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Motivation

One-dimensional physics has attracted a tremendous amount of
theorists’ attention in the past several decades, because of solvable
models and powerful exact methods (Bethe ansatz, Bosonization)
as well as rich physics

To a large degree, it became a paradigm for thinking of interacting
electron systems in general (in the same league as fractional
quantum Hall physics)

But only recently mesoscopic physics created a gateway for
experimental exploration of |D physics (carbon nanotubes, organic
conductors, cleaved-edge wires)

Naturally, new questions were raised by trying to apply old theory
to new systems which led to a renewed interest in |D physics

As a starting point, we have to find a solid common ground
between the established theory and recent measurements



Qutline

® Probing elementary excitations by
momentum-resolved tunneling

® Top-gate density control

® Extracting charge/spin velocities
® | ocalization

® Quasi-wavefunction, Wigner-crystal limit,
and free-spin regime



Momentum-resolved tunneling
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ng point

Zoom into lower crossi

0

G - <G> [Arb. units]

V [mVoll]

Spin-charge separation:
- crossing points
- diffraction pattern
- zero-bias anomaly

YT, Halperin, Auslaender, and Yacoby, PRL 89, 136805 (2002); PRB 68, 125312 (2003)



Top-gate density
control
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N coupled spin-degenerate
modes

Hamiltonian for the charge sector
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¢i is displacement operator for charge density
II; canonically-conjugate momentum-density operator

[¢i(z), Iy (z")] = i6ud(z — )

can be diagonalized by a unitary transformation

Elementary charge velocities are then given by eigenvalues of
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Double-wire estimates

. 2e%vr 1 v 1
N=1: o2=2"F ~_T0,
w(C C 2e Celectrost-.

e’ | [vr1  VUp vrr VR’ UR1URs
N=2: == |(ZEp222) 4, /(22_02) 14
YT (Cl i 02) (Cl 02) N Ct

Two cylindrical wires of radius r, center-to-center

distance s, screened by a 2D plate at distance d/2> s> r:
1 Torp 2, d 1 2. d

Bt ST O R PO
C; 262+6 o Ciro € L

. ,  4e? d d
’()51::’0127—|—i'0}7‘ (ln—:tln—)

mTE T S

n=100 um™', d=1pum, s=30nm, r=10nm, e=13
VF Vet = 0.4 and  vp/v._ =~ 0.7



(a)

<-0.15

05

[arb. units]

Extracting velocities
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Charging correction to the slopes
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Actual velocity is v = in terms of “slope” velocity u*



| ocalization
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Momentum-resolved structure

Magnetic-field dependence of
tunneling probes one-electron
spectral function, which can be
described by quasi-wavefunction:
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Few-electron limit
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In general, M=0 when parity is changed I .
upon addition of electron. For not too Zoa-
strong interactions, the parity must be the o2/
same as for noninteracting states. i




Wigner-crystal exchange
coupling
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The relevant tunneling transitions are determined by
three energy scales: temperature, Heisenberg
exchange, and Zeeman energy



“Free-spin” Luttinger liquids

Particle world lines rS>1
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Spectral function
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Summary

® Finite size and temperature lead to an emergence of
interesting states of “conventional” ID metals which
were not explored until recently

® Deacreasing density of a short interacting wire drives the
system into a localized state where electrons cannot
penetrate each other and form a crystal (Electron
fluctuations diverge logarithmically in time)

® We have explored the structure of such states in two
limits: Small particle number (numerical diagonalization
as well as simple parity arguments) and many-electron
limit (based on the bosonic Luttinger-liquid picture)



