Dynamic localization in quantum dots: analytical theory

D. M. Basko ${ }^{1}$, M. A. Skvortsov ${ }^{2}$, and V. E. Kravtsov ${ }^{1,2}$

${ }^{1}$ Abdus Salam International Centre for Theoretical Physics, Trieste
${ }^{2}$ Landau Institute for Theoretical Physics, Moscow

What everybody knows...

- $\hat{H}=\hat{H}_{0}+\hat{V} \cos \omega t$
- (Quasi)continuous spectrum
- Absorption and emission of quanta \hbar random walk up and down
- Diffusive evolution of the electron distribution function

What some people know...

Kicked rotor:
$\hat{H}(t)=-\frac{\partial^{2}}{\partial \theta^{2}}+V(\theta) \sum_{n=-\infty}^{\infty} \delta(t-n T)$
$\psi_{m}^{(0)}(\theta)=e^{i m \theta}, \quad E_{m}^{(0)}=m^{2}$

Dynamic localization in the energy space: after some time the rotor stops absorbing

(G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, 1979)

Historical developments

1. Quantum interference - analogous to the Anderson localization (Fishman, Grempel, and Prange, 1982)
2. Incommensurate periods $T_{1}, T_{2}, T_{3}-3 \mathrm{D}$ localization (Casati, Guarneri, Shepelyansky, 1989)
3. Particle in a box: just $\psi(0)=\psi(2 \pi)=0$ instead of the periodic $\psi(0)=\psi(2 \pi)-$ no localization
(Hu, Li, Liu, Gu, 1999)
4. Mapping to a quasi-1d σ-model (Attland, Zirnbauer, 1996)

What do these observations mean and how general are they?

Spatial localization

Quantum correction to the diffusion coefficient of electrons in disorder

Change variables $D_{0} k^{2}=1 / t$:

$$
D-D_{0} \sim-\frac{1}{v} \int_{\tau}^{t_{p}} \frac{D_{0} d t}{\left(D_{0} t\right)^{d / 2}}
$$

Localization: $d=1: \quad L_{l o c} \sim v D_{0} \sim l$

$$
\begin{equation*}
d=2: \quad L_{l o c} \sim l \exp \left(v D_{0}\right) \tag{?}
\end{equation*}
$$

$d \geq 3$: no localization in weak disorder

Random matrix theory

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V} \phi(t)
$$

real symmetric $N \times N$ Gaussian random matrices with statistically independent elements

In the end let $N \rightarrow \infty$

Chaotic systems

Ballistic systems:

$\tau_{\text {erg }}=L / v_{F} \quad$ ergodic time $\quad \tau_{\text {erg }}=L^{2} / D$
RMT is valid at low energies:

$$
E \ll E_{T h}=\hbar / \tau_{\text {erg }} \text { (Thouless energy) }
$$

Technicalities

Time-dependent RMT

Keldysh non-equilibrium formalism

Perturbative (loop) expansion

Zero order (diffusion)

$$
\Gamma \equiv\left\langle V_{l l}^{2}\right\rangle / \delta \text { - one photon absorption rate } \quad \text { (measure of perturbation strength) }
$$

Long-time, period-averaged dynamics:

$$
\left[\frac{\partial}{\partial t}-D \frac{\partial^{2}}{\partial E^{2}}\right] f(E, t)=0 \quad \begin{aligned}
& \text { time-dependent } \\
& \text { electron distribution } \\
& \text { (Wigner variables) }
\end{aligned}
$$

$$
\begin{aligned}
& D=\overline{\Gamma(d \phi / d t)^{2}}-\text { energy diffusion coefficient } \\
& W_{0} \equiv \frac{\partial}{\partial t} \int E f(E, t) d E=\frac{D}{\delta}-\begin{array}{l}
\text { energy } \\
\text { absorption rate }
\end{array}
\end{aligned}
$$

One-loop correction

$$
W(t)=\underbrace{\frac{D}{\delta}}_{\substack{\text { large } \\ \text { zero-order }}}+\underbrace{\frac{\Gamma}{\pi} \int_{0}^{t} \dot{\phi}(t) \dot{\phi}(t-\tau) C_{t-\tau / 2}(\tau,-\tau) d \tau}_{\text {small (?) correction }}
$$

Cooperon keeps track of the quantum interference:

$$
C_{t}\left(\tau_{1}, \tau_{2}\right) \equiv \theta\left(\tau_{1}-\tau_{2}\right) \exp [-\int_{\tau_{2}}^{\frac{\tau_{1}}{2} \underbrace{\frac{\Gamma}{2}}_{\text {dephasing rate }}[\phi(t+\tau / 2)-\phi(t-\tau / 2)]^{2}} d \tau]
$$

Periodic perturbation

$$
\begin{gathered}
\phi(t)=\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega t-\varphi_{n}\right) \quad W_{0}=\frac{\Gamma \omega^{2}}{2 \delta} \sum_{n} n^{2} A_{n}^{2} \\
C_{t}\left(\tau_{1}, \tau_{2}\right) \approx \exp \left[-\Gamma\left(\tau_{1}-\tau_{2}\right) \sum_{n=1}^{\infty} A_{n}^{2} \sin ^{2}\left(n \omega t-\varphi_{n}\right)\right]
\end{gathered}
$$

If $\varphi_{n}=n \varphi$ the exponent can vanish at $t_{k}=\frac{\varphi+k \pi}{\omega}$
No-dephasing points give a large negative contribution to the integral:

$$
W(t)-W_{0} \sim-\omega^{2} \sqrt{\Gamma t}
$$

Time-reversal symmetry

$$
\varphi_{n}=n \varphi \Leftrightarrow \phi\left(t-t_{0}\right)=\phi\left(-t-t_{0}\right)
$$

Average dephasing rate versus time:

T-symmetry: yes

T-symmetry: no

Monochromatic perturbation: T-symmetry always a very special case

Two loops

There is a contribution from diffusons:
$D_{\tau}\left(t_{1}, t_{2}\right) \equiv \theta\left(t_{1}-t_{2}\right) \exp \left[-\int_{t_{2}}^{t_{1}} \Gamma[\phi(t+\tau / 2)-\phi(t-\tau / 2)]^{2} d t\right]$
For a periodic perturbation:
$D_{\tau}\left(t_{1}, t_{2}\right) \approx \exp \left[-2 \Gamma\left(t_{1}-t_{2}\right) \sum_{n=1}^{\infty} A_{n}^{2} \sin ^{2} n \omega \tau\right]$
No-dephasing points are always present, regardless of the time-reversal symmetry...

Incommensurate periods

$\phi(t)=\sum_{n=1}^{d} A_{n} \cos \left(\omega_{n} t-\varphi_{n}\right)$

$$
W_{0}=\frac{\Gamma}{2 \delta} \sum_{n} \omega_{n}^{2} A_{n}^{2}
$$

dephasing rate:

Phase relationships do not matter that much

Almost-no-dephasing points contribute:

$$
W(t)-W_{0} \sim-\omega^{2} \int_{1 / \Gamma}^{t} \frac{\Gamma d t_{1}}{\sqrt{\left(\Gamma t_{1}\right)^{d}}} \quad \begin{gathered}
\text { large for } \\
\mathrm{d}<3
\end{gathered}
$$

A glance at the reality

GaAs dot:

- size $L \sim 1 \mu \mathrm{~m}$
- mean level spacing $\delta \sim 1 \mu \mathrm{eV}$
- Thouless energy $E_{\text {Th }} \sim 100-1000 \mu \mathrm{eV}$
- dephasing time $t_{\varphi} \sim 1 \mathrm{~ns}$

Microwave field:

- $\quad V \sim$ several $\mu \mathrm{eV}$ (field ~ several V / m)
- $\hbar \omega \sim 10-100 \mu \mathrm{eV}\left(\sim 10^{10} \mathrm{~Hz}\right)$

Dynamic localization:

- $t_{\text {loc }} \sim 10 \mathrm{~ns}, E_{\text {loc }} \sim \sqrt{D t_{\text {loc }}} \sim 100-1000 \mu \mathrm{~V} \sim 1-10 \mathrm{~K}$

Conclusions...

1. A quantum-mechanical system under a timedependent perturbation may be subject to dynamic localization in energy space.
2. It depends both on the model for the unperturbed system and the perturbation.
3. We have studied one-loop correction to the usual Fermi-Golden-Rule dissipation rate for a chaotic system described by RMT

...conclusions

4. For a perturbation with d incommensurate frequencies the correction can grow arbitrarily with time if $d=1,2$ (analogously to spatial localization in d-dimensional disorder)
5. For commensurate frequencies phase relationships matter:
6. Time-reversal symmetry: the "dimensionality" is effectively lowered
7. No time-reversal: the correction is small
