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‘What is light ?’

Einstein 1951: ‘...these days every
fool pretends to know what a photon
is. I have been thinking about this
for the whole of my life, and I
haven’t found the answer‘.

...cavity mode H = ωa†a, n-photon eigenstate |n〉.
...photon as gauge-boson of QED .
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Irony of history: quantum mechanics
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photoelectric effect.

Quantum mechanics was
discovered in its own classical
limit.



Overview: photons, photon-counting, fluctuations
Irony of history: quantum optics

Big breakthrough: Hanbury Brown, Twiss experiment: intensity
correlations, ‘photon bunching’.

Correlation functions (a† creates cavity mode):

G (1)(t, t + τ) = 〈a†(t)a(t + τ)〉 (1)

G (2)(t, t + τ) = 〈a†(t)a†(t + τ)a(t + τ)a(t)〉. (2)

But not yet a complete triumph for quantum optics...

Triumph came with resonance
fluorescence: photon antibunching,



Overview: photons, photon-counting, fluctuations
Photon counting: some issues

Count photo-electrons instead of photons.

Counting statistics: correct theory for

pn(t, t + T ) probability for n photo-electrons in [t, t + T ).

Detector back-action. System-bath problem ‘with two baths’.

... no entirely trivial!



Semiclassical theory for pn(t, t + T ): Mandel formula

Photodetector model: ionize single atom

Classical electromagnetic field,
vector potential
A(r)e−iωt + A∗(r)e iωt .

Probability p1(t, t + ∆t) of one count: Fermi’s Golden Rule

p1(t, t + ∆t) =

∫ ∞

0
dEν(E )

∣∣∣〈E | e
m

pA(r)|E0〉
∣∣∣2 D∆t(E − E0 − ω)

= ηI (r)∆t, I (r) = |A(r)|2(intensity). (1)

D∆t(ε) ≡
(
[sin 1

2ε∆t]/[12ε]
)2

, ∆t → 0. Polarisation A(r) = ~εA(r).



Semiclassical theory for pn(t, t + T ): Mandel formula

Photodetector model: ionize single atom

Classical electromagnetic field,
vector potential
A(r)e−iωt + A∗(r)e iωt .

Probability p1(t, t + ∆t) of one count: Fermi’s Golden Rule

p1(t, t + ∆t) =

∫ ∞

0
dEν(E )

∣∣∣〈E | e
m

pA(r)|E0〉
∣∣∣2 D∆t(E − E0 − ω)

= ηI (r)∆t, I (r) = |A(r)|2(intensity). (1)

D∆t(ε) ≡
(
[sin 1

2ε∆t]/[12ε]
)2

, ∆t → 0. Polarisation A(r) = ~εA(r).



Mandel formula: many counts

How to obtain probability of n transitions pn(t, t + T )

Short-time probability p1(t, t + ∆t) = ηI (r)∆t for single electron
transition (ηI (r) transition rate).

Long-time probability of n transitions pn(t, t + T ) ↔ n electrons.



Mandel formula: many counts

How to obtain probability of n transitions pn(t, t + T )

Short-time probability p1(t, t + ∆t) = ηI (r)∆t for single electron
transition (ηI (r) transition rate).

Long-time probability of n transitions pn(t, t + T ) ↔ n electrons.

Individual transitions are statistically independent...

 Poisson distribution.

Characterized by average n̄ only  

pn(t, t + T ) =
n̄n

n!
e−n̄, n̄ = ηI (r)T . (2)



Mandel formula: many counts

How to obtain probability of n transitions pn(t, t + T )

Short-time probability p1(t, t + ∆t) = ηI (r)∆t for single electron
transition (ηI (r) transition rate).

Long-time probability of n transitions pn(t, t + T ) ↔ n electrons.

Markovian master equation for probabilities. pn(t) ≡ pn(0, t),

pn(t + dt) = pn(t)× [1− ηI (r)dt] + pn−1(t)× ηI (r)dt (2)

d

dt
pn(t) = ηI (r)[pn−1(t)− pn(t)]. (3)

Generating function G (s, t) ≡
∑∞

n=0 snpn(t),
∂tG (s, t) = ηI (r)(s − 1)G (s, t).

Solve with p0(0) = 1, pn(0) = 0, n > 0, G (s, 0) = 1.

Thus G (s, t) = exp[ηI (r)t(s − 1)] =
∑∞

n=0 sn n̄n

n! e
−n̄, n̄ = ηI (r)t.



Mandel formula: many counts

How to obtain probability of n transitions pn(t, t + T )

Short-time probability p1(t, t + ∆t) = ηI (r)∆t for single electron
transition (ηI (r) transition rate).

Long-time probability of n transitions pn(t, t + T ) ↔ n electrons.

SUMMARY so far:

Classical photo-electron counting formula (Mandel formula)

pn(t, t + T ) =
n̄n

n!
e−n̄, n̄ = ηI (r)T .

Poisson process.

Generating function G (s, t) ≡
∑∞

n=0 snpn(t) = exp[ηI (r)t(s − 1)].

Nothing said here about PHOTONS! This is a DETECTOR theory.



‘Quantum Mandel formulas’

Kelley-Kleiner, Carmichael, etc. version

pn(t, t + T ) = 〈: Ω̂n

n! e−Ω̂ :〉 with Ω̂ ≡ ξ
∫ t+T
t dt ′Ê−(t ′)Ê+(t ′).

No backaction of detector on field.

‘Non-absorbed photons escape, open system.’

Typically many field degrees of freedom, field is a ‘BIG QUANTUM
SYSTEM’.

Mollow; Scully/Lamb; Srivinas/Davies; Ueda etc. version

Backaction of detector leads to damping (continuous measurement)
of the field.

‘Eventually all photons absorbed, closed system.’

Typically few field degrees of freedom, field is a ‘SMALL QUANTUM
SYSTEM’
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Scully-Lamb photodetector

M. Scully, W. Lamb Jr., Phys. Rev. 179, 368 (1969)

‘Photon statistics’ means (reduced) density operator ρ(t) of a light
field (more generally: boson field).
‘Photon statistics’ is inferred by photoelectric counting techniques.



System-bath theory

Divide ‘total universe’ into system S
and bath B,

H = HS +HB +HSB

≡ H0 + V , V ≡ HSB. (2)

Total density matrix χ(t) obeys the Liouville-von-Neumann equation

d

dt
χ(t) = −i [H, χ(t)]. (3)



Master equation

Effective density matrix of the system ρ(t) ≡ TrB [χ(t)].

Interaction picture with respect to H0,

d

dt
ρ̃(t) = −iTrB [Ṽ (t), χ(t = 0)]−

∫ t

0
dt ′TrB [Ṽ (t), [Ṽ (t ′), χ̃(t ′)]].

Born approximation, χ̃(t ′) ≈ R0 ⊗ ρ̃(t ′), R0 bath density matrix.

System-bath interaction as V =
∑

k Sk ⊗ Bk ,

Bath correlation functions Ckl(t, t
′) ≡ TrB

[
B̃k(t)B̃l(t

′)R0

]
,

TrB B̃k(t)R0 = 0.
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Effective density matrix of the system ρ(t) ≡ TrB [χ(t)].

Interaction picture with respect to H0,

d

dt
ρ̃(t) = −iTrB [Ṽ (t), χ(t = 0)]−

∫ t

0
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Born approximation, χ̃(t ′) ≈ R0 ⊗ ρ̃(t ′), R0 bath density matrix.

System-bath interaction as V =
∑

k Sk ⊗ Bk ,

Bath correlation functions Ckl(t, t
′) ≡ TrB

[
B̃k(t)B̃l(t

′)R0

]
,

TrB B̃k(t)R0 = 0.

d

dt
ρ̃(t) = −

∫ t

0
dt ′

∑
kl

[
Ckl(t − t ′)

{
S̃k(t)S̃l(t

′)ρ̃(t ′)− S̃l(t
′)ρ̃(t ′)S̃k(t)

}
+ Clk(t ′ − t)

{
ρ̃(t ′)S̃l(t

′)S̃k(t)− S̃k(t)ρ̃(t ′)S̃l(t
′)
}]

. (4)



Scully-Lamb Photodetector

Detector model

System: single photon mode a and N detector single level ‘quantum
dots’ j with one (|1〉j) or zero (|0〉j) electrons.

Photon absorption empties dots into bath: leads j , c†αj |vac〉.

HSB =
∑
αj

(
V j

αc†αj |0〉j〈1|a + V̄ j
αcαj |1〉j〈0|a†

)
≡

∑
k

Sk ⊗ Bk . (5)
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Scully-Lamb Photodetector

Detector model

System: single photon mode a and N detector single level ‘quantum
dots’ j with one (|1〉j) or zero (|0〉j) electrons.

Photon absorption empties dots into bath: leads j , c†αj |vac〉.

HSB =
∑
αj

(
V j

αc†αj |0〉j〈1|a + V̄ j
αcαj |1〉j〈0|a†

)
≡

∑
k

Sk ⊗ Bk . (5)

Master equation: trace out the leads

Terms Ckl(t − t ′)S̃k(t)S̃l(t
′)ρ̃(t ′); Ckl(t − t ′) = 〈B̃k(t)B̃l(t

′)〉.
‘Broadband detection’ at all energies,

∑
α |V

j
α|2δ(ε− εαj) = ν.

d

dt
ρ̃t = −πν

∑
j

{
|1〉j〈1|a†aρ̃t + ρ̃ta

†a|1〉j〈1| − 2|0〉j〈1|aρ̃ta
†|1〉j〈0|

}
.



Scully-Lamb Photodetector

State with m excitations

Detector states |m;λ〉 ≡ Π̂λ|0〉1...|0〉m|1〉m+1...|1〉N . Permutations

m-resolved field ‘pseudo’ density matrix ρ̃
(m)
t ≡

∑
λ〈m;λ|ρ̃t |m;λ〉.



Scully-Lamb Photodetector

State with m excitations

Detector states |m;λ〉 ≡ Π̂λ|0〉1...|0〉m|1〉m+1...|1〉N . Permutations

m-resolved field ‘pseudo’ density matrix ρ̃
(m)
t ≡

∑
λ〈m;λ|ρ̃t |m;λ〉.

d

dt
ρ̃t = −πν

∑
j

{
|1〉j〈1|a†aρ̃t + ρ̃ta

†a|1〉j〈1| − 2|0〉j〈1|aρ̃ta
†|1〉j〈0|

}
∑

j

〈m;λ|ρ̃t |1〉j〈1|m;λ〉 = (N −m)〈m;λ|ρ̃t |m;λ〉

∑
j

〈m;λ|0〉j〈1|ρ̃t |1〉j〈0|m;λ〉 =
mterms∑

λ′

〈m − 1;λ′|ρ̃t |m − 1;λ′〉

d

dt
ρ̃
(m)
t = −πν

{
(N −m)

[
a†aρ̃

(m)
t + ρ̃

(m)
t a†a

]
− 2(N −m + 1)aρ̃

(m−1)
t a†

}
.
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∑
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dt
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t ]− γ

2
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t + ρ
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)
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Scully-Lamb Photodetector

State with m excitations

Detector states |m;λ〉 ≡ Π̂λ|0〉1...|0〉m|1〉m+1...|1〉N . Permutations

m-resolved field ‘pseudo’ density matrix ρ̃
(m)
t ≡

∑
λ〈m;λ|ρ̃t |m;λ〉.
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d
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ρ
(m)
t = −i [HF, ρ

(m)
t ]− γ

2

(
a†aρ

(m)
t + ρ

(m)
t a†a− 2aρ

(m−1)
t a†

)
. (5)

Now counting statistics as pm(t) ≡ Trρ(m)
t !

Jump super-operator J , Jρ ≡ γaρa†, time evolution generator L0

Define L0ρ ≡ Y ρ + ρY † with Y ≡ −iHF − γ
2a†a.

ρ̇
(m)
t = L0ρ

(m)
t + Jρ

(m−1)
t . (6)



Summary: counting statistics in Scully-Lamb detector
model

m-resolved field density matrix

ρ̇
(m)
t = L0ρ

(m)
t + Jρ

(m−1)
t .

Counting statistics as pm(t) ≡ Trρ(m)
t !

Generating operator Ĝ (s, t)

Define Ĝ (s, t) ≡
∑∞

m=0 smρ
(m)
t , s: counting variable.

Usually s complex, e.g. s = e iφ with real φ.

Infinite set of master equations now becomes a single equation,

∂
∂t Ĝ (s, t) = (L0 + sJ)Ĝ (s, t). (7)
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Solve d
dt Ĝ = −i [HF, Ĝ ]− γ

2

(
a†aĜ + Ĝ a†a − 2saĜa†

)
P-representation in harmonic oscillator Hilbert space

Glauber introduced coherent states |z〉, a|z〉 = z |z〉.
Glauber-Sudarshan representation of operators such as Ĝ as
Ĝ =

∫
d2zP(Ĝ ; z , z∗)|z〉〈z |.

z and z∗ independent variables. Short form P(z) instead P(Ĝ ; z , z∗).

Rules aĜa† ↔ zz∗P(z), a†aĜ ↔ (z∗ − ∂z)P(z),
Ĝa†a ↔ (z − ∂z∗)P(z).



Solve d
dt Ĝ = −i [HF, Ĝ ]− γ

2

(
a†aĜ + Ĝ a†a − 2saĜa†

)
P-representation in harmonic oscillator Hilbert space

Glauber introduced coherent states |z〉, a|z〉 = z |z〉.
Glauber-Sudarshan representation of operators such as Ĝ as
Ĝ =

∫
d2zP(Ĝ ; z , z∗)|z〉〈z |.

z and z∗ independent variables. Short form P(z) instead P(Ĝ ; z , z∗).

Rules aĜa† ↔ zz∗P(z), a†aĜ ↔ (z∗ − ∂z)P(z),
Ĝa†a ↔ (z − ∂z∗)P(z).

PDE for P-function of generating operator

Field Hamiltonian HF = Ωa†a.

∂

∂t
Ps(z , t) =

[
−yz∂z − y∗z∗∂z∗ + γ(1 + |z |2(s − 1))

]
Ps(z , t)

y ≡ −iΩ− γ

2
. (8)



Solve ∂
∂tPs =

[
−yz∂z − y ∗z∗∂z∗ + γ(1 + |z |2(s − 1))

]
Ps

Case s = 1: simply damped harmonic oscillator

1st order PDE’s are solved by method of characteristics

P1(z , t) = eγtP(0)
(
ze i(Ω−iγ/2)t

)
(9)

Example (G (s, t = 0) ≡ ρ(0)(t = 0) = |z0〉〈z0|)

P1(z , t = 0) = δ(2)(z − z0) (10)

P1(z , t > 0) = eγtδ(2)
(
ze i(Ω−iγ/2)t − z0

)
= δ(2)

(
z − z0e

−i(Ω−iγ/2)t
)

(two-dimensional Delta-function!). State spirals into the origin.



Solve ∂
∂tPs =

[
−yz∂z − y ∗z∗∂z∗ + γ(1 + |z |2(s − 1))

]
Ps

Arbitrary s:
Ps(z , t) = eγtP (0)

(
ze i(Ω−iγ/2)t

)
exp{−|z |2(s − 1)(1− eγt)}

Now TrĜ (s, t) ≡
∑∞

m=0 smTrρ(m)
t , read off photoelectron counting

distribution pm(t) ≡ Trρ(m)
t .

TrĜ (s, t) =

∫
d2zPs(z , t) =

∫
d2zP(0)(z)e−|z|

2(s−1)(e−γt−1)

=
∞∑

m=0

sm

∫
d2zP(0)(z)

(
|z |2ηt

)m

m!
e−|z|

2ηt , ηt ≡ 1− e−γt .

Use normal ordering property of P-representation,

pm(t) = Trρ(0) :
(a†aηt)

m

m! e−a†aηt :, ηt ≡ 1− e−γt (11)



Single-mode counting formula: discussion of

pm(t) = Trρ(0) :
(a†aηt)

m

m! e−a†aηt :, ηt ≡ 1− e−γt

Coherent state ρ(0) = |z0〉〈z0| 

pm(t) =
(〈n〉ηt)

m

m!
e−〈n〉ηt .

I Poisson-distribution.
I Average 〈n〉 ≡ 〈a†a〉 = |z0|2.
I Coincides with semiclassical Mandel formula for γt � 1.

Fock-state ρ(0) = |n〉〈n| 

pm(t) =

(
n
m

)
ηm
t (1− ηt)

n−m, n ≥ m.

I Bernoulli-distribution.
I m successful events (counts), n −m failures (no counts) regardless of

order.



Summary part 1

Done so far

Photon counting: photo-electron counting.

Semiclassical Mandel formula.

Photo-detector theory: Scully/Lamb.

Some techniques: quantum master equations, P−representation,
counting variables and generating functions/operators.

Still to do

More general situations.

Sources, fields, and detectors.
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Revision: towards a counting formula in quantum optics

Mandel (Poissonian)

pn(t, t + T ) =
n̄n

n!
e−n̄, n̄ = ηI (r)T .

I Classical field with intensity I (r). Golden rule (photo-electric effect).

Mollow, Scully-Lamb single mode

pn(0, t) = Trρ(0) :
1

n!

(
a†aηt

)n
exp(−a†aηt) :, ηt ≡ 1− e−γt .

I Correctly describes detector backaction. ‘Closed system’. Free cavity
fields only, no sources.

‘Quantum Mandel’, Kelley-Kleiner

pn(t, t + T ) = 〈: Ω̂n

n!
e−Ω̂ :〉.

I Heisenberg operators, Ω ≡ ξ
∫ t+T

t
dt ′Ê−(t ′)Ê+(t ′).

I Not correct for long times. ‘Open system’. Various generalisations on
the market.



Coherence functions
Definitions

Notation x = (r, t).

G (1)(x , x ′) ≡ 〈E (−)(x)E (+)(x ′)〉 (12)

G (2)(x1, x2, x
′
2, x

′
1) ≡ 〈E (−)(x1)E

(−)(x2)E
(+)(x ′2)E

(+)(x ′1)〉. (13)

Based on photon absorption  intensity 〈I (x)〉 = G (1)(x , x).

G (1) describes first order coherence: Mach-Zehnder (Young,
Michelson) interference.

G (2) describes second order coherence: Hanbury Brown, Twiss.



Coherence functions
Special cases, normalised versions, single-mode example H = ωa†a

G (1)(t, t + τ) ≡ 〈E (−)(t)E (+)(t + τ)〉 (12)

G (2)(t, t + τ) ≡ 〈E (−)(t)E (−)(t + τ)E (+)(t + τ)E (+)(t)〉(13)

g (2)(t, t + τ) ≡ G (2)(t, t + τ)

G (1)(t, t)G (1)(t + τ, t + τ)
(14)

number state ρ(0) = |n〉〈n| g (2)(τ) =
n(n − 1)

n2
= 1− 1

n

coherent state ρ(0) = |z〉〈z | g (2)(τ) =
z∗z∗zz

|z∗z |2
= 1. (15)

Definition (bunching, antibunching; sub/super-Poissonian)

- Bunching: g (2)(τ) < g (2)(0), anti-bunching g (2)(τ) > g (2)(0).
- Super-P. g (2)(0) > 1, sub-P. g (2)(0) < 1: relation to pn(t, t + T ).



Coherence functions
Example for bunching: cavity mode a† in thermal bath (temperature β−1)

Mode angular frequency ω, damping κ.

Master equation.

Use quantum regression theorem.

Long-time limit, t →∞, nB = [eβω − 1]−1

lim
t→∞

〈a†(t)a(t + τ)〉 = nBe−(κ+iω)τ (12)

lim
t→∞

〈a†(t)a†(t + τ)a(t + τ)a(t)〉 = n2
B

(
1 + e−2κτ

)
. (13)

Thus, g (2)(τ) = 1 + e−2κτ and g (2)(τ) < g (2)(0): photon bunching.

(cf. Carmichael book etc.)



Now from single mode a† to many modes a†Q .



Quantization of Maxwell’s equations

Vector potential in Coulomb gauge.

Fourier expansion into field modes uQ(r), mode index Q.

(∇2 + ω2
Q)uQ(r) = 0.

Quantization, annihilation operator aQ , creation operator a†Q .

Electric field operator

E(r) = i
∑
Q

(
~ωQ

2ε0

)1/2

uQ(r)aQ + H.c . = E(+)(r) + E(−)(r).



The most basic case: two-level atom...



Spontaneous emission from a two-level atom

Two-level atom with states |1〉, |0〉

H =
ω0

2
σz +

∑
Q

γQ

(
σ+aQ + σ−a†Q

)
+

∑
Q

ωQa†QaQ . (14)

Pauli matrices, photon creation operators a†Q .



Spontaneous emission from a two-level atom

Two-level atom with states |1〉, |0〉

H =
ω0

2
σz +

∑
Q

γQ

(
σ+aQ + σ−a†Q

)
+

∑
Q

ωQa†QaQ . (14)

Pauli matrices, photon creation operators a†Q .

Algebra of Pauli matrices

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
σ− ≡

(
0 0
1 0

)
, σ+ ≡

(
0 1
0 0

)
σ± =

1

2
(σx ± iσy ), σx = σ+ + σ−, σy = −i(σ+ − σ−)

[σ+, σ−] = σz , [σz , σ±] = ±2σ±. (15)



Spontaneous emission from a two-level atom

Two-level atom with states |1〉, |0〉

H =
ω0

2
σz +

∑
Q

γQ

(
σ+aQ + σ−a†Q

)
+

∑
Q

ωQa†QaQ . (14)

Pauli matrices, photon creation operators a†Q .

Schrödinger equation for total wave function

|Ψ(t)〉 = c(t)|1〉|vac〉+
∑
Q

bQ(t)|0〉a†Q |vac〉, c(0) = 1 (15)

Can be solved (Wigner-Weisskopf) within some approximations. In
particular, c(t) = e−Γt/2−iω0t .

No re-absorption of any emitted photon ↔ single mode model (only
one Q, Jaynes-Cummings Hamiltonian, revivals).



Spontaneous emission from a two-level atom

Two-level atom with states |1〉, |0〉

H =
ω0

2
σz +

∑
Q

γQ

(
σ+aQ + σ−a†Q

)
+

∑
Q

ωQa†QaQ . (14)

Pauli matrices, photon creation operators a†Q .

Electric field E(+)(r, t) = E
(+)
f (r, t) + E

(+)
s (r, t), source field in terms

of source operators

Heisenberg EOM ȧQ(t) = −iωQaQ(t)− iγkσ−(t) 

aQ(t) = aQe−iωQ t − iγQ

∫ t

0
dt ′σ−(t ′)e−iωQ(t−t′). (15)



Spontaneous emission from a two-level atom

Two-level atom with states |1〉, |0〉

H =
ω0

2
σz +

∑
Q

γQ

(
σ+aQ + σ−a†Q

)
+

∑
Q

ωQa†QaQ . (14)

Pauli matrices, photon creation operators a†Q .

Field at the detector in terms of atom dipole operator

E
(+)
s (r, t) =

∫ t

0
dt ′

∑
Q

fQ(r)e−iωQ(t−t′)

σ−(t ′) (15)

≈
∫ t

0
dt ′

[
E (̂r)δ(t − t ′ − r/c)

]
σ−(t ′) = E (̂r)σ−(t − r/c).

- Note dipole form of E (̂r).



Spontaneous emission from a two-level atom

Two-level atom with states |1〉, |0〉

H =
ω0

2
σz +

∑
Q

γQ

(
σ+aQ + σ−a†Q

)
+

∑
Q

ωQa†QaQ . (14)

Pauli matrices, photon creation operators a†Q .

Not too much can be learned here: transient process, exponentially
decaying probability.

We want to describe stationary processes  ‘driven spontaneous
emission’ (resonance fluorescence).

Analogy to tunneling of a single electron from a single level quantum
dot.



Resonance fluorescence: analogy to single electron
tunneling



Resonance fluorescence model

- Spontaneous emission from TLS plus driving with classical field
E cos(ωLt), Rabi-frequency Ω ≡ dE/~, d dipole moment.

Ht ≡ HSE +
Ω

2

(
e−iωLtσ+ + e iωtσ−

)
, (RWA). (15)

- Time-dependent unitary trafo leaves Liouville-v.Neumann equation
invariant

H̄t ≡ −iU†
t
∂Ut

∂t
+ U†

tHtUt , ρ̄t ≡ U†
t ρtUt . (16)

- The form Ut = exp(−i N̂FωLt)diag(e−iωLt , 1) leads to (ω0 = ωL)

H̄t ≡ Ω
2 (σ+ + σ−) +

∑
Q γQ

(
σ+aQ + σ−a†Q

)
+

∑
Q(ωQ − ωL)a

†
QaQ (17)



Master equation for TLS-‘source’ density operator ρt

ρ̇t = i Ω
2
[σ+ + σ−, ρt ]− β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)

Spontaneous emission rate β = π
∑

Q γ2
Qδ(ωL − ωQ), effect of driving

in β neglected (↔ ‘intra-collisional field effect).

Compare with our previous detector equation,

ρ̇
(m)
t = −i [HF, ρ

(m)
t ]− γ

2

(
a†aρ

(m)
t + ρ

(m)
t a†a− 2aρ

(m−1)
t a†

)
.



Master equation for TLS-‘source’ density operator ρt

ρ̇t = i Ω
2
[σ+ + σ−, ρt ]− β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)

Spontaneous emission rate β = π
∑

Q γ2
Qδ(ωL − ωQ), effect of driving

in β neglected (↔ ‘intra-collisional field effect).

Compare with our previous detector equation,

ρ̇
(m)
t = −i [HF, ρ

(m)
t ]− γ

2

(
a†aρ

(m)
t + ρ

(m)
t a†a− 2aρ

(m−1)
t a†

)
.

Remember spontaneous emission: field at the detector in terms of
atom dipole operator,

E
(+)
s (r, t) ≈ E (̂r)σ−(t − r/c).

Thus a ∼ E
(+)
s ∼ σ−.

 detector photon absorption ∼ electron jumps from up to down, σ−.



Cook’s ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS

ρ̇
(n)
t = i Ω

2 [σ+ + σ−, ρ
(n)
t ]− β

(
σ+σ−ρ

(n)
t + ρ

(n)
t σ+σ− − 2σ−ρ

(n−1)
t σ+

)
Splitting up ρt =

∑∞
n=0 ρ

(n)
t , n photon emissions.



Cook’s ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS

ρ̇
(n)
t = i Ω

2 [σ+ + σ−, ρ
(n)
t ]− β

(
σ+σ−ρ

(n)
t + ρ

(n)
t σ+σ− − 2σ−ρ

(n−1)
t σ+

)
Splitting up ρt =

∑∞
n=0 ρ

(n)
t , n photon emissions.

Cook’s original idea: momentum
transfers between atom and
driving field.

Count number of discrete
displacements n~k.

Alternatively, count number of
spontaneous emission events.



Cook’s ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS

ρ̇
(n)
t = i Ω

2 [σ+ + σ−, ρ
(n)
t ]− β

(
σ+σ−ρ

(n)
t + ρ

(n)
t σ+σ− − 2σ−ρ

(n−1)
t σ+

)
Splitting up ρt =

∑∞
n=0 ρ

(n)
t , n photon emissions.

Jump super-operator J with Jρ = 2βσ−ρσ+ = 2β|−〉〈+|ρ|+〉〈−〉.
Generating operator as usual, G (s, t) ≡

∑∞
n=0 snρ

(n)
t ; counting

variable s.

Counting statistics as pn(0, t) = Trρ(n)
t .

Photons are integrated out: just 4 by 4 equation

∂tG = i Ω
2 [σ+ + σ−,G ]− β (σ+σ−G + Gσ+σ− − 2sσ−Gσ+).



Cook’s ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS

ρ̇
(n)
t = i Ω

2 [σ+ + σ−, ρ
(n)
t ]− β

(
σ+σ−ρ

(n)
t + ρ

(n)
t σ+σ− − 2σ−ρ

(n−1)
t σ+

)
Splitting up ρt =

∑∞
n=0 ρ

(n)
t , n photon emissions.

Solution G = exp{(L0 + sJ)t}ρ(0), needs diagonalisation.

In Laplace space, Ĝ (s, z) = [z − L0 − sJ]−1ρ(0), needs Laplace
inversion.

Ĝ as vector, resolvent matrix

[z − L0 − sJ]−1 =


z + 2β 0 0 −Ω
−2βs z 0 Ω

0 0 z + β 0
Ω
2 −Ω

2 0 z + β

 .



Cook’s ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS

ρ̇
(n)
t = i Ω

2 [σ+ + σ−, ρ
(n)
t ]− β

(
σ+σ−ρ

(n)
t + ρ

(n)
t σ+σ− − 2σ−ρ

(n−1)
t σ+

)
Splitting up ρt =

∑∞
n=0 ρ

(n)
t , n photon emissions.

Result in Laplace space

TrĜ (s, z) = (18)

(z + β)(z + 2β) + Ω2 + (s − 1)2β
[
(z + β)ρ++

0 + ΩImρ+−
0

]
z(z + β)(z + 2β) + Ω2[z + β(1− s)]

.



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

TrĜ (s, z) =
f (z)

zf (z) + βΩ2(1− s)
, f (z) ≡ (z + β)(z + 2β) + Ω2.



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

TrĜ (s, z) =
f (z)

zf (z) + βΩ2(1− s)
, f (z) ≡ (z + β)(z + 2β) + Ω2.

Need to transform back into time-domain.

pn(0, t) =
∂n

∂sn
TrG (s, t)|s=0 . (19)

〈n〉t =
∂

∂s
TrG (s, t)|s=1 1st moment. (20)

〈n(n − 1)t〉 =
∂2

∂s2
TrG (s, t)|s=1 2nd factorial moment.(21)



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

TrĜ (s, z) =
f (z)

zf (z) + βΩ2(1− s)
, f (z) ≡ (z + β)(z + 2β) + Ω2.

Large t: pole z0 closest to z = 0.

Expand z0 =
∑∞

m=1 cm(s − 1)m

 〈n〉t→∞ =
βΩ2

2β2 + Ω2
t (19)

 σ2
t ≡ 〈∆n2〉t→∞ = 〈n〉t→∞

[
1− 6β2Ω2

(2β2 + Ω2)2

]
.

Negative Mandel Q-parameter Q ≡ F − 1, Fano factor
F ≡ 〈∆n2〉/〈n〉 < 1.



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

TrĜ (s, z) =
f (z)

zf (z) + βΩ2(1− s)
, f (z) ≡ (z + β)(z + 2β) + Ω2.

Large t � β−1: counting statistics pn(t) becomes a Gaussian!

lim
t→∞

pn(t) =
1√
2πσ2

t

e−(n−n̄t)2/2σ2
t . (19)

(D. Lenstra, PRA 26, 3369 (1982)).



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

TrĜ (s, z) =
f (z)

zf (z) + βΩ2(1− s)
, f (z) ≡ (z + β)(z + 2β) + Ω2.



Counting in quantum optics: towards a counting formula...
Short revision

Direct ‘counting at the source’: the savest option...
I n-resolved master equations with ‘jumpers’ J → sJ, generating

operators. Cook 81 (Lesovik 89, Gurvitz 99, Bagrets/Nazarov 03 ...)

Mandel (Poissonian) pn(t, t + T ) = n̄n

n! e
−n̄, n̄ = ηI (r)T .

I Classical field with intensity I (r).
I Golden rule (photo-electric effect) plus Markov.

Mollow, Scully-Lamb single mode
pn(0, t) = Trρ(0) : 1

n!

(
a†aηt

)n
exp(−a†aηt) :, ηt ≡ 1− e−γt .

I Correctly describes detector backaction. ‘Closed system’.
I Free cavity fields only, no sources.

‘Quantum Mandel’, Kelley-Kleiner pn(t, t + T ) = 〈: Ω̂n

n! e−Ω̂ :〉.
I Heisenberg operators, Ω ≡ ξ

∫ t+T

t
dt ′Ê−(t ′)Ê+(t ′).

I Not correct for long times. ‘Open system’. Various generalisations on
the market.



Three parties (source, field, detector).



Ueda’s photodetector theory

M. Ueda PRA 41, 3875 (1990). (Relatively) consistent attempt to put
everything together ?

Source-field interaction.

Detector-field backaction.

Three parties (source, field, receiver/detector).



Multi-mode photodetector

H = H0 +HD +HFD,H0 = HS +HFS +HF

HFD =
∑
Qkj

(
V Q

k c†kj |0〉j〈1|aQ + H.c .
)

, field-detector interaction(19)



Multi-mode photodetector

H = H0 +HD +HFD,H0 = HS +HFS +HF

HFD =
∑
Qkj

(
V Q

k c†kj |0〉j〈1|aQ + H.c .
)

, field-detector interaction(19)

Neglect HFS in deriving non-unitary part of master equation for χt

(field-source density operator).

d

dt
χ

(m)
t = −i [H0, χ

(m)
t ] (20)

− 1

2

∑
QQ′

γQQ′

(
a†QaQ′χ

(m)
t + χ

(m)
t a†QaQ′ − 2aQ′χ

(m−1)
t a†Q

)
.

Assumes ‘broadband detection’, γQQ′ = 2πN
∑

k V Q
k V̄ Q′

k δ(ε− εkj),
N � m detector atoms.



Formal solution

Generating operator G , ‘damper’ L0, ‘jumper’ J .

Write ∂tG = L0G + sJG , G (s, t) ≡
∑∞

m=0 smχ
(m)
t .

L0X ≡ YX + XY †, Y ≡ −iH0 − 1
2

∑
QQ′ γQQ′a†QaQ′ .

JX ≡
∑

QQ′ γQQ′aQ′Xa†Q .



Formal solution

Generating operator G , ‘damper’ L0, ‘jumper’ J .

Write ∂tG = L0G + sJG , G (s, t) ≡
∑∞

m=0 smχ
(m)
t .

L0X ≡ YX + XY †, Y ≡ −iH0 − 1
2

∑
QQ′ γQQ′a†QaQ′ .

JX ≡
∑

QQ′ γQQ′aQ′Xa†Q .

Interaction picture G (s, t) ≡ StG̃ (s, t), St ≡ eL0t .

Here, StX ≡ eL0tX = eYtXeY †t .

Counting and jumping in interaction picture,

∂tG̃ (s, t) = se−L0tJeL0tG̃ (s, t). (21)



Formal solution

Generating operator G , ‘damper’ L0, ‘jumper’ J .

Write ∂tG = L0G + sJG , G (s, t) ≡
∑∞

m=0 smχ
(m)
t .

L0X ≡ YX + XY †, Y ≡ −iH0 − 1
2

∑
QQ′ γQQ′a†QaQ′ .

JX ≡
∑

QQ′ γQQ′aQ′Xa†Q .

Solution of ∂tG̃ (s, t) = se−L0tJeL0tG̃ (s, t) as formal power series,

G̃ (s, t) = G̃ (s, 0) +

∫ t

0
dt ′se−L0t′JeL0t′

{
G̃ (s, 0) +

∫ t′

0
dt ′′s...

}

=
∞∑

m=0

sm

∫ t

0
dtm...

∫ t2

0
dt1S−tmJStm−tm−1J...JStmχ(0)

G (s, t) =
∞∑

m=0

sm

∫ t

0
dtm...

∫ t2

0
dt1St−tmJStm−tm−1J...JStmχ(0). (21)



Formal solution

Generating operator G , ‘damper’ L0, ‘jumper’ J .

Write ∂tG = L0G + sJG , G (s, t) ≡
∑∞

m=0 smχ
(m)
t .

L0X ≡ YX + XY †, Y ≡ −iH0 − 1
2

∑
QQ′ γQQ′a†QaQ′ .

JX ≡
∑

QQ′ γQQ′aQ′Xa†Q .

Single-mode case first for simplicity (A(t) ≡ e−YtaeYt):

ρ̃
(m)
t = γm

∫ t

0
dtm...

∫ t2

0
dt1A(tm)...A(t1)χ(0)A†(t1)...A

†(tm)

ρ
(m)
t = γm

∫ t

0
dtm...

∫ t2

0
dt1e

YtA(tm)...A(t1)χ(0)A†(t1)...A
†(tm)eY †t .



Formal solution

Generating operator G , ‘damper’ L0, ‘jumper’ J .

Write ∂tG = L0G + sJG , G (s, t) ≡
∑∞

m=0 smχ
(m)
t .

L0X ≡ YX + XY †, Y ≡ −iH0 − 1
2

∑
QQ′ γQQ′a†QaQ′ .

JX ≡
∑

QQ′ γQQ′aQ′Xa†Q .

Single mode case, taking traces:

Trρ̃(m)
t = γm

∫ t

0
dtm...

∫ t2

0
dt1〈A†(t1)...A†(tm)A(tm)...A(t1)〉

Trρ(m)
t = γm

∫ t

0
dtm...

∫ t2

0
dt1〈A†(t1)...A†(tm)eY †teYtA(tm)...A(t1)〉.



Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

pU
m(t) = γm

∫ t

0
dtm...

∫ t2

0
dt1〈A†(t1)...A†(tm)eY †teYtA(tm)...A(t1)〉

pKK
m (t) = 〈: Ω̂m

m!
e−Ω̂ :〉, Ω̂ ≡ ξ

∫ t

0
dt ′a†(t ′)a(t ′) (21)



Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

pU
m(t) = γm

∫ t

0
dtm...

∫ t2

0
dt1〈A†(t1)...A†(tm)eY †teYtA(tm)...A(t1)〉

pKK
m (t) = 〈: Ω̂m

m!
e−Ω̂ :〉, Ω̂ ≡ ξ

∫ t

0
dt ′a†(t ′)a(t ′) (21)

No detector backaction in KK.

Replace damped time-evolution A(t) ≡ e−YtaeYt by free
time-evolution a(t) ≡ e iH0tae−iH0t .

Remember single mode case (Mollow, Scully-Lamb)
pm(t) = Tr

{
ρ(0) : 1

m!

(
a†aηt

)m
exp(−a†aηt) :

}
, ηt ≡ 1− e−γt .

KK is short-time limit γt � 1 ηt = γt.



Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

pU
m(t) = γm

∫ t

0
dtm...

∫ t2

0
dt1〈A†(t1)...A†(tm)eY †teYtA(tm)...A(t1)〉

pKK
m (t) = 〈: Ω̂m

m!
e−Ω̂ :〉, Ω̂ ≡ ξ

∫ t

0
dt ′a†(t ′)a(t ′) (21)

Up to first order in γ

eY †teYt =

(
1 +

γ

2

∫ t

0
dt ′a†(t ′)a(t ′)...

) (
1 +

γ

2

∫ t

0
dt ′a†(t ′)a(t ′)...

)
=

(
1 + γ

∫ t

0
dt ′a†(t ′)a(t ′)...

)
= : exp

(
γ

∫ t

0
dt ′a†(t ′)a(t ′)

)
: (22)



Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

pU
m(t) = γm

∫ t

0
dtm...

∫ t2

0
dt1〈A†(t1)...A†(tm)eY †teYtA(tm)...A(t1)〉

pKK
m (t) = 〈: Ω̂m

m!
e−Ω̂ :〉, Ω̂ ≡ ξ

∫ t

0
dt ′a†(t ′)a(t ′) (21)

Sum-rule
∑∞

m=0 pm(0, t) = 0 fulfilled for

pm(0, t) ≡ Trρ(m)
t = (22)

= γm

∫ t

0
dtm...

∫ t2

0
dt1〈: a†(t1)a(t1)...a

†(tm)a(tm)eγ
R t
0 dt′a†(t′)a(t′) :〉

= 〈: 1

m!

[
γ

∫ t

0
dt ′a†(t ′)a(t ′)

]m

eγ
R t
0 dt′a†(t′)a(t′) :〉.



Multi-mode form

pm(0, t) ≡ Trρ(m)
t =

∑
Q1Q′

1...QmQ′
m

γQ1Q′
1
...γQmQ′

m
×

×
∫ t

0
dtm...

∫ t1

0
dt1Tr

(
χ0a

†
Q1

(t1)...a
†
Qm

(tm)eY †teYtaQ′
m
(tm)...aQ′

1
(t1)

)
.

Somewhat impractical ...

Counting-at-source method much simpler.

Alternative: integrate out fields in ∂tG = L0G + sJG (?)



Quantum trajectories: this should now be easy...



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

ρ̇t = −β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

ρ̇t = −β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)

Jump super-operator J with Jρ = 2βσ−ρσ+

Solve ∂tρt = (L0 + J)ρt .

Interaction picture with respect to L0: ρt ≡ St ρ̃t , St ≡ eL0t .



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

ρ̇t = −β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)

Jump super-operator J with Jρ = 2βσ−ρσ+

Solve ∂tρt = (L0 + J)ρt .

Interaction picture with respect to L0: ρt ≡ St ρ̃t , St ≡ eL0t .

Solution of ∂t ρ̃(t) = e−L0tJeL0t ρ̃(t) as formal power series,

ρ(t) =
∞∑

m=0

∫ t

0
dtm...

∫ t2

0
dt1St−tmJStm−tm−1J...JSt1ρ(0). (23)

m quantum jumps occuring at times t1, ..., tm.

Sum over all ‘trajectories’ with m = 0, 1, ...,∞ jumps between ‘free’
(but damped) time-evolution.



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

ρ̇t = −β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)

Monte-Carlo procedure. Fixed time step ∆t.

Step 1: start with pure wave function |Ψ〉.
Step 2: calculate collaps probability, Pcol = β∆t〈Ψ|σ+σ−|Ψ〉
Step 3: compare Pcol with random number 0 ≤ r ≤ 1.

I If Pcol > r , replace |Ψ〉 → σ−|Ψ〉/‖σ−|Ψ〉‖.
I If Pcol ≤ r , no emission but time-evolution |Ψ〉 → (1− i∆tHeff |Ψ〉/N ,

where Heff) = −iβσ+σ−.

Go back to Step 2.

Repeat procedure in order to obtain average.
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Example: spontaneous emission from TLS (rotating frame)

ρ̇t = −β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+)

Monte-Carlo procedure. Fixed time step ∆t.

Step 1: start with pure wave function |Ψ〉.
Step 2: calculate collaps probability, Pcol = β∆t〈Ψ|σ+σ−|Ψ〉
Step 3: compare Pcol with random number 0 ≤ r ≤ 1.

I If Pcol > r , replace |Ψ〉 → σ−|Ψ〉/‖σ−|Ψ〉‖.
I If Pcol ≤ r , no emission but time-evolution |Ψ〉 → (1− i∆tHeff |Ψ〉/N ,

where Heff) = −iβσ+σ−.

Go back to Step 2.

Repeat procedure in order to obtain average.

Widely used in quantum optics community.

Note: splitting L = L0 + J is not unique.

Literature: Carmichael (book); Plenio,Knight (review).



Summary

Multi-mode quantum optics: field as ‘bath’.

Correlation (coherence) functions.

Resonance fluorescence: ‘counting at the source’, sub-Poissonian,
anti-bunched.

Multi-mode photo-detector theory.

Quantum trajectories.

Still to do

Microscopic models for source-field-detector.

Further understanding of counting statistics pn(t).

More complex quantities, e.g. time-resolved probabilities
Pn(t1, ..., tn; [t, t + T ]).
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