Counting statistics of single electron transport in a quantum dot

Simon Gustavsson <u>Renaud Leturcq</u> Barbara Simovič R. Schleser Thomas Ihn Prof. Klaus Ensslin

D. C. Driscoll A. C. Gossard

Nanoelectronics 2006, Lancaster University, January 8th, 2006

Outline

- Introduction
- Detection of single electron transport
- Current fluctuations and full counting statistics in a semiconductor quantum dot
- > Tunneling through multiple states: bunching
- Conclusion

Semiconductor quantum dots

≻ Electrostatic energy E_c
 > Quantum level spacing ∆

 DC current measurement in a quantum dot
 Spectroscopy of electronic states

 DC current measurement in a quantum dot
 Spectroscopy of electronic states

 $k_{B}T \ll \Delta < E_{C}$

 DC current measurement in a quantum dot
 Spectroscopy of electronic states

$$k_B T \ll \Delta < E_C$$

Quantum dots realized by AFM lithography

Measurement of current fluctuations

- Shot noise due to discreteness of charges
 - classical shot noise for independent particles (Poissonian noise): $S_i = 2eI$
- ✓ Usual measurement limited by noise of the current-meter $\Rightarrow S_{I}^{min} \approx 10^{-29} \text{ A}^{2}/\text{Hz}$

Noise in quantum dots

- Sub- vs. super-Poissonian shot noise in quantum dots
- Noise correlations in multi-terminal quantum dots
- Probing entanglement with the shot noise in quantum dot systems
- Kondo effect, spin blockade, etc...

Noise in quantum dots

- Noise in interacting systems
 - deviations from Poissonian shot noise
- Early experiments in non-tunable quantum dots showed reduction of the shot noise: S, < 2el</p>
 - Birk et al., PRL **75,** 1610 (1995)
 - Nauen et al., PRB **70,** 033305 (2004)
- Challenge in lateral quantum dots
 - very low noise level: $I < 1 \text{ pA} \Rightarrow S_{I} < 10^{-31} \text{ A}^{2}/\text{Hz}$!
 - strongly non-linear systems

G_{QPC}

 $2e^2/h$

Quantum point contact as a charge detector

 $T_{e} = 350 \text{ mK}$

- Quantum point contact as a charge detector
- Low bias voltage on the quantum dot

 $T_{2} = 350 \text{ mK}$

- Quantum point contact as a charge detector
- Large bias voltage on the quantum dot

 $T_{a} = 350 \text{ mK}$

Determination of the individual tunneling rates

Exponential distribution of waiting times for independent events

$$\succ \Gamma_{\rm S} = <\tau_{\rm in} >, \ \Gamma_{\rm D} = <\tau_{\rm out} >$$

Measuring the current by counting electrons

- Count number n of electron entering the dot within a time t₀: I = e < n > /t₀
- Max. current = few fA (bandwidth = 30 kHz)
- BUT no absolute limitation for low current and noise measurements

– we show here: $I \approx$ few aA, $S_{I} \approx 10^{-35} \text{ A}^{2}/\text{Hz}$

Current fluctuations measured by electron counting

- More than noise: access to the full counting statistics (distribution function)
 - $l = e\mu/t_0$, $\mu = \langle n \rangle$ - $S_l = 2e^2\mu_2/t_0$, $\mu_2 = \langle (n-\langle n \rangle)^2 \rangle$ - $S_l^3 = e^3\mu_3/t_0$, $\mu_3 = \langle (n-\langle n \rangle)^3 \rangle$ - and many more...

Distribution function for electrons in a conductor

- Classical noise for independent particles ⇒ Poisson distribution: $\mu = \mu_2 = \mu_3$
- Particles with repulsive interaction ⇒ sub-Poissonian distribution: $\mu_2 < \mu$, $\mu_3 < \mu$,...

Histogram of current fluctuations

 Poisson distribution for > Sub-Poisson distribution asymmetric coupling for symmetric coupling
 Theory: Hershfield *et al.*, PRB **47**, 1967 (1993) Bagrets & Nazarov, PRB **67**, 085316 (2003)

Counting statistics in a single-level quantum dot

Bagrets & Nazarov, PRB 67, 085316 (2003)

$$\frac{d}{dt} \begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = M \begin{pmatrix} p_0 \\ p_1 \end{pmatrix}$$

$$M(\chi) = \begin{pmatrix} -\Gamma_D & \Gamma_D \\ \Gamma_S e^{i\chi} & -\Gamma_S \end{pmatrix}$$

Histogram of current fluctuations

 Poisson distribution for > Sub-Poisson distribution asymmetric coupling for symmetric coupling
 Theory: Hershfield *et al.*, PRB **47**, 1967 (1993) Bagrets & Nazarov, PRB **67**, 085316 (2003)

Bias dependence of the fluctuations

Adjustable asymmetry of the tunneling rates

$$a = \frac{\Gamma_s - \Gamma_D}{\Gamma_s + \Gamma_D}$$

Adjustable asymmetry of the tunneling rates

$$a = \frac{\Gamma_{S} - \Gamma_{D}}{\Gamma_{S} + \Gamma_{D}}$$

Current fluctuations vs. asymmetry

Reduction of the second and third moments for symmetric coupling

Theory: Hershfield *et al.*, PRB **47**, 1967 (1993) Bagrets & Nazarov, PRB **67**, 085316 (2003)

Bunching of electons

- Two time scales
 Γ₁ ~ 20 kHz, Γ₀ ~ 1.5 kHz
 Fast tunneling
- Fast tunneling sometimes blocked by a slow tunneling

super-poissonian noise occurs at the edge of conductance steps

Bunching of electrons: the model

- Needs two states with different coupling to the leads
 - the slow state blocks the conduction, due to Coulomb blockade

- similar to Belzig, PRB 71, 161301(R) (2005)

Bunching of electrons: the model

 Cumulant generating function determined from the eigenvalues of $M(\chi)$ Bagrets & Nazarov, PRB 67, 085316 (2003) Belzig, PRB 71, 161301(R) (2995)

Well described by our model

right

Well described by our model, but requires a long relaxation rate: T₁ > 1ms... spin effect?

Well described by our model, but requires a long relaxation rate: T₁ > 1ms... spin effect?

Conclusion

- Real-time detection of single electron traveling through a semiconductor quantum dot
- Measurement of current fluctuations
- Reduction of both the second and the third moments for symmetric coupling
- Bunching of electrons due to Coulomb blockade (information about relaxation time)
- Noise measurements are now available in lateral quantum dots (even full counting statistics)