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What everybody knows…
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• (Quasi)continuous 
spectrum

• Absorption and emission 
of quanta h
random walk up and 
down

• Diffusive evolution of the 
electron distribution 
function

h



What some people know…
Kicked rotor:
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Dynamic localization in
the energy space:
after some time the rotor
stops absorbing
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(G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, 1979)



Historical developments
1. Quantum interference – analogous to the Anderson 

localization (Fishman, Grempel, and Prange, 1982)

2. Incommensurate periods T1, T2, T3 – 3D localization
(Casati, Guarneri, Shepelyansky, 1989)

3. Particle in a box: just                              instead of 
the periodic                         – no localization            
(Hu, Li, Liu, Gu, 1999)

4. Mapping to a quasi-1d σ-model (Altland, Zirnbauer, 1996)
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What do these observations mean
and how general are they?



Spatial localization
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Quantum correction to
the diffusion coefficient
of electrons in disorder

Localization:
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no localization in weak disorder
(?)



Random matrix theory
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Gaussian
random matrices

with statistically independent elements
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Density of states of 0Ĥ

mean
level spacing
at the center
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Chaotic systems
Ballistic systems: Diffusive systems:

L

DLerg /2=τFerg vL /=τ ergodic time

RMT is valid at low energies:

ergThEE τ/h=<< (Thouless energy)



Technicalities

Time-dependent RMT

Keldysh non-equilibrium formalism

Diagrammatic
technique

Nonlinear
σ-model

Perturbative (loop) expansion



Zero order (diffusion)
δ2

'llV≡Γ – one photon absorption rate
(measure of perturbation strength)

Long-time, period-averaged dynamics:
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time-dependent
electron distribution
(Wigner variables)
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One-loop correction
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large
zero-order

small (?) correction

Cooperon keeps track of the quantum interference:
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Periodic perturbation
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No-dephasing points give a large negative
contribution to the integral:

the exponent can vanish at
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Time-reversal symmetry
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Average dephasing rate versus time:

T-symmetry: noT-symmetry: yes

Monochromatic perturbation: T-symmetry always –
a very special case



Two loops
There is a contribution from diffusons:
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For a periodic perturbation:
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No-dephasing points are always present,
regardless of the time-reversal symmetry…



Incommensurate periods
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dephasing rate:

Almost-no-dephasing points contribute:

Phase
relationships
do not matter
that much
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A glance at the reality
GaAs dot:
• size
• mean level spacing 
• Thouless energy 
• dephasing time
Microwave field:
• V~ several µeV (field ~ several V/m)
•
Dynamic localization:
• K 101~eV 1000100~~  ns, 10~ −− µloclocloc DtEt

Hz) 10~ ( eV 10010~ 10µω −h

ns 1~ϕt

eV 1~ µδ
eV 1000100~ µ−ThE

m 1~ µL



Conclusions…
1. A quantum-mechanical system under a time-

dependent perturbation may be subject to 
dynamic localization in energy space.

2. It depends both on the model for the 
unperturbed system and the perturbation.

3. We have studied one-loop correction to the 
usual Fermi-Golden-Rule dissipation rate for a 
chaotic system described by RMT



…conclusions
4. For a perturbation with d incommensurate

frequencies the correction can grow arbitrarily 
with time if d=1,2 (analogously to spatial 
localization in d-dimensional disorder)

5. For commensurate frequencies phase 
relationships matter:

6. Time-reversal symmetry: the “dimensionality” 
is effectively lowered

7. No time-reversal: the correction is small
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