Transport through Quantum Rings and Dots

Rolf J. Haug

U.F. Keyser, C. Fühner, M. Rogge, J. Regul, A. Nauen, F. Hohls Abteilung Nanostrukturen Institut für Festkörperphysik Universität Hannover Germany

Universität Hannover

nanostrukturen uni hannover

Overview

- Direct writing with an atomic force microscope (AFM)
- Transport through a quantum ring: Aharonov-Bohm effect
- Coulomb blockade, Kondo, fractional Aharonov-Bohm effect, Fano effect

Universität Hannover

more quantum-dot physics

Surface Modification with an AFM

nanomachining

application: GaAs/AlGaAs heterostruktur

Universität Hannover

Appl. Phys. Lett. 75, 1107 (1999)

nanostrukturen uni hannover

uni hannover

Nanomachining of a 0d System

Local Oxidation

A Quantum Ring

Semicond. Sci. Techn. 2002

see also Fuhrer et al. Nature 2001

Aharonov-Bohm effect

Periodicity 58mT: R=150nm

up to 50% modulation of the conductance

one 1d channel transmitted

Tunable Quantum Ring

Coulomb blockade and single-electron tunneling

Universität Hannover

1 nanostrukturen uni hannover

barriers

Quantum Ring as Quantum Dot: Variation of Coupling

variation of conductance in the Coulomb-blockade regime

Kondo Effect

- quantum dot in a degenerate state
- formation of a spin singlet with the states in the lead
- increased conduction in the Coulomb-blockade regime

Influence of Number of Electrons

uni hannover

 zero-bias anomaly

 spin-1/2 Kondo effect (for odd number of electrons)

Keyser et al., cond-mat/0206262

Splitting with Magnetic Field

uni hannover

Kondo resonance splits with applied magnetic field **B**

Observed splitting fits for spin 1/2

$$eV_{SD} = \pm g_{GaAs} \mu_B B$$

 $g_{GaAs} = -0.44$

- For B < 2 T no spin splitting observed
- Probably caused by high T_K

Temperature Dependence

- zero-bias peak
- vanishes for increasing temperature
- splits in a magnetic field
- empirical fit

$$G(T) = G_0 \left(\frac{T_K^{'2}}{T^2 + T_K^{'2}}\right)^s$$

Goldhaber-Gordon PRL81 (1998)

• $T_K \sim 600 \text{ mK}$

cond-mat/0206262

Influence of a Weak Magnetic Field

. • |

- oscillations with $\Delta B \sim 13 \text{ mT}$
- Aharonov-Bohm periodicity: ∠B=58 mT

Ground States of a Quantum Ring

nanostrukturen

uni hannover

- Kondo effect: oscillations visible in the **Coulomb-blockade** regime
- phase jumps at the resonances

Combination of AFM and E-Beam

coupled quantum dots

nanostrukturen

uni hannover

tunability

Phys. Rev. Lett. 80, 4032 (1998) Phys. Rev. Lett. 81, 689 (1998)

Noise measurements on InAs quantum dots

Poster F. Hohls

Universität Hannover

Quantum Dot as Spectrometer

quantum dot: extension of lowest state:10nm

fluctuations in the current

fluctuations of local density of states

Europhys. Lett. 36, 61 (1996) Phys. Rev. Lett. 78, 1540 (1997) Phys. Rev. Lett. 86, 276 (2001) Europhys. Lett. 54, 495 (2001) Phys. Rev. B 2002

nanostrukturen uni hannover

Spin-Resolved Tunneling through Quantum Dots

Summary

- nanotechnology with AFM
- quantum rings: Aharonov-Bohm effect, Kondo effect, Fano effect, fractional Aharonov-Bohm effect

Universität Hannover

• quantum dots

