Superconducting flux qubits

Hans Mooij Delft University of Technology

International Conference on Nano-Electronics Lancaster, January 2003 Yasunobu Nakamura (visitor from NEC) Irinel Chiorescu

Adrian Lupascu Kees Harmans Hannes Majer Patrice Bertet Floor Pauw Kouichi Semba (visit. NTT) Alexander ter Haar Jelle Plantenberg Erwin Heeres Paul Scheffers

theory Milena Grifoni

Frank Wilhelm (München)

MIT/Lincoln Labs/HarvardTerry OrlandoSeth LloydLeonid LevitovKarl BerggrenMike Tinkham

mesoscopic Josephson junction circuits

Coulomb charging energy

$$U_c = E_c 4n^2$$

$$E_{c} = e^{2} / 2C$$

E_J/E_C>>1 phase excitations fluxons

E_c/E_J>>1 charge excitations

decoherence spin-oscillator bath Grifoni et al.

spin $H = \varepsilon \sigma_z + \Delta \sigma_x$ $\delta E = 2(\Delta^2 + \varepsilon^2)^{1/2}$ (Δ tunnel, ε field energy)

oscillator spectral density $J(\omega) = \pi/2 \Sigma c_i^2/C_1 \omega_i^2 \ \delta(\omega - \omega_i)$

relaxation rate

 $\Gamma_{\rm r} = \frac{1}{2} (\Delta/\delta E)^2 J(\delta E/\hbar) \coth(\delta E/2k_{\rm B}T)$

dephasing rate

 $\Gamma_{\phi} = \Gamma_{r}/2 + (\epsilon/\delta E)^{2} \alpha 2\pi k_{B}T/h$

1/f noise

- charge noise: charged defects in barrier, substrate or surface lead to non-integer induced charge. Static offset, 1/f noise.
- flux noise: trapped vortices, magnetic domains, magnetic impurities.
- critical current noise: neutral defects in barrier.

Caspar van der Wal also SUNY

quantum bit: two level quantum system

 $\Psi = \alpha \ \mathbf{I0} > + \beta \ \mathbf{I1} >$ $\mathbf{I\alpha I^2 + I\beta I^2 = 1}$ $\alpha = \cos \theta \qquad \beta = e^{i\phi} \ \sin \theta$ $d\phi/dt = \omega_o$

h set by external flux t set by fabrication

 $H = h\sigma_z + t\sigma_x$

SQUID readout:

only two possible outputs: SQUID switched to gap voltage SQUID still at V=0

pulse height adjusted to give ~50% switching

high power: harmonics subharmonics

Irinel Chiorescu and Yasu Nakamura

- qubit flux-biased in symmetry point
- ramp of SQUID bias current I_{ex} changes circulating current in SQUID

2 µm

- SQUID-qubit coupling: qubit adiabatically driven from symmetry

aubit B2-1

Rabi: microwave pulse with varying length

bias pulse height \rightarrow

time between $\pi/2$ pulses \rightarrow

pulse length (ns) \rightarrow

dephasing: flux noise leads to $\delta E = \hbar \delta \omega = \pi / \tau_{\phi}$ $\tau_{\phi} = 20$ ns corresponds to $\delta f = 25$ MHz

Rabi frequency off-resonance

 $ω_{R}' = ω_{R} (1 + \delta ω^{2}/ω_{R}^{2})^{1/2} = ω_{R} (1 + π^{2}/ω_{R}^{2} τ_{\phi}^{2})^{1/2}$

Rabi period (ns) \rightarrow

Rabi with low number of measurements, single shot contains some information

closed superconducting wire loop, w< λ

standard SQUID

П/2-SQUID

 Π -SQUID

Hannes Majer, Jeremy Butcher

trapped fluxoid gradiometer qubit

response only to Φ_1 - Φ_2

 $\Delta \mathsf{E} = \mathbf{I}_{\mathsf{p}}(\Phi_1 - \Phi_2) - \zeta \mathbf{I}_{\mathsf{p}}(\Phi_0 + \Phi_1 + \Phi_2)$

asymmetry parameter $\zeta \approx 0.01$ (fabrication) reduction flux noise by this factor

two coupled qubits Hannes Majer, Floor Pauw

conclusions:

single qubits at present: decoherence time / operation time 20-50 modulation range maximum 60%

gradiometer qubit, soon: determine origin flux noise improve coherence improve modulation range

two-qubit systems starting