Theory of Half Metal-Superconductor Heterostructures

Matthias Eschrig

Institut für Theoretische Festkörperphysik, Universität Karlsruhe

Collaboration: Juha Kopu, Juan-Carlos Cuevas, Gerd Schön

- Introduction
- Half Metals
- Spin-mixing effect
- Singlet-Triplet mixing
- Triplet correlations near S/HM interfaces
- The indirect proximity effect
- Indirect Josephson coupling in an S/HM/S structure
 - Self consistency and current conservation
 - Triplet correlations in S/HM/S junctions
 - Critical Josephson current in an S/HM/S structure
 - Bound-state spectrum in the half metal
- Conclusions

Lancaster, January 2003

- Heterostructures including spin polarized materials are important for the emerging field of spin electronics.
- In ferromagnets exchange splitting h leads to suppression of superconducting proximity effect $\sim \Delta/h$, and decay length $\sim \sqrt{\hbar D/h}$
- But: Superconductor/Ferromagnet heterostructures showed an unusual long-range proximity effect
 M. Giroud it et al., Phys. Rev. B 58, R11872 (1998); cond-mat/0204140 (2002)
 V.T. Petrashov *et al.*, Phys. Rev. Lett. 83, 3281 (1999); see however J. Aumentado and V. Chandrasekhar, Phys. Rev. B 64, 054505 (2001).
- Question: What is the nature of the proximity effect at interfaces between superconductors and strongly spin polarized materials?
- for applications one would like to have ideally 100 % spin polarization \rightarrow half metals.

J.-H. Park, et al., "Direct evidence for a half-metallic ferromagnet", Nature **392** 794

Spin-resolved photoemission spectra of a thin film of $La_{0.7}Sr_{0.3}MnO_3$.

Y. Ji, et al.,

"Determination of the Spin Polarization of Half-Metallic CrO₂ by Point Contact Andreev Reflection"

PHYSICAL REVIEW LETTERS

11 JUNE 2001

FIG. 3. (a)-(d) Measured $G(V_b)/G_n$ versus V_b of Nb/Ni point contacts at T = 4.2 K for different contact resistances (open circles). The solid lines are fits to the data with the BTK model resulting in $P_{\rm rs}$ Z, and Δ as indicated in the figure. (e) Finad polarization $P_{\rm rs}$ as function of Z. The solid line is a polynomial fit of the data to extract the spin polarization $P_{\rm Ni} = 0.37 \pm 0.01$ in the limit of Z = 0.

Nb/Ni: $P_f \approx 0.37$

FIG. 4. (a)-(d) Measured $G(V_b)/G_e$ versus V_b of Pb/CrO₂ point contacts at T = 1.85 K for different contact resistances (open circles). The solid lines are fits to the data with the BTK model resulting in $P_{r_1} Z$, and Δ as indicated in the figure. (e) Fitted polarization P_r as a function of Z. The solid line is a polynomial fit of the data to extract the spin polarization $P_{GO_2} = 0.96 \pm 0.01$ in the limit of Z = 0.

 $\mathsf{Pb}/\mathsf{CrO}_2$: $P_f \approx 0.96$

T. Tokuyasu, J.A. Sauls, and D. Rainer, Phys. Rev. B 38, 8823 (1988)

relative scattering phase between Ψ_{\uparrow} and Ψ_{\downarrow} spin-mixing angle: $\phi_{\uparrow} - \phi_{\downarrow} \equiv \theta \neq 0$.

Consider reflection of two quasiparticles with spin up and down with respect to the quantization axis of the half metal:

$$\begin{aligned} |\uparrow\rangle_{-k} &= e^{+i\theta/2} |\uparrow\rangle_k \\ |\downarrow\rangle_{-k} &= e^{-i\theta/2} |\downarrow\rangle_k \end{aligned}$$

How does a singlet Cooper pair transform? $|\uparrow\rangle_{k}|\downarrow\rangle_{-k} - |\downarrow\rangle_{k}|\uparrow\rangle_{-k}$ \downarrow $e^{i\theta}|\uparrow\rangle_{k}|\downarrow\rangle_{-k} - e^{-i\theta}|\downarrow\rangle_{k}|\uparrow\rangle_{-k}$

 $= \cos \theta \left(|\uparrow\rangle_k |\downarrow\rangle_{-k} - |\downarrow\rangle_k |\uparrow\rangle_{-k} \right)$ $+ i \sin \theta \left(|\uparrow\rangle_k |\downarrow\rangle_{-k} + |\downarrow\rangle_k |\uparrow\rangle_{-k} \right)$

Pairing states near S/HM interface are singlet-triplet mixtures.

Superconductor/Magnetic Insulator:

-Triplet correlations in the superconductor -Suppression of the singlet order parameter Spin flip scattering and indirect proximity effect

- No singlet $(f_{\uparrow\downarrow-\downarrow\uparrow})$ correlations in half metal possible. Only triplet correlations of form $f_{\uparrow\uparrow}$.
- Two transfer channels from superconductor to half metal: $\tau_{\uparrow\uparrow}$ and $\tau_{\downarrow\uparrow}$.

Note: even with spin flip scattering, $\tau_{\downarrow\uparrow}$, the singlet component does not induce $f_{\uparrow\uparrow}$ correlations in the HM: $f_{\uparrow\downarrow-\downarrow\uparrow}$ and $f_{\uparrow\uparrow}$ have different orbital symmetry.

Main source for proximity effect in half metals: spin mixing effect, leading to triplet $f_{\uparrow\downarrow+\downarrow\uparrow}$ correlations in superconductor \rightarrow indirect proximity effect

Is there a Josephson effect in an S/HM/S structure ?

Consider a clean half metal piece of length L_{HM} with Fermi velocity v_F and minority gap E_g :

- a) $L_{HM} < \frac{\hbar v_F}{E_g}$: direct Josephson effect via singlet component
- b) $L_{HM} \gg \frac{\hbar v_F}{E_g}$: no direct Josephson effect. However: Indirect Josephson effect via triplet correlations

We use a Green's functions technique within the framework of Quasiclassical Theory of Superconductivity.

Internal degrees of freedom: matrix structure of the Nambu-Gor'kov propagator:

$$\hat{g} = \left(\begin{array}{cc} g & f \\ \tilde{f} & \tilde{g} \end{array}\right)$$

-2x2 spin degree of freedom

-2x2 particle-hole degree of freedom

External degrees of freedom:

-motion of quasiparticles with Fermi velocity \mathbf{v}_f along trajectories, parameterized by the Fermi momentum \mathbf{p}_f .

Transport equation for $\hat{g}(\mathbf{p}_f, \mathbf{R}, \epsilon)$: (Eilenberger, Larkin and Ovchinnikov, 1968)

$$\left[\epsilon\hat{\tau}_3 - \hat{\Sigma}, \hat{g}\right] + i\mathbf{v}_f \cdot \nabla\hat{g} = 0$$

Normalization condition (Eilenberger 1968)

$$\hat{g} \ \hat{g} = -\pi^2 \hat{1}$$

half space propagator:

$$\hat{g}^0_{out}$$
 = $\hat{S}\hat{g}^0_{in}\hat{S}^\dagger$

with scattering matrix $\hat{S} = e^{i\frac{\theta}{2}\sigma_z}\hat{1}$.

t matrix equations:

$$\hat{t}_{in} = \hat{\tau} \underline{\hat{g}}_{out}^{0} \hat{\tau}^{\dagger} (\hat{1} + \hat{g}_{in}^{0} \hat{t}_{in}) \qquad \hat{t}_{out} = \hat{S} \hat{t}_{in} \hat{S}^{\dagger}$$
$$\underline{\hat{t}}_{out} = \hat{\tau}^{\dagger} \underline{\hat{g}}_{in}^{0} \hat{\tau} (\hat{1} + \underline{\hat{g}}_{out}^{0} \underline{\hat{t}}_{out}) \qquad \underline{\hat{t}}_{in} = \underline{\hat{S}}^{\dagger} \underline{\hat{t}}_{out} \underline{\hat{S}}$$

with transfer matrix $\hat{\tau}$.

full propagators:

$$\hat{g}_{in} = \hat{g}_{in}^{0} + \{\hat{g}_{in}^{0} + i\pi\hat{1}\} \hat{t}_{in} \{\hat{g}_{in}^{0} - i\pi\hat{1}\}$$

$$\hat{g}_{out} = \hat{g}_{out}^{0} + \{\hat{g}_{out}^{0} - i\pi\hat{1}\} \hat{t}_{out} \{\hat{g}_{out}^{0} + i\pi\hat{1}\}$$

Note that the normalization conditions $\hat{g}_{in}^2 = -\pi^2 \hat{1}$ and $\hat{g}_{out}^2 = -\pi^2 \hat{1}$ are conserved by our the boundary conditions.

$$\Delta(x) = \lambda \int_{-\epsilon_c}^{\epsilon_c} \frac{d\epsilon}{2\pi i} \langle f(\hat{\mathbf{k}}, x, \epsilon) \rangle_{\hat{\mathbf{k}}} \tanh\left(\frac{\epsilon}{2T}\right)$$
$$F_{tripl}(x) = \int_{-\epsilon_c}^{\epsilon_c} \frac{d\epsilon}{2\pi i} \langle (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) f(\hat{\mathbf{k}}, x, \epsilon) \rangle_{\hat{\mathbf{k}}} \tanh\left(\frac{\epsilon}{2T}\right)$$

 π -junction has lower free energy and thus is stable.

$$\Delta(x) = \lambda \int_{-\epsilon_c}^{\epsilon_c} \frac{d\epsilon}{2\pi i} \langle f(\hat{\mathbf{k}}, x, \epsilon) \rangle_{\hat{\mathbf{k}}} \tanh\left(\frac{\epsilon}{2T}\right)$$
$$F_{tripl}(x) = \int_{-\epsilon_c}^{\epsilon_c} \frac{d\epsilon}{2\pi i} \langle (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) f(\hat{\mathbf{k}}, x, \epsilon) \rangle_{\hat{\mathbf{k}}} \tanh\left(\frac{\epsilon}{2T}\right)$$

What about self consistency of the order parameter?

- Superconductor/normal metal interfaces usually well described without necessity of self consistent order parameter near the interface. This is true also for SC/FM interfaces if exchange field h is small compared to Fermi energy.
- Near interfaces between superconductors and strong ferromagnets or half metals strong triplet correlations are present.
- Spatial variation of singlet order parameter in accordance with the triplet correlations, which decay into the superconductor.
- Current conversion between singlet and triplet components.

Near interfaces between a SC and a strong FM or HM self consistency is essential to ensure current conservation.

 $J \sim \sum_{b} \frac{\partial E_b}{\partial \phi} n_f(E_b)$

- We have presented a theory for half metalsuperconductor heterostructures.
- We propose an indirect mechanism for a Josephson coupling between two singlet superconductors separated by a half-metallic magnet.
- We investigate within the framework of quasiclassical theory quantitatively this indirect Josephson effect.
- We found a low temperature anomaly in the temperature behavior of the critical Josephson current.
- We explain the temperature variation of the Josephson current in terms of the Andreev excitation spectrum.