SELF-ASSEMBLY OF MOLECULAR SCALE ELECTRONICS BY DNA MOLECULES AND RELATED PROTEINS

Kinneret Keren, Rachel Gilad, Yoav Soen, Michael Krueger, Ilya Baskin, Stav Zaitsev, Doron Lipson, Gidi Ben Yoseph, Yoav Eichen, Erez Braun, Uri Sivan
Technion -Israel Institute of Technology

Molecular Electronics - Gap Between Devices and Circuits

DNA Molecular Recognition

Two Step Self Assembly of an Electronic Circuit Using DNA -Possible Assembly scheme and its Limitations

II. Electrode encoding

s 3 '-TCCAGCGGCGGG

IV. Device positioning

V. Converting DNA to wires

DNA Templated Conductive Wire

E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature 391, 775 (1998)

c)

d)

e)

Conductive silver

SEQUENCE SPECIFIC LITHOGRAPHY

-Microelectronics relies on lithography

- Not merely a technology - It 's a concept how to
handle complexity

Homologous Recombination by RecA

Sequence Specific Molecular Lithography Using RecA Protein

 K.Keren, M.Krueger, R.Gilad, G. Ben-Yoseph, U.Sivan \& E.Braun, Science 2002RecA protects the DNA against certain operations. Can be used as seauence snecific resist

(i) Polymerization

ssDNA probe

RecA monomers
(ii) Homologous recombination

(iii) Molecular lithography

RecA as a Sequence Specific Junction Generator

Homologous Recombination RecA - a Universal Molecular Assembler

- Operates on arbitrary double stranded sequences
- Facilitates positioning of arbitrary molecular scale objects

CHALLENGE - DEVICE AN AUTONOMOUS DNA SYNTHESIZER SUCH THAT

(a) The synthesizer lends itself to the generation of a large variety of sequences.
(b) The number of distinct addresses along each generated sequence is large.
(c) The sequence is fully known

(d) Each address longer than a given length appears only once per certain DNA length.
(e) The synthesis effort is exponentially small compared with direct synthesis of all addresses.

Reminds "random" number generator on a computer

COPYING DNA

Diphosphate is released when nucleotide is added to chain
$5^{\prime} 10= \pm=\square$ P

-DNA is copied with the help of an enzyme - DNA polymerase -Complementary nucleotide is added to the 3'-OH end of the growing chain, so that the new chain is synthesized in the 5 ' to 3 ' direction
-The precursor for DNA synthesis is a nucleoside triphosphate, which looses the terminal two phosphate groups in the reaction

Autonomous Binary p-Shift Register

-A computing machine with 2^{p} internal states represented by an array of p cells, each occupying one bit.

- In each step a binary function, f, is computed and its value is inserted into cell p.
- Simultaneously, the content of all cells is shifted one cell to the left.
-On printing x_{1} to a tape, a long periodic binary sequence is generated.
-The generated sequence is uniquely determined by f and the seed.

Maximal Linear p-Shift Register

Example - 3-shift register following the rule $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus x_{3}$

0011101001110100

$\bullet 7$ bit period

- Each string longer than 3 bits appears exactly once per period

x_{1}	x_{3}	f	Rule Strand
0	0	0	$\overline{0} \overline{1} \overline{0} \overline{0}$
0	1	1	$\overline{0} \overline{0} \overline{1} \overline{1}$
1	0	1	$\overline{1} \overline{1} \overline{\overline{0}} \overline{1} \overline{1}$
1	1	0	$\overline{1} \overline{1}$

Generally - for a linear p-shift register $x_{p+1}=\sum_{1}^{p} \alpha_{j} x_{j} \quad \alpha_{j} \in\{0,1\}$ $-2^{p}-1$ bit period

- Each string longer than p bits appears exactly once per period -Rules can be found such that the number of non-vanishing α_{j} is significantly smaller than p (truth table dimension $\ll p$)
-Consequently, the number of rules is exponentially smaller than the number of generated addresses !

DNA Based Molecular p-Shift Register

Consider a Boolean DNA with 4 "bases" $1, \overline{1}, 0, \overline{0}$
1 binds $\overline{1}$ but not $0, \overline{0}$
0 binds $\overline{0}$ but not $1, \overline{1}$
Realize the function f with 7 rule strands. Add a seed strand and polymerase. Cycle thermally.
Terminate with a stop strand.

extension
(vi)

x_{1}	x_{3}	f	Rule Strand
0	0	0	$\overline{0} \overline{1} \overline{0} \overline{0}$
0	1	1	$\overline{0} \overline{0} \overline{1} \overline{1}$
1	0	1	$\overline{1} \overline{1} \overline{0} \overline{1} \overline{1}$
1	1	0	$\overline{1} \overline{1} \overline{1} \overline{1} \overline{0}$

(v)
\bullet
\bullet
$\stackrel{1}{1}$
$\bullet-0$
\bullet
0

- sequences other than 0,1
n sequences other than $\overline{0}, \overline{1}$

DNA Based Molecular p-Shift Register

-Works also in a thermal ratchet mode at a fixed temperature
-Rule strands function as enzymes. They direct the reaction but not consumed
initiation

3-shift register realized in 5-bit space

$$
x_{n+1}=x_{n} \oplus x_{n-2} 7 \text { bit=21 base period }
$$

5'GCATGCGCCCGTCAGGCG 00111 Seed strand $3^{\prime} 0 \overline{0} \overline{1} \overline{1} \overline{1} \overline{0}$
3'011101
3' $\overline{1} \overline{1} \overline{0} \overline{1} \overline{0}$
$\left.3^{\prime} \overline{1} \overline{1} \overline{0} \overline{1} \overline{0} \overline{0}\right\} 7$ rule strands
3'101001
3'010011
3' $1001 \overline{1} 1$
3'01001GACGTC stop strand

$$
\begin{array}{ll}
0=5^{\prime} \mathrm{TGC} & 1=5^{\prime} \mathrm{GCT} \\
\overline{0}=3^{\prime} \mathrm{ACG} & \overline{1}=3^{\prime} \mathrm{CGA}
\end{array}
$$

5' GCATGCGCCCGTCAGGCG00111(0100111) 01001 CTGCAG with $n=0,1, \ldots$ seed primer $\quad \rightarrow \quad \mapsto$ complementary to stop primer

Confirmed by Sequencing!

4-shift register realized in 6-bit space

$x_{n+1}=x_{n} \oplus x_{n-3} \quad 15$ bit=45 base period
Exponentially more addresses for the same synthesis effort!
5'GCA TGC GCC CGT CAG GCG 001111 seed strand

$3^{\prime} \overline{1} \overline{1} \overline{1} \overline{0} \overline{1} \overline{0} 3^{\prime} \overline{10} 01000$
$3^{\prime} \overline{1} 1 \overline{1} \overline{0} 1013^{\prime} 0 \overline{0} \overline{1} \overline{0} \overline{0} \overline{1} 15$ rule
$3^{\prime} \overline{1} \overline{1} \overline{1} \overline{0} \overline{1} \overline{1} 3^{\prime} \overline{0} \overline{0} \overline{0} \overline{0} \overline{1}$
$3^{\prime} 10101103^{\prime} 100011 \frac{1}{1}$ strands
$3^{\prime} \overline{1} \overline{0} \overline{1} \overline{1} \overline{0} \overline{0} 3^{\prime} 0001 \overline{1} \overline{1}$
3'1011001

3' $\overline{1} \overline{1} \overline{1} \overline{0} 0 \mathrm{G}$ GCGC CAG GAC GCG GAC GTC stop strand $0011110(101100100011110)_{n} 1011 ; n=0,1, \ldots$

Confirmed by Sequencing!

Richer Alphabets

- Using 3 nucleotides for two letter alphabet is very inefficient
- Maximal alphabet includes $4^{3}=64$ letters
-Probably can't use such a large alphabet due to interference
- Optimal alphabet is probably in between
- Nature uses 3 nucleotide codons (albeit with a reading frame) to code 20 amino acids plus stop codons
-With k-letter alphabet the maximal shift register sequence measures k^{p} bits!

4-letter alphabet
3 -shift register realized with $5+1$ bits
14 bit period (42 nucleotides)
0=ACC 1=CAG 2=CGA 3=GGA

Number of shift register sequences that can be generated by rule strands of a given length

For k letter alphabet and p cells the number of maximal shiftregister sequences of length k° is

$$
[(k-1)!]^{k^{p-1}} k^{k^{p-1}-p}
$$

For $k=3$ and $p=5$, for instance, combinations of the $3^{6}=729$ rule strands, which can be synthesized in a reasonable effort, yield more than 10^{60} different maximal shift register sequences!

Put it differently. For synthesis of s strands with k letter alphabet $\begin{aligned} & \text { one can generate } \\ & \text { sequences }\end{aligned}[k!]^{s / k^{2}} \frac{k}{s}$ different maximal shift register

Competing Blocking Processes

Reaction proceeds through thermal fluctuations (ratchet)

Shift Register Sequence is a Path on a deBruijn Graph

00111010

$\mathrm{n}=3$
$0011101001110100 \ldots .$.

- Nodes correspond to machine states
-Lines correspond to transition rules

Prone to errors since all nodes are legal, namely, recognized by rule strands

-Errors usually lead to a node which is not recognizable by any rule strand. Consequently further elongation requires a second error
-When a p-SR is realized with $(p+q)$-SR error requires $q+1$ mismatches.
Consequently the errors are suppressed by $\exp \left[-(q+1) \Delta G / k_{B} T\right]$ where ΔG is the free energy associated with one base mismatch

- $\Delta G \approx 8.5 \div 10.5 k_{B} T$

