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Introduction

• There are two types of quantum corrections to the
Drude formula for σ

I) Weak localization (WL): a purely one-particle ef-
fect due to the interference of time-reversed trajectories

II) Interaction corrections (IC): due to the interplay

of interaction and disorder

• In the following we focus on how type II affect
electrical transport beyond linear regime

• This may be relevant for various experiments

• In general non-linear behavior may probe dephasing
in type II corrections



Origin of IC

• Electrons are charged

• On average, each electron ”feels” the potential of the other
electrons

• This average potential is not uniform as well

A

B

difetti

interazione  Coulombiana

C

An electron moves along path A or B. Paths A and B have different

phases and do not interfer. A second electron moves along path C,

and cancels the extra phase that A has accumulated with respect

to B

A and B interfer and affect transport



Non-linear transport: Drude-Boltzmann theory

Simple example: a wire attached to leads

l

L

µµL R

mean free path

lead

Diffusive regime: λF � l� L

The current is given in terms of distribution function

I = eDN0S

∫
dε∂xF (x, t, ε)

One determines F via

i) Boltzmann eq. (B.E.) ⇒ diffusion equation

ii) Boundary conditions at the leads

F (x = 0, t, ε) = F equilibrium(ε)



Effect of interfaces

x0

The current through the interface

I =
GT

2e

∫
dε
[
F (x = 0+, t, ε)− F (x = 0−, t, ε)

]

GT interface conductance

By matching the currents at the interface⇒ extra bound-
ary conditions to use with B.E.

⇒ Standard result for combining resistive elements



What happens in the presence of quantum in-
teraction corrections?

One expects corrections to

i) distribution function, δF

ii) density of states δN0

iii) diffusion coefficient δD

(Linear regime: Altshuler, Aronov ’79, Finkel’stein ’83, Castellani
et al ’84)

To appreciate this use Keldysh (1964) non-equilibrium
technique

I = 2(−e)

∫
dε

2π

∑

p

p

m
GK(p, ε, x, t)

At equilibrium, the spatial and temporal dependence
drops out

GK(p, ε) = F equilibrium(ε)
[
GR(p, ε)−GA(p, ε)

]

With interaction corrections

GK → GK + δGK

δGK ∼ δF + δGR

δF → δV , δGR → δN0, δD



By a diagrammatic analysis one can prove

δI = δIA + δIB

δIA associated with F -corrections

δIB associated with DoS- and D- corrections

Consider the structure: reservoir-interface-wire-interface-reservoir

x0

interface

wire leadlead

By current conservation

δI = δIA,L + δIB,L
= δIA,wire + δIB,wire
= δIA,R + δIB,R

By requiring that the voltage drop across the system is
fixed

δI =
RLδIB,L +RwireδIB,wire +RRδIB,R

RL +Rwire +RR



Diagrammatic analysis provides expressions for δIB

Let us consider first the wire

δIB,wire = δI1(x) + δI2(x)

δI1(x)

eDN0
= 2Im

∫
dεdx1

dω

2π
F ε(x)P ω(x, x1)F ε−ω(x1)∂xΦω(x1, x)

δI2(x)

eDN0
= Im∂x

∫
dεdx1

dω

2π
F ε(x)P ω(x, x1)F ε−ω(x1)Φω(x1, x)

P ω(x, x′) describes propagation of a diffusive density fluctuation:

Φω(x, x′)is the effective potential created by a density fluctuation

Φω(x, x′) =
∫

dx′′Vω(x, x′′)P ω(x′′, x′)

Vω(x, x′) screened Coulomb interaction



A few comments

• The two terms correspond to the diffusive (2)and
drift (1) term of the phenomenological expression
of the current

j = −eD∂xn+ σE

• For a wire attached to ideal leads by ideal interfaces

δI2 = 0

• In the presence of interfaces, there is charge accu-

mulation close to the boundary and δI2 has to be

taken into account

• The ingredients of the calculation: F , P ,Φ which
have to calculated

i) F obeys B.E.

ii) P obeys diffusion equation

iii) Φ depends on screening and geometry



For the current at an interface

δIB,L(x) = − 1

2eRL
Im

∫
dεdx1

dω

2π

(
F ε(0)− FL,ε

)

P ω(x, x1)F ε−ω(x1)Φω(x1, x)

x0

lead wire

F(x)

FL F(0)

δIB,L is similar

Note: we have neglected quantum interaction correc-
tions in the leads, but they can be included



First example: long wire L� Lph, Lin
Lph e-phonon relaxation time

Lin e-e relaxation time

electrons in the wire scatter inelastically many times

⇒ distribution function has a local equilibrium form with
spatial dependent µ and T (Nagaev 1995)

δI = −2e

h
2

∫ ∞

0
dr

∫ ∞

τ

dt

(
Te

sinh(πTet)

)2

P t(r)sin(
eV rt

L
)

τ the elastic scattering time

At low voltages

δI(V ) ≈ 2e2

h

√
D/Te

πL
V

(
−4.92 + 0.21

D(eV/L)2

T 3
e

+ · · ·
)

The first term is the AA correction (1979) (See also
Nagaev ’94)

T 3
E ≡ D

(
eV

L

)2

sets the scale for nonlinear effects.

voltage drop over thermal length∼ temperature

eV LT ∼ T, L2
T =

D

T



Second example: mesoscopic wire LT � L� Lin

LT =
√
D/T

• The wire is phase coherent, no inelastic scattering

• The distribution function linearly interpolates be-
tween the distribution functions in the leads

x0

wire leadlead

F(x)

δI = −2e

h
2

∫ ∞

0
dr

∫ ∞

τ

dt

(
T

sinh(πTt)

)2

P t(r)sin(eV t)r/L



A comment about interplay with heating

• For the local-equilibrium case, non-linear behavior also due to
heating

• Te estimated with energy balance arguments Pin = Pout

• Weak heating, for instance, Te − T ≈ 3
π2D(eV/L)2τph/T

• Following Nagaev (PRB 1995) one calculates Te(x)

• Generally, heating is important when eV L ≈ T while for non-
heating non-linear eV LT ≈ T
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• I/V is plotted in units of (e2/h̄)LT/L

• Full line corresponds to the non-equilibrium distribution func-
tion

• Long dashed line corresponds to the local equilibrium distri-
bution function

• Short dashed line (L/LT = 5) is the non-linear conductivity
due to the heating contribution only



A comment on the diffuson

• P ω(x, x′) obeys a diffusion equation with boundary
conditions

• In the case of ideal interfaces (open boundary con-
ditions)

P ω(x, x′)|x=0,L = 0

• This condition may be derived by observing that
in the leads the diffusion coefficient is much larger
than in the wire

P ω(x, x′) =
∞∑

n=1

2

L

sin(knx) sin(knx′)

−iω +Dk2
n

, kn =
nπ

L

• For L� LT

P ω(x, x′) =

∫
dk

2π

exp(ik(x− x′)
−iω +Dk2



Third example: ultrashort wire L� LT

One can make a lowest mode approximation for the
diffuson

δI = −e

h
A

∫ ∞

τ

dte−γ0t

(
T

sinh(πTt)

)2

sin(eV t)

A ≈ 0.25

γ0 = Dk2
1 = π2D/L2 = π2ETh, Thouless energy

The linear conductance

G ≈ −2e2

h

1

π2
ln

1

τmax(T,ETh)

i.e., G depends logarithmically at T > ETh and then
saturates at T ∼ ETh



Fourth example: short wire attached to leads by
non-ideal interfaces

• In this case the voltage drop is concentrated at the
interface

• The distribution function is spatially independent
and a linear superposition of those in the leads

Fwire(ε) ≈
R−1
L FL +R−1

R FR

R−1
L +R−1

R

• The diffuson is evaluated in the lowest mode ap-
proximation with boundary condition

∂xP ω(x, x′)|x=0+ =
Rwire

RL
P ω(x, x′)|x=0+

• For Rwire � RL this condition reduces to that of an
interface with the vacuum or an insulator



The current

δI = −e

h
A

∫ ∞

τ

dte−γ0t

(
T

sinh(πTt)

)2

sin(eV t)

ii) resistive intefaces:

A =
2RLRR

(RL +RR)2
≈ .5

for symmetric system

γ0 = EThRwire(RL +RR)/RLRR � ETh



A comment

Our result is perturbative in the screend interaction so
that strong Coulomb blockade physics is not included

To do that one has to resum the density of states cor-
rections to all orders

See, for instance,
Nazarov, 89

Levitov and Shytov,’95
Kamenev and Gefen ’96

Schön and Zaikin ’90

However, charging effects can be included. For a wire
with highly trasmissive interfaces

δI

(2/2π)
=

∫ ∞

0
dte−γ0t

(
πT

sinhπTt

)2

sin(eV t)

×
∑

n

An{1− e−(πn)2/RCt}



Comparison with experiment (Weber et al. PRB 63,
165426)

−1 −0.5 0 0.5 1
U/mV

1865

1866

1867

G
(U

,T
)/

(e
2 /h

)

T=98 mK

T=2.13 K

Log-T dependence between T = 100mK and T = 2K

G(0, T ) = G(0, T0 = 1K) +A ln(T/T0), A = 0.49e2/h

Saturation below T = 100mK

Scaling law

G(V, T )−G(0, T )

A
≡ f(eV/T )

Voltage dependence does not change with applied mag-
netic field



eV = 10γ0

eV = 5γ0

eV = γ0

eV = 0

kBT/γ0
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From saturation temperature and prefactor we conclude
that main resistive behavior at interfaces

Changing transparency would result in change of satu-
ration temperature and prefactor



The same analysis can be done for a 2D macro-

scopic film in the presence of a DC electric field

E

δI = −E
e2

(πh)

∫ ∞

τ

dt

t

(
πTe

sinhπtTe

)2 sinh (tTE)3

2
(tTE)3

2

e−
(tTE)3

2

T 3
E = De2E2

Low field expansion (The first term is the AAL logarith-
mic correction )

δI

e2/(πh)
= −E

[
ln

1

Tτ
− 1.62

De2E2

π3T 3

]

High field limit: TE replaces T in the log and gives rise to
a ”dephasing” in the particle-hole channel τ phφ ∼ E−2/3

δI

e2/(πh)
= −E ln

1

TEτ



Physical interpretation

A

B

difetti

interazione  Coulombiana

E campo elettrico

C

• Both electrons go along the same trajectory in opposite di-
rections

• With E, one electron first accelerates then slows down. The
second makes the opposite

• On average, one electron increases its kinetic energy, while
the second electron decreases it. The energy difference ∆
yields a dephasing

Interference is suppressed when

∆ = eELφ ∼ kBT

nonlinear effects for E ∼ 10mV/cm



Non-linear effect possibly relevant for 2D SiMOSFET
and GaAs heterostructure

Positive magnetoresistance (Simonian et al. 97, Popovic et

al. 97, Coleridge et al. 99) implies that the spin-triplet chan-

nel contribution is important (Finkelstein 83, Castellani et al.84,

Castellani et. al. 98)

Electric field scaling in 2D SiMOSFET (near MIT) (Kravchenko

et al. 96, Heemsterk and Klapwijk 98)

Non-linear effects used to probe metallic or insulating
behavior in 2D GaAs/AlGaA ( Yoon et al. 98)

TE � T limit (γ2): triplet channel scattering amplitude

δσ2 =
e2

2π2

[
−f1

2 (γ2) ln
(

e

2πTτ

)
+

π

30
f3

2 (γ2)
T 3
E

T 3

]

The function f1
1 (γ2) controls the RG flow.

f1
2 (γ2) = 1 + 3

[
1− 1 + γ2

γ2
ln(1 + γ2)

]

f3
2 (γ2) =

1

2
+

3

2

[
6 + 5γ2

γ2
2

− (6 + 2γ2)(1 + γ2)

γ3
2

ln(1 + γ2)

]

Non-linear effects also appear in the magnetoconductance from the
M = ±1 triplet contributions (Ωs Zeeman energy)

∆σ2 = − e2

2π2

Ω2
s

T 2

[
3ζ(3)

2π2
g1

2(γ2) +
π

42
g3

2(γ2)
T 3
E

T 3

]



Note

• γ2 = 0 (dashed line) localizing, γ2 = 5 (solid line) metallic

• At small fields, f3
2 (γ2) > 0, non-linear conductivity always pos-

itive ⇒ we need a careful analysis of experimental data at low
fields (compare with Yoon et al. 98)

• At large electric fields ⇒ log-behavior with the sign of f 1
2 (γ2)

0 10 20 30
eELT/T

0.68

0.70

0.72

0.74

0.76

δσ
2(Ε

)

0 10 20 30
−0.32

−0.30

−0.28

−0.26

−0.24

−0.22

In semiconductors devices GaAs and Si MOSFET EDC ∼ 1V/m, T ∼
100mK one estimates TE ∼ 10mK (Yoon et al. 98) (Kravchenko
et al. 96) smaller than what indicated by the experiment

• Need to go beyond lowest order perturbation theory and pos-
sible renormalization of the scale TE ⇒ see next

• Relevance of dishomogeneity and nonuniform electric field in
the sample (Meir 99,)

• Complicated interplay with heating effects and one has to
measure Tel independently ⇒

• Need to go beyond diffusive limit: Tτ �⇒ Tτ � 1 (Cf. Zala,
Narozhony, Aleiner 2000).



Some estimates

In the experiment by Yoon et al. typical voltage scale
V ∗ ∼ 10−4Volt

Our theory predicts the scale eV (LT/L) ∼ kBT

From D ∼ 7 · 10cm/Volt s, T = 8mmK ⇒ LT = 0.8 ·
10−4cm, L = 7 · 10−2cm

Vtheor =
kBT

e

L

LT
∼ 10−3Volt

Hence the experimental voltage scale over which the
effect is seen is smaller of the predicted one by one or
two orders of magnitude

To improve agreement one would need a lerger LT ,
which may be obtained by a larger diffusion coefficient,
as in a renormalised theory



Possible consequences for scaling

TE gives a mechanism for scaling

• Close to QCP (If any (cf. Belitz and Kirkpatrick 94, Sondhi
et al. 97)) T ∼ ξ−z where ξ is the correlation length and z is
the dynamical critical exponent.

• In a diffusive system T ∼ Dqp(ξ)/ξ2 with scale-dependent
Dqp(ξ) diffusion and quasi-particle DOS Nqp related by Dqp =
D/(Nqp/N0) (Finkelstein 83, Castellani and DiCastro 86). ⇒
Dqp scales near the QCP as Dqp ∼ ξ2−z.

• From T 3
E = Dqpe2E2 → E ∼ ξ−(1+z).

In the experiments

• z ≈ 1 which corresponds to growing Dqp and a vanishing Nqp

quasi-particle density of states near MIT.

• Then one expects large non-linear effects near the QCP point.

• The small value of z < 2 implies cv ∼ Tξz−2 ∼ T 2/z.



Conclusions

• Formulation of non linear transport includ-

ing quantum interaction corrections in dis-

ordered systems

• Analysis of 1D and 2D systems

• Good agreement for 1D metallic systems

• Qualitative agreement with 2D semicon-

ducting systems


