

Cooper Pair Tunneling and Coulomb Blockade

David Haviland

Nanostructure Physics, KTH Stockholm, Sweden

Collaborators:

Michio Watanabe, Peter Ågren, Karin Andersson KTH, Stockholm Frank Hekking, Fabio Pistolesi UFJ/CNRS, Grenoble Dick Kautz NIST, Boulder, CO

Outline

- 1. Cooper Pair Tunneling, Impedance of Environment
- 2. Josephson Junction Transmission Line (SQUID array)
- 3. Experiment 1: Single JJ biased by JJ Array High Impedance Environment
- 4. Experiment 2: JJ Array in Low Impedance Environment.

Quantum Fluctuations

"P(E) Theory" (Devoret et al. 1990, Girvin et al. 1990)

 $Z << R_Q = h/4e^2 = 6.45 \text{ k}\Omega$

Josephson effect + quantum fluctuations of the phase

Perturbation theory, $E_J/E_C << 1$

 $Z >> R_O = h/4e^2 = 6.45 \text{ k}\Omega$

Coulomb blockade + charge fluctuations (uncorrelated single C.P.tunneling events)

Perturbation theory $E_J/E_C << (R_Q/Z)^{1/2}$

Results of Perturbation Theory

Quasi Charge description of Josephson Junction Averin, Likharev and Zorin 1985

External source provides current bias

How to make $Z >> R_Q$

•Large Resistors (physically small): heating and noise.

•Small Capacitor in series with single junction \rightarrow Cooper pair box.

✓ Large Inductance in series:

Advantage: non disipative

•Electromagnetic inductance too small $(Z_0/R_0 = 8\alpha <<1)$

Use Josephson Inductance: $L_J = \frac{\Phi_0}{2\pi I_C}$

 $\frac{\Phi_0}{2\pi} = \frac{\hbar}{2e} = 0.33 \ \mu\text{H} - \text{nA}$

Infinite 1D, JJ array Linear model (small phase, $I << I_C$)

for
$$\omega < \omega_p = \frac{\sqrt{4E_C E_J}}{\hbar}$$
, $Z_A = \sqrt{\frac{L_J}{C_0}} = R_Q \sqrt{\frac{4E_C}{E_J}} \sqrt{\frac{C}{C_0}}$

Experiment: Array Bias of Single Junction

Coulomb blockade appears in single junction as *environment* is tuned

Watanabe and Haviland, PRL 2000

 $20\mu V/div.$

Single electron tunneling: rate depends on energy change, dissipative process
Zener tunneling between bands: dissipative when relaxing to lower band

•Theoretical calculation of IVC: Master Equation for probability distribution in χ

Theoretical Calculation of IV

Averin and Likharev (1986), Geigenmüler and Schön (1988)

I-V simulator for arbitrary $E_{J'}$, $E_{C'}$, T and R_{qp} , Dick Kautz (NIST Boulder)

Comparison with Theory Dick Kautz (NIST, Boulder)

Measured : $R_n=9k\Omega \rightarrow E_J=72\mu eV$, T=40mK

Estimated: A=0.01 μ m² \rightarrow C~0.5fF

Adjust Parameters: C=3.0fF, E_J =24µeV, R_{qp} =70k Ω

Theory is missing fluctuation effects due to environment

Classical Fluctuations - Phase

Analytical Solution exists for delta correlated noise term Ivanchenko and Zilberman, 1969

$$\langle V_n(0)V_n(t)\rangle = 2k_B TR\delta(t)$$

$$\frac{\langle I_J \rangle}{I_0} = \langle \sin \phi \rangle = \operatorname{Im} \left[\frac{I_{1-i\alpha v}(\alpha)}{I_{i\alpha v}(\alpha)} \right] \quad \text{where } \alpha = \frac{V_b}{RI_0} , v = \frac{E_J}{k_B T}$$

Classical Fluctuations - Quasicharge

$$V_{b} + V_{n} = R \frac{2e}{2\pi} \dot{\chi} + V_{C} \text{saw} \chi$$
approximate $\text{saw} \chi \cong \sin \chi$

$$V_{b}$$

$$V_{b}$$

$$V_{b}$$

$$V_{b}$$

$$V_{b}$$

$$V_{b}$$

$$V_{b}$$

$$V_{b}$$

Apply Ivanchenko and Zilberman solution for delta correlated noise term

$$\langle V_n(0)V_n(t)\rangle = 2k_B TR\delta(t)$$

$$\frac{\langle V_J \rangle}{V_C} = \langle \sin \chi \rangle = \operatorname{Im} \left[\frac{I_{1-i\alpha v}(\alpha)}{I_{i\alpha v}(\alpha)} \right] \quad \text{where } \alpha = \frac{eV_C(E_J/E_C)}{\pi k_B T}, \ v = \frac{V_b}{V_C}$$

Quick Fit of I vanchenko and Zilberman

Duality: Phase - Quasicharge

 $V_b + V_n = R \frac{2e}{2\pi} \dot{\chi} + V_C \text{saw} \dot{\chi} + L \frac{2e}{2\pi} \ddot{\chi}$

•Series inductance gives "mass term" in dynamical model

•Electromagnetic inductance completely negligible (thickness barrier 20 Å)

Quasicharge dynamics always over damped for single junction

Experiment: Voltage biased array

•Can not explain hysteresis (backbending) with overdamped dynamics!

-Kinetic inductance of one Cooper Pair soliton? (*P. Ågren et. al, JLTP, 2001*) -Heating in finite current state?

Fluctuations of Threshold Voltage

Switching from Zero-current State _____ No heating effects

K. Andersson and D. B. Haviland, submitted to PRB

Switching Histograms vs. temperature

Kramers Model: Thermal escape from a bias dependant local minima

 E_0

 \mathcal{W}_{l}

$$\frac{V_b}{V_C} - \operatorname{saw} \chi = \frac{1}{\gamma} \dot{\chi} + \frac{1}{\omega_0^2} \ddot{\chi}$$

Escape rate $\Gamma(V) = \frac{\omega_0}{2\pi} \exp\left(\frac{U(V)}{k_B T}\right)$

Escape probability density *P(V)* measured in experiment

$$\Gamma(V) = \frac{\dot{V}}{\Delta V} \ln \left[\frac{\sum_{V' \ge V} P(V')}{\sum_{V' \ge V + \Delta V} P(V')} \right]$$

χ

Effect of Damping on Escape E_0 $\Gamma = \kappa \frac{\omega_0}{2\pi} \exp(-\frac{U}{k_{\rm p}T})$ ω_0 U(V) \mathcal{W}_{A} κ χ TST moderate-tostrong damping αγ **∝** 1/y **Review Article:** Hänggi, Talkner and Borkovec Rev. Mod. Phys, 1990 $\gamma/\omega_{\rm b}$ weak damping

Sweep speed dependence

Sweep speeds less than 120 mV/s give consistent escape rate vs. V_{b}

Temperature dependence

Kramers model fits at high temperature

Energy Barrier vs. Bias voltage

Effective Temperature for Low T region.

MQT or External Noise?

MQT not unreasonable, but hard to rule out external noise source!

Summary

- ✓ Small Capacitance SQUID arrays provide a tunable electromagnetic environment with $Z_e >> R_Q$
- ✓ Single JJ biased with Array:
 - Fluctuations due to non-infinite impedance of environment appear to explain "Bloch Nose".
 - Overdamped dynamics, or negligible mass (inductance).
- ✓ Voltage Biased Array:
 - Hysteretic IV
 - if dynamic effect \rightarrow non-negligible inductance
 - Heating effect due to finite current
 - Fluctuations of Switching voltage
 - Kramers model explains data, U(V)
 - Effective temperature: MQT? External Noise?