Shuttling of Single Electrons and Cooper Pairs

Robert Shekhter

In collaboration with:

L. Gorelik and M. Jonson

Chalmers University of Technology / Göteborg University

- Electromechanical coupling in Coulomb Blockade structures
- Shuttling of electrons by a movable dot (PRL, 1998)
- Shuttling of Cooper pairs by a movable Single Cooper Pair Box (Nature (2001); PRL (2002))
- Shuttling of Magnetization between nanomagnets
- Discussion and conclusion

Motivation

Molecular manufacturing – a way to design materials on the nanometer scale

Encapsulated 4 nm Au particles self-assembled into a 2D array supported by a thin film, Anders *et al.*, 1995 Scheme for molecular manufacturing

Basic characteristics

Materials properties: Electrical – heteroconducting

Mechanical - heteroelastic

Electronic features:

Quantum coherence

Coulomb correlations

Electromechanical coupling

$$\tau_{\rm R} = RC, \quad \omega_{\rm M} \tau_{\rm R} \approx 1, \quad \omega_{\rm M} \approx 10^{11} - 10^{12} \, {\rm s}^{-1}$$

Tunneling through a metal-organic singleelectron device (experiment)

Specifics of Coulomb Blockade (CB) in molecularly

coated dots:

- More emphasized (flat plateaus, sharp edges)
- More pronounced with bias increase
- In some cases hysteretic I-V curves

Electro-mechanical instability

 $W = \frac{E}{T} \int_{0}^{t} dt Q(t) \dot{X}(t) > 0$

If W exceeds the dissipated power an instability occurs

Gorelik et al., PRL 1998

Velocity direction is correlated with the charge sign

Shuttling of electronic charge

Instability occurs at $V > V_c$ and develops into a limit cycle of dot vibrations. Both V_c and vibrational amplitude are determined by dissipation.

A. Erbe *et al.*, PRL **87**, 96106 (2001) H. Park *et al.*, Nature **407**, 57 (2000)

Conclusion: Strong electroelastic effects imply that electrical and mechanical phenomena are coupled on the nanometer length scale – *new physics*!

Here: Nanoelectromechanics caused by or associated with single-charge tunneling effects

Electromechanical coupling

Experiments:

- Artificial systems mechanical oscillator, f=340 Hz, Tuominen *et al.*, PRL 1999
- Tunneling through a vibrating C₆₀ molecule, f=1.2 THz, Park *et al.*, Nature 2000
- Mechanical manufacturing of nanoshuttle, Erbe et al., PRL 2001

Theory:

- Gate controlled shuttling, Nishiguchi, PRB 2001
- Shuttle instability induced by a resonantly tunneling electron, Fedorets *et al.*, Europhys. Lett. 2002
- Quantum shuttle, Armour et al., PRB, 2002

• Shuttling of Cooper pairs by a movable single-Cooper- pair box, Gorelik et al., Nature 2001; Isacsson et al., PRL (in press)

How does mechanics contribute to tunneling of Cooper pairs?

Is it possible to maintain a mechanically-assisted supercurrent?

Mediator shuttling Cooper pairs

To preserve phase coherence only few degrees of freedom must be involved.

This can be achieved provided:

- No quasiparticles are produced $\rightarrow \hbar \omega << \Delta$
- Large fluctuations of the charge are suppressed by the Coulomb blockade: $\rightarrow E_{I} \ll E_{C}$

Coulomb Blockade of Cooper Pair Tunneling

At $\alpha V_g = 2n+1$ Coulomb Blockade is lifted, and the ground state is degenerate with respect to addition of one extra Cooper Pair

 $|\Psi\rangle = \gamma_1 |n\rangle + \gamma_2 |n\rangle + 1 > Single Cooper Pair Box$

Single Cooper Pair Box

Coherent superposition of two succeeding charge states can be created by choosing a proper gate voltage which lifts the Coulomb Blockade,

Nakamura et al., Nature 1999

Movable Single Cooper Pair Box

Josephson hybridization is produced at the trajectory turning points since near these points the CB is lifted by the gates.

Possible setup configurations

Supercurrent between the leads kept at a fixed phase difference

Coherence between isolated remote leads created by a single Cooper pair shuttling

Shuttling between coupled superconductors

$$H = H_{c} + H_{J}$$

$$H_{c} = \frac{e^{2}}{2C(x)} \left[2n + \frac{Q(x)}{e} \right]^{2}$$

$$H_{J} = -\sum_{s=L,R} E_{J}^{s}(x) \cos(\Phi_{s} - \hat{\Phi})$$

$$E_{J}^{L.R}(x) = E_{0} \exp\left(\pm \frac{\delta x}{\lambda}\right)$$
Dynamics: Louville-von Neumann equation

$$\frac{\partial \rho}{\partial t} = -i[H, \rho] - v[\rho - \rho_{0}(H)]$$

Relaxation suppresses the memory of initial conditions.

How does it work?

Between the leads Coulomb degeneracy is lifted producing an additional "electrostatic" phase shift $\chi_{\pm} = \int dt \left[E_0(1) - E_0(0) \right]$

Resulting expression for the current:

$$rac{ar{I}}{I_0} = rac{\cosartheta\sin^3artheta\sin\Phi\left(\cos\chi+\cos\Phi
ight)}{1-(\cos^2artheta\cos\chi-\sin^2artheta\cos\Phi)^2}$$

Main features:

- The oscillating dependence of the dc current on the phase difference $\Phi_R \Phi_L$ \rightarrow the coherent states are controlled by the phase difference Φ ;
- If there is no phase difference, $\Phi_L = \Phi_R$, but the grain's trajectory is asymmetric, $\chi_+ \neq \chi_-$, the current still does not vanish.
- If the grain's trajectory embeds some magnetic flux created by external magnetic field with vector-potential $\mathbf{A}(\mathbf{r})$, an extra item $(2\pi/\Phi_0) \oint \mathbf{A}(\mathbf{r}) \cdot d\mathbf{r}$ enters the expression for the phase difference Φ which must be gauge-invariant.

Average current in units $I_0 = 2ef$ as a function of electrostatic, χ , and superconducting, Φ , phases

Black regions – no current. The current direction is indicated by signs

Mechanically-assisted superconducting coupling

The distribution function of the phase difference as a function of number of grain excursions is studied. It is defined through the states

$$\ket{\Phi,\phi} = rac{1}{2\pi} \sum_{n=0,1}^{N-n} \sum_{N_L=-N}^{N-n} e^{-iN_L \Phi} e^{-in\phi} \ket{n} \ket{N_L} \ket{-N_L-n}$$

as the average

$$f(\Phi)\equiv \int\limits_{0}^{2\pi} d\phi \, \left< \Phi, \phi \right|
ho \left| \Phi, \phi \right>$$
 .

where ρ is the density matrix.

Distribution of phase differences as a function of number of rotations. Suppression of quantum fluctuations of phase difference

To avoid decoherence:

- Electromagnetic perturbations should be screened
- Gates should be free from dynamic charged defects
- Single-electron tunneling should be suppressed

Estimates from below can be extracted from the experiment by Nakamura et al., Nature 2000: $\tau_{\phi} = 10^{-9} - 10^{-8} \text{ s}$

Recent experiments by Saclay group demonstrate even longer decoherence times,

D. Vion et al., cond-mat/0205343

$$\tau_{\varphi} \approx 10^{-6} s$$

What about shuttling magnetization?

Is it possible to control the effective magnetic coupling between two magnets by means of a mediator nanomagnet?

By mechanically controlling the tunnel barriers and hence the exchange coupling between the magnetic moments $M_{1,2}$ and m at the turning points the effective interaction between M_1 and M_2 can be made *ferromagnetic* or *antiferromagnetic*

- Electronic and mechanical degrees of freedom of nanometer-scale structures can be coupled.
- Such a coupling may result in an electromechanical instability and "shuttling" of electric charge
- Phase coherence between remote superconductors can be supported by shuttling of Cooper pairs.
- Magnetization can be shuttled by a mediator nanomagnet to provide controllable FM or AFM coupling between cluster magnetic moments