Cooper pair transport in an array of Josephson nanojunctions with dice lattice B. Pannetier, CNRS-CRTBT Grenoble

Outline

- ✓ Introduction
 - localisation effect in the dice lattice
- ✓ classical superconducing arrays :
 - T_c, I_c suppression, glassy vortex state
- ✓ quantum arrays
 - S-I transition, metallic phase
- \checkmark the dice family of JJ arrays
 - exotic superconducting phase

- Collaborators
 - E. Serret, F.Balestro, C. Abilio
 - P.Butaud, J. Vidal
 - O. Buisson, K. Hasselbach
 - Th. Fournier
 - Acknowledgements
 - B. Douçot, R. Mosseri,
 L. Ioffe, M. Feigel'man,
 R. Fazio
 - "CEA-LETI-PLATO"

Nanoelectronics Lancaster, Jan 7th, 2003

localisation effect in the « dice » lattice

- non-interacting tight binding electrons (Vidal, PRL81, 1998, p5888)
 f=1/2 ⇒ localisation due to quantum interferences (AB cages)
 cage effect suppressed by : disorder, edge states , interaction.
- GaAs quantum wires (electrons : fermions e) C. Naud et al. PRL86, 5104 (2001)
- h/e, h/2e magnetoresistance oscillations

Aharonov Bohm cages

• Superconducting arrays (Cooper pairs : bosons 2e)

• wire networks : Schrödinger equation (1 particle) \equiv linearized GL equations for the macroscopic superconducting state (fluctuations neglected)

Josephson Junction arrays

• classical dice JJ array

highly frustrated state with thermal fluctuations : $\cos(\phi_i - \phi_j - A_{ij}) \Rightarrow J(f) \mathbf{S}_i \mathbf{S}_J$ vortices on the Kagomé (dual) lattice

Superconducting Al wire network

• Critical temperature

• Critical Current

at $f=1/2 \implies$ « suppression » of superconducting order

The superconducting ground state at f=1/2

Classical spins on Kagomé lattice disordered à T=0 (Huse PRB45, 1992 p7536)

Josephson « dice » array : highly degenerate metastable states

Theoretical Prediction: S.Korshunov PRB, 63, 134503 (2001)

ground state → vortex triads with zero energy domain walls → S=(N+M)ln2 : non-extensive entropy

Vortex glass phase at T< T_{KTB} (Cataudello and R. Fazio, 2002)

> T_{KTB} =0.03 E_J thermal hysteresis slow dynamics

Magnetic imaging:

Observed Configurations at f=1/2

Correlation function calculation Magnetic imaging: $C_{\alpha,\beta,\gamma}(\mathbf{r}) = \langle V_i , V_{i+r} \rangle$ V_i : « vortex » variable = 1 if a vortex is in the i cell = -1 if not Collaboration. P. Butaud + f = 1/2+ f = 1/30,5 0,5 C(r) C(r) 0 -0,5 -0,5 -1 -1 20 25 30 35 40 20 5 10 15 5 10 15 25 30 35 40 0 0 Long range order: No long range order: C(r) > 0.8 until r = 40 $\xi \approx 1,5$

Nanofabrication:

Samples

Samples overview

Sample	S [<i>µ</i> m²]	R _n [kΩ]	E _J [µeV]	C [fF]	E _c [<i>µ</i> eV]	E _J /E _c	Regime
A	0,06	4,93	130	3	27	4,9	Classical
В	0,023	20,4	32	1,3	61	0,5	Quantum
С	0,015	53,3	12	0,5	160	0,05	Charge

Cell area = 5,57 µm² => f=1 ≡ B=0,3716 mT

Classical array with $E_J/E_c=4,9$

Classical array with $E_J/E_c=4,9$

Study of the superconducting phase at f=1/2

 \Rightarrow vortex configuration pinning force measurement

Charge array with $E_J/E_c=0.05$

Quantum array with $E_J/E_c=0.5$

At f=0: KTB transition fit $R_0(T) \Rightarrow \tau_{KTB,mes} = 1,58$ theory with quantum fluctuations $\Rightarrow \tau_{KTB,th} = 1,47$

Quantum array with $E_J/E_c=0.5$

Study of the resistive phase at f=1/2 ⇒ Behavior comparison between f=0 and f=1/2

 If T>T_{cr}, thermal activation behavior:
 Same energy barrier at f=0 and 1/2: E_b = 73 mK = 0,2E_J (theory : 0.19 E_J)
 Theoretical prediction for T_{cr}:

$$T_{cr,th} \approx \sqrt{E_b E_c} = 230 mK$$

Observed T_{cr} is smaller (dissipation effect)

At f=1/2, resistive phase at T->0:

evidence of a vortex liquid induced by the quantum fluctuations

Conclusions

Imaging: at f=1/3 observation of a commensurable state at f=1/2 very short range order (triades)

Transport at f=0: suppression of the quantum fluctuations in the dice array compared to the square array

Transport at f=1/2:

- charge array:

observation of an insulating phase

- classical array:

evidence of a commensurate phase at f=1/2

no thermal hysteresis

no ordering induced by electrical excitation (\neq f=1)

- quantum array:

evidence of a vortex liquid induced by guantum fluctuations