Current Measurement by Real-Time Counting of Single Charges

- Introduction, single electron counting
- Results
- Counting of single electrons
- Crossover from electron to Cooper-pair counting
- **Summary**

Jonas Bylander, Tim Duty and Per Delsing Nature 434, 361 (2005) LT 24 (2005), ISEC (2005)

Per Delsing

Measuring current by counting single electrons

Normal current

measurement Measurement of a voltage drop across a resistor

Referenced to quantum Hall resistance and Josephson voltage

The COUNTer:

Counts the electrons one by one that are passing through a circuit

Can be coupled in parallel

Suggestions for electron counters by Likharev, Visscher, Teunissen et al.

Per Delsing

Coupling the array to the SET

As charge in the array approaches the SET the current in the SET is modulated.

Direct coupling gives full *e* charge and thus better Signal to noise

Eliminates back tunneling

Per Delsing

The 1D-array

Placing a single electron on one of the electrodes polarizes the array and gives rise to a **"Charge soliton"**

These charge solitons repel each other and thus line up in a **1D quasi Wigner lattice**

Spatial correlation transfers to **time correlation**

Soliton size

$$\Lambda = \sqrt{\frac{C}{C_0}}$$

Bakhvalov et al, Zh. Eksp. Teor. Fiz. (1989))

1

Per Delsing

Simulations

Per Delsing

The Single Electron Counter

Per Delsing

Current-Voltage Characteristics of the Array

Counting in Time and Frequency Domain

Quantum Device Physics Per Delsing

Comparing Current with Frequency

Per Delsing

Comparing Room Temperature measurement with counter

Per Delsing

Line width of the oscillations

The line width is can be well fitted to a Lorentzian shape. The measured line width agrees very well with the simulated line width. At low current there is an additional broadening, probably due to uncertainty in the bias.

Per Delsing

The capacitively coupled counter

Per Delsing

Crossover from electron to Cooper-pair counting

Per Delsing

Crossover from electron to Cooper-pair counting

Whether electrons or Cooper-pairs tunnel in the array depends on the threshold voltage. When the voltage is higher than both thresholds, the rates become important.

When the voltage exceeds both injection thresholds, the tunneling probablities will start to be important.

$$\frac{\Gamma_e}{\Gamma_{2e}} = 2$$

The Tunnel probabilities depend on energy gap and (subgap-) resistance, and on back ground charges

Per Delsing

Crossover from electron to Cooper-pair counting

2 500 2e current [fA] 300 500 1.8 1.6 1.4 1.2 100 1 200 300 400 100 500 B_{\parallel} [mT]

 $\langle n \rangle = I/ef$

1e both at low voltage and high field

Peak width γ/f_{peak}

1e peaks are more narrow

Per Delsing

Upper and lower current limits

Minimum counting rate

At low currents only one electron is present in the array, spatial and thus temporal correlation is lost

Current stability will smear the peak in the frequency domain.

Maximum counting rate

To maintain time correlation the current needs to be low, typically I < 0.03 e/RC

Speed of the RF-SET, in our case ~10MHz.

Per Delsing

Future directions

- Improving signal to noise, Squid amplifier
- Coherent versus incoherent 2e, Bloch oscillations
- Accuracy, how small currents can we measure
- Larger currents, parallel counters
- Looking at other systems, nanotubes, nanowires
- Counting statistics, (linear detectors)...

Per Delsing