$$
\begin{equation*}
\rho(t)=\sum_{m=0}^{\infty} \int_{0}^{t} d t_{m} \ldots \int_{0}^{t_{2}} d t_{1} \underline{S_{t-t_{m}} J S_{t_{m}-t_{m-1}} J \ldots J S_{t_{1}} \rho(0)} \tag{23}
\end{equation*}
$$

- m quantum jumps occuring at times t_{1}, \ldots, t_{m}.
- Sum over all 'trajectories' with $m=0,1, \ldots, \infty$ jumps between 'free' (but damped) time-evolution.

Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)
$\dot{\rho}_{t}=-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}+\rho_{t} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t} \sigma_{+}\right)$
Monte-Carlo procedure. Fixed time step Δt.

- Step 1: start with pure wave function $|\Psi\rangle$.
- Step 2: calculate collaps probability, $P_{\text {col }}=\beta \Delta t\langle\Psi| \sigma_{+} \sigma_{-}|\Psi\rangle$
- Step 3: compare $P_{\text {col }}$ with random number $0 \leq r \leq 1$.
- If $P_{\text {col }}>r$ r replace $|\Psi\rangle \rightarrow \sigma_{-}|\Psi\rangle / \| \sigma_{-}|\Psi\rangle \|$.
- If $P_{\text {col }} \leq r$, no emission but time-evolution $|\Psi\rangle \rightarrow\left(1-i \Delta t H_{\text {eff }}|\Psi\rangle / \mathcal{N}\right.$, where $\left.H_{\text {eff }}\right)=-i \beta \sigma_{+} \sigma_{-}$.
- Go back to Step 2.
- Repeat procedure in order to obtain average.

Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)
$\dot{\rho}_{t}=-\beta\left(\sigma_{+} \sigma_{-} \rho_{t}+\rho_{t} \sigma_{+} \sigma_{-}-2 \sigma_{-} \rho_{t} \sigma_{+}\right)$
Monte-Carlo procedure. Fixed time step Δt.

- Step 1: start with pure wave function $|\Psi\rangle$.
- Step 2: calculate collaps probability, $P_{\text {col }}=\beta \Delta t\langle\Psi| \sigma_{+} \sigma_{-}|\Psi\rangle$
- Step 3: compare $P_{\text {col }}$ with random number $0 \leq r \leq 1$.
- If $P_{\text {col }}>r$ r replace $|\Psi\rangle \rightarrow \sigma_{-}|\Psi\rangle / \| \sigma_{-}|\Psi\rangle \|$.
- If $P_{\text {col }} \leq r$, no emission but time-evolution $|\Psi\rangle \rightarrow\left(1-i \Delta t H_{\text {eff }}|\Psi\rangle / \mathcal{N}\right.$, where $\left.H_{\text {eff }}\right)=-i \beta \sigma_{+} \sigma_{-}$.
- Go back to Step 2.
- Repeat procedure in order to obtain average.
- Widely used in quantum optics community.
- Note: splitting $\mathcal{L}=\mathcal{L}_{0}+J$ is not unique.
- Literature: Carmichael (book); Plenio,Knight (review).

Summary

- Multi-mode quantum optics: field as 'bath'.
- Correlation (coherence) functions.
- Resonance fluorescence: 'counting at the source', sub-Poissonian, anti-bunched.
- Multi-mode photo-detector theory.
- Quantum trajectories.

Summary

- Multi-mode quantum optics: field as 'bath'.
- Correlation (coherence) functions.
- Resonance fluorescence: 'counting at the source', sub-Poissonian, anti-bunched.
- Multi-mode photo-detector theory.
- Quantum trajectories.

Still to do

- Microscopic models for source-field-detector.
- Further understanding of counting statistics $p_{n}(t)$.
- More complex quantities, e.g. time-resolved probabilities $P_{n}\left(t_{1}, \ldots, t_{n} ;[t, t+T]\right)$.

