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 Electromechanical coupling in Coulomb Blockade
structures

« Shuttling of electrons by a movable dot (PRL,1998)

» Shuttling of Cooper pairs by a movable Single Cooper
Pair Box (Nature (2001); PRL (2002) )

« Shuttling of Magnetization between nanomagnets

 Discussion and conclusion




Motivation

Molecular manufacturing — a way to design
materials on the nanometer scale
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Encapsulated 4 nm Au particles Scheme for molecular
self-assembled into a 2D array manufacturing
supported by a thin film, Anders

et al., 1995



Basic characteristics

Materials properties: Electronic features:

Electrical — heteroconducting | | Quantum coherence

Mechanical - heteroelastic Coulomb correlations

Electromechanical coupling

. =RC, w,7,~1, o, ~10"-10"s"




Tunneling through a metal-organic single-
electron device (experiment)
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From Han et al., Chem. Phys. Lett. 1998
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Specifics of Coulomb Blockade (CB) in molecularly
coated dots:

* More emphasized (flat plateaus, sharp edges)

* More pronounced with bias increase

* In some cases — hysteretic |-V curves




Electro-mechanical instability

W= ?IdtQ(t))’((r) >0

R; =R _exp (-x/a) | R» =R ,exp (x/a)
1% 2 If W exceeds the

dissipated power an
iInstability occurs

Gorelik et al., PRL 1998

Velocity direction is correlated with the charge sign



Shuttling of electronic charge

. and develops into a limit cycle

Instability occurs at V >V

of dot vibrations. Both V', and vibrational amplitude are

dissipation.

determined by




Quantum “bell” Single C, Transistor
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A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000)

Conclusion: Strong electroelastic effects imply that
electrical and mechanical phenomena are coupled on
the nanometer length scale — new physics!

Here: Nanoelectromechanics caused by or associated
with single-charge tunneling effects




Electromechanical coupling

Experiments:

* Artificial systems - mechanical oscillator, =340 Hz, Tuominen et al., PRL
1999

* Tunneling through a vibrating C,, molecule, f=1.2 THz, Park et al., Nature
2000

« Mechanical manufacturing of nanoshuttle, Erbe et al., PRL 2001

Theory:
» Gate controlled shuttling, Nishiguchi, PRB 2001

 Shuttle instability induced by a resonantly tunneling electron, Fedorets et al.,
Europhys. Lett. 2002

* Quantum shuttle, Armour et al., PRB, 2002

» Shuttling of Cooper pairs by a movable single-Cooper- pair box, Gorelik et al.,
Nature 2001; Isacsson et al., PRL (in press)




How does mechanics contribute to tunneling of
Cooper pairs?

Is it possible to maintain a mechanically-assisted
supercurrent?

Movable Superconducting Dot ——

Mediator shuttling Cooper pairs



To preserve phase coherence only few degrees of
freedom must be involved.

This can be achieved provided:

* No quasiparticles are produced

> ho << A

 Large fluctuations of the charge are suppressed

by the Coulomb blockade:

—>LE, <<E_




Coulomb Blockade of Cooper Pair Tunneling
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At aV,=2n+1 Coulomb Blockade is lifted, and the ground state

1s degenerate with respect to addition of one extra Cooper Pair

'Y >=y,|n>+y,|n+1> Single Cooper Pair Box




Single Cooper Pair Box

I

lead dot gate

Coherent superposition of two succeeding charge
states can be created by choosing a proper gate
voltage which lifts the Coulomb Blockade,

Nakamura et al., Nature 1999




Movable Single Cooper Pair Box

Gates
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Josephson hybridization is produced at the trajectory
turning points since near these points the CB is lifted by
the gates.




Possible setup configurations
1
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@ i Supercurrent between the
leads kept at a fixed
phase difference

Superconducting

Coherence between
Isolated remote leads
created by a single
Cooper pair shuttling

Probe Junction



Shuttling between coupled superconductors
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Dynamics: Louville-von Neumann equation

P i, pl-v[p-py(H)]

Relaxation suppresses the memory of initial conditions.




How does it work?

Between the leads Coulomb degeneracy 1s lifted producing

an additional "electrostatic" phase shift

2. = [dt [E,() - E,(0)]




Resulting expression for the current:
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Main features:

e [he oscillating dependence of the dc current on the phase difference ®p — ®,

— the coherent states are controlled by the phase difference ®;

e If there is no phase difference, ®; = P, but the grain's trajectory is asym-

metric, X4+ 7 X —, the current still does not vanish.

e If the grain’s trajectory embeds some magnetic flux created by external mag-
netic field with vector-potential A(r), an extra item (27?/@0)5{711(1') - dr

enters the expression for the phase difference & which must be gauge-invariant.




Average current in units /, = 2ef as a function of
electrostatic, y, and superconducting, ®, phases
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Black regions — no current. The current direction is
iIndicated by signs




Mechanically-assisted superconducting coupling

Gates
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The distribution function of the phase difference as a function of number of
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grain excursions is studied. It is defined through the states
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as the average
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where p is the density matrix.




Distribution of phase differences as a function of number
of rotations. Suppression of quantum fluctuations of
phase difference

101 i __" . . '_ -...05

Number of rotations




To avoid decoherence:

 Electromagnetic perturbations should be screened
» Gates should be free from dynamic charged defects

 Single-electron tunneling should be suppressed

Estimates from below can be extracted from the experiment
by
7, =107 -10" s

Recent experiments by Saclay group demonstrate

even longer decoherence times,
D. Vion et al., cond-mat/0205343
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What about shuttling magnetization?

Is it possible to control the effective magnetic coupling
between two magnets by means of a mediator nanomagnet?

M,

M;

By mechanically controlling the tunnel barriers and hence the exchange
coupling between the magnetic moments M+ 2 and m at the turning points
the effective interaction between M1 and M, can be made ferromagnetic

or antiferromagnetic



Conclusions

 Electronic and mechanical degrees of freedom of
nanometer-scale structures can be coupled.

« Such a coupling may result in an electro-
mechanical instability and “shuttling” of electric
charge

* Phase coherence between remote
superconductors can be supported by shuttling of
Cooper pairs.

* Magnetization can be shuttled by a mediator
nanomagnet to provide controllable FM or AFM
coupling between cluster magnetic moments
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