Finite-frequency quantum noise in an interacting mesoscopic conductor

Frank Hekking

Laboratoire de Physique et Modélisation des Milieux Condensés Université Joseph Fourier & CNRS, Grenoble (France)

Institut Universitaire de France

Collaboration with Jukka Pekola & Janne Salo

Low Temperature Laboratory, Helsinki University of Technology (Finland)

International Conference

NANOELECTRONICS 2006

Novel Nanomaterials, Quantum Transport, and Noise of Electrons and Photons

8 - 11 January 2006, Lancaster University, UK

Contents
Motivation
Quantum noise at finite frequency of an interacting chaotic cavity
Conclusions & outlook
((

Current noise: the concept

"Noise is the signal!"

(R. Landauer)

Shot noise of chaotic cavity (*Oberholzer et al., PRL 2001; Nature 2002*)

Finite frequency noise: various time scales

Time scales associated with reservoirs:

Bias voltage: \hbar/eV

Temperature: \hbar/k_BT

Time scales associated with conductor:a. Time spent by electron:Dwell time: τ_D Thouless energy: \hbar/E_{Th}

b. Time scale associated with interactions:

Formation of screening cloud: τ_C

Noise spectroscopy with a mesoscopic device: superconducting qubit

(Schoelkopf et al, 2003; Astafiev et al. PRL 2004)

(Nakamura et al, Nature 1999)

Qubit without a noise source:

$$H_0 = -\frac{\hbar\omega_{01}}{2}\sigma_z$$

Coupling to a noise source: $V = Af(t)\sigma_x$

$$\Gamma_{\uparrow} = \frac{A^2}{\hbar^2} S_f(-\omega_{01})$$
 (absorption)

$$\Gamma_{\downarrow} = \frac{A^2}{\hbar^2} S_f(+\omega_{01})$$
 (emission)

Noise spectroscopy with a mesoscopic device: superconducting qubit

(Schoelkopf et al, 2003; Astafiev et al. PRL 2004)

(Nakamura et al, Nature 1999)

Qubit without a noise source:

$$H_0 = -\frac{\hbar\omega_{01}}{2}\sigma_z$$

0.0

0.0

0.5

n_g

1.0

Coupling to a noise source: $V = Af(t)\sigma_x$ $\Gamma_{\uparrow} = \frac{A^2}{\hbar^2}S_f(-\omega_{01})$ (absorption) $\Gamma_{\downarrow} = \frac{A^2}{\hbar^2}S_f(+\omega_{01})$ (emission) Shot noise $S_{V}(\omega)$ Absorption Emission $\varphi_{\downarrow} = 0.5$

 $\omega = 0$

High frequency noise of a mesoscopic conductor

Related theoretical work:

-Mesoscopic capacitors (*Blanter & Büttiker*, 2000)

-Coulomb blockade systems

(Johansson et al. 2002, Käck et al. 2003, Galaktionov et al. 2003)

- Quantum noise for energy-independent scattering

(Aguado and Kouwenhoven 2000, Zaikin et al. 2004)

- Quantum noise in Luttinger liquids

(Trauzettel et al. 2004, Dolcini et al. 2005, Lebedev et al. 2005)

- Chaotic cavity: stochastic path integral approach (*Nagaev et al. 2004*)

- Quantum noise, but without taking electron-electron interactions into account; i.e. non current-conserving (*various authors*)

This work: finite frequency quantum noise of chaotic cavity from scattering theory

- Take energy-dependence of scattering into account (random matrix theory)
- Take interaction effects (screening) into account (simple self-consistent RPA)
 - *Approach is current-conserving, no charge pile-up*
 - → Qualitatively similar behavior expected for other mesoscopic conductors
 - → Easy to extend to calculate higher order correlation functions in the quantum limit

Scattering theory of quantum transport (1):formalism(Büttiker, PRB 1992; Blanter & Büttiker, Phys. Rep. 2000)

$$\hat{I}_L(t) = \hat{I}_{L,in}(t) - \hat{I}_{L,out}(t)$$

$$\hat{I}_{L,in}(t) = \frac{e}{2\pi\hbar} \sum_{n} \int dE dE' e^{i(E-E')t/\hbar} \hat{a}^{\dagger}_{Ln}(E) \hat{a}_{Ln}(E')$$
$$\hat{I}_{L,out}(t) = \frac{e}{2\pi\hbar} \sum_{\alpha,\beta} \sum_{mnk} \int dE dE' e^{i(E-E')t/\hbar} \hat{a}^{\dagger}_{\alpha m}(E) s^{\dagger}_{L\alpha;mk}(E) s_{L\beta;kn}(E') \hat{a}_{\beta n}(E')$$

Scattering theory of quantum transport (2): current and noise

Average current: time-independent

$$\langle \hat{I}_L(t) \rangle = \frac{e}{2\pi\hbar} \int dE \operatorname{Tr}[t^{\dagger}(E)t(E)][f_L(E) - f_R(E)]$$

Current noise $\delta \hat{I} \equiv \hat{I} - \langle \hat{I} \rangle$: time-dependent

$$\begin{aligned} \langle \delta \hat{I}_L(t) \delta \hat{I}_L(0) \rangle &= \langle \delta \hat{I}_{L,in}(t) \delta \hat{I}_{L,in}(0) \rangle - \langle \delta \hat{I}_{L,in}(t) \delta \hat{I}_{L,out}(0) \rangle \\ &- \langle \delta \hat{I}_{L,out}(t) \delta \hat{I}_{L,in}(0) \rangle + \langle \delta \hat{I}_{L,out}(t) \delta \hat{I}_{L,out}(0) \rangle \end{aligned}$$

Frequency dependence: scattering matrix + Fermi functions

$$\begin{aligned} \langle \delta \hat{I}_{L,out}(t) \delta \hat{I}_{L,out}(0) \rangle &= \\ &= \frac{e^2}{h} \sum_{\alpha\beta} \int \frac{d\omega}{2\pi} e^{-i\omega t} \int dE \operatorname{Tr}[s_{L\alpha}^{\dagger}(E) s_{L\beta}(E + \hbar\omega) s_{L\beta}^{\dagger}(E + \hbar\omega) s_{L\alpha}(E)] f_{\alpha}(E) [1 - f_{\beta}(E + \hbar\omega)]. \end{aligned}$$

Scattering theory of quantum transport (3): current and noise for energy-independent scattering

Average current: "Landauer formula"

$$\langle \hat{I}_L(t) \rangle = \frac{e^2 V}{2\pi\hbar} \sum_n T_n = GV, \qquad \qquad G = (e^2/h) \sum_n T_n$$

Frequency-dependent current noise:

$$S_{\delta I\delta I}(\omega) = \frac{e^2}{h} \sum_{n} \left\{ T_n^2 \frac{2\hbar\omega}{1 - e^{-\beta\hbar\omega}} + T_n(1 - T_n) \left[\frac{\hbar\omega + eV}{1 - e^{-\beta(\hbar\omega + eV)}} + \frac{\hbar\omega - eV}{1 - e^{-\beta(\hbar\omega - eV)}} \right] \right\}$$

Non-equilibrium noise (T=0)

Chaotic cavity: characteristic time scales

Ehrenfest time

$$t_E = \frac{1}{\lambda} \ln \left(\frac{a}{\lambda_F} \right)$$

- time for 2 classical trajectories to diverge- time for wave packet to spread

Dwell time

 $\tau_D = hN_F/N = R_Q e^2 N_F$

Role of leads: $N_{L,R} = #$ channels in lead L,R $N = N_L + N_R$: L and R in parallel!

 $RMT \ applies \ for \ \tau_D > t_E \\ \text{-universality} \ (N_{L,R} \ not \ too \ large) \\ \text{-zero-dimensionality}$

 $\tau_{\rm d}/t_{\rm E}$

Representative example of a mesoscopic scatterer: interacting chaotic cavity

Average current:

$$\langle \hat{I}_L(t) \rangle = \frac{e}{2\pi\hbar} \int dE \operatorname{Tr}[t^{\dagger}(E)t(E)][f_L(E) - f_R(E)]$$

Energy-dependent scattering: RMT (Polianski & Brouwer, J. Phys. A 2003)

$$\langle \operatorname{Tr}[s_{\alpha\beta}^{\dagger}(E_1)s_{\alpha\beta}(E_2)]\rangle = \frac{N_{\alpha}N_{\beta}}{N} \frac{1}{1 - i(E_2 - E_1)\tau_D/\hbar}$$

- Leads: # channels in lead L,R large: N_L , $N_R >> 1$

-Leading contribution in N, we ignore weak localization (but $\tau_D > t_E$) treat interactions within self-consistent charging model (Brouwer et al, PRL & PRB 2005)

Landauer conductance:
$$I_L = GV$$
 $G = (e^2/h) N_L N_R/N$
 $\longrightarrow \sum_n \langle T_n \rangle$

High frequency noise in a non-interacting cavity

$$\langle \operatorname{Tr}[s_{\beta\alpha}^{\dagger}(E_{1})s_{\beta\gamma}(E_{2})s_{\delta\gamma}^{\dagger}(E_{3})s_{\delta\alpha}(E_{4})] \rangle =$$

$$\frac{N_{\alpha}N_{\beta}N_{\delta}}{N^{2}} \frac{\delta_{\alpha\gamma}}{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{4}-E_{3})\tau_{D}/\hbar]} + \frac{N_{\alpha}N_{\beta}N_{\gamma}}{N^{2}} \frac{\delta_{\beta\delta}}{[1-i(E_{4}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]} - \frac{N_{\alpha}N_{\beta}N_{\gamma}N_{\delta}}{N^{3}} \frac{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar][1-i(E_{4}-E_{1})\tau_{D}/\hbar][1-i(E_{4}-E_{3})\tau_{D}/\hbar]} - \frac{N_{\alpha}N_{\beta}N_{\gamma}N_{\delta}}{N^{3}} \frac{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar][1-i(E_{4}-E_{3})\tau_{D}/\hbar]} - \frac{N_{\alpha}N_{\beta}N_{\gamma}N_{\delta}}{N^{3}} \frac{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar][1-i(E_{4}-E_{3})\tau_{D}/\hbar]} - \frac{N_{\alpha}N_{\beta}N_{\gamma}N_{\delta}}{N^{3}} \frac{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}{[1-i(E_{2}-E_{3})\tau_{D}/\hbar][1-i(E_{4}-E_{3})\tau_{D}/\hbar]} - \frac{N_{\alpha}N_{\beta}N_{\gamma}N_{\delta}}{N^{3}} \frac{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}{[1-i(E_{2}-E_{3})\tau_{D}/\hbar][1-i(E_{4}-E_{3})\tau_{D}/\hbar]} - \frac{N_{\alpha}N_{\beta}N_{\gamma}N_{\delta}}{N^{3}} \frac{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}{[1-i(E_{2}-E_{3})\tau_{D}/\hbar][1-i(E_{4}-E_{3})\tau_{D}/\hbar]} - \frac{N_{\alpha}N_{\beta}N_{\gamma}N_{\delta}}{N^{3}} \frac{[1-i(E_{2}-E_{1})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}{[1-i(E_{2}-E_{3})\tau_{D}/\hbar][1-i(E_{2}-E_{3})\tau_{D}/\hbar]}$$

$$S_{\delta I \delta I}^{cav,0}(\omega) = \frac{e^2}{h} \frac{1 + \omega^2 \tau_D^2 N/N_R}{1 + \omega^2 \tau_D^2} \left\{ \frac{N_L N_R}{N} \left[1 - \frac{N_L N_R}{N^2} \right] \frac{2\hbar\omega}{1 - e^{-\beta\hbar\omega}} + \frac{N_L^2 N_R^2}{N^3} \left[\frac{\hbar\omega + eV}{1 - e^{-\beta(\hbar\omega + eV)}} + \frac{\hbar\omega - eV}{1 - e^{-\beta(\hbar\omega - eV)}} \right] \right\}.$$

$$\sum_n \langle T_n(1 - T_n) \rangle$$

Effect of Coulomb interactions:

(Pedersen et al. PRB 1998)

screening

$$\hat{Q} = C\hat{U} = e\hat{\mathcal{N}} - e^2 N\hat{U}.$$
induced charge (RPA)

$$\hat{U} = Ge\hat{\mathcal{N}}, \qquad G(\omega) = (C + e^2 N(\omega))^{-1}.$$

Total current (bare +screening):

Effective current matrix:

 $A_{\delta\gamma}(\alpha, E, E + \hbar\omega) = A^0_{\delta\gamma}(\alpha, E, E + \hbar\omega) + i2\pi\hbar\omega e^2 \underline{N}_{\alpha}G\mathcal{N}_{\delta\gamma}(E, E + \hbar\omega)$

Density of states matrix:

$$\mathcal{N}_{\beta\gamma}(\alpha, E, E') = \frac{i}{2\pi} \frac{s_{\alpha\beta}^{\dagger}(E) \left(s_{\alpha\gamma}(E) - s_{\alpha\gamma}(E')\right)}{E' - E}$$

Effect of Coulomb interactions:

(Pedersen et al. PRB 1998)

screening

 $\hat{Q} = C\hat{U} = e\hat{\mathcal{N}} - e^2 N\hat{U}.$

induced charge (RPA)

$$\hat{U} = Ge\hat{\mathcal{N}}, \qquad G(\omega) = (C + e^2 N(\omega))^{-1}.$$

$$\hat{I}_{\alpha}(\omega) = \hat{I}_{\alpha}^{0}(\omega) - i\omega e^{2} \underline{N}_{\alpha}(\omega) \hat{U}(\omega).$$

Effective current matrix:

Total current (bare +screening):

 $A_{\delta\gamma}(\alpha, E, E + \hbar\omega) = A^0_{\delta\gamma}(\alpha, E, E + \hbar\omega) + i2\pi\hbar\omega e^2 \underline{N}_{\alpha}G\mathcal{N}_{\delta\gamma}(E, E + \hbar\omega)$

Current conservation:
$$\sum A$$

$$\sum_{\nu} A_{\delta\gamma}(\nu, E, E + \hbar\omega) = 0.$$

Gate current:

 $\hat{I}_g(\omega) = i\omega C\hat{U}(\omega) \qquad A_{\delta\gamma}(0, E, E + \hbar\omega) = -i2\pi\hbar\omega CG\mathcal{N}_{\delta\gamma}(E, E + \hbar\omega)$

High frequency quantum noise of an interacting cavity

$$\begin{split} S^{eav}_{\delta I\delta I}(\omega) &= \frac{e^2}{h} \frac{1+\omega^2\tau^2 N/N_R}{1+\omega^2\tau^2} \left\{ \frac{N_L N_R}{N} \left[1-\frac{N_L N_R}{N^2} \right] \frac{2\hbar\omega}{1-e^{-\beta\hbar\omega}} + \right. \\ & \left. \frac{N_L^2 N_R^2}{N^3} \left[\frac{\hbar\omega+eV}{1-e^{-\beta(\hbar\omega+eV)}} + \frac{\hbar\omega-eV}{1-e^{-\beta(\hbar\omega-eV)}} \right] \right\}. \end{split}$$

Non-interacting result with replacement $\tau_D \longrightarrow \tau$

Symmetrized equilibrium noise of an interacting cavity: fluctuation dissipation theorem

$$S_{sym}^{cav}(\omega) = \frac{e^2}{h} \frac{N_L N_R}{N} \hbar \omega \coth\left(\beta \hbar \omega/2\right) \frac{1 + \omega^2 \tau^2 N/N_R}{1 + \omega^2 \tau^2}$$

Fluctuation-dissipation theorem: $G_{LR}(\omega) = \frac{N_L N_R}{N} \frac{e^2}{h} \frac{1}{1 - i\omega\tau}$

(Brouwer & Büttiker, EPL 1997)

Equilibrium noise of an interacting cavity; absorption and emission

$$S^{cav}_{\delta I\delta I}(\omega) = \frac{e^2}{h} \frac{N_L N_R}{N} \frac{2\hbar\omega}{1 - e^{-\beta\hbar\omega}} \frac{1 + \omega^2 \tau^2 N/N_R}{1 + \omega^2 \tau^2}.$$

Non-equilibrium noise of an interacting cavity: shot noise and second cumulant of FCS

$$S_{\delta I \delta I}^{cav}(\omega) = \frac{e^2}{h} \frac{N_L^2 N_R^2}{N^3} eV \frac{1 + \omega^2 \tau^2 N / N_R}{1 + \omega^2 \tau^2},$$

Zero-frequency noise:

$$S^{cav}_{\delta I \delta I}(0) = \frac{N_L N_R}{N^2} e \langle I \rangle,$$

$$\langle I \rangle = (e^2/h)(N_L N_R/N)V.$$

Frequency-dependent Fano factor:

Time-dependent second cumulant:

Conclusions

Interest in finite-frequency noise of mesoscopic conductors

Absorption and emission phenomena

□ Noise phenomena governed by charge relaxation time $R_Q C_\mu$ which contains both dwell time and RC time

Outlook

Relevant frequencies in experimentally accessible range

Method directly applicable to find frequency-dependent third cumulant

Particular interest due to dependence on two frequencies: τ^{-1} , τ_D^{-1}

