Half-metallic Transition Metal Oxides

Z. Szotek Daresbury Laboratory, UK

- 1. Introduction concepts and systems
- 2. SIC-LSD formalism
- 3. Results:
 - a. Fe₃O₄
 b. double perovskites
 c. vacancy doped transition metal monoxides

Half Metals (Half Metallic Ferromagnets)

Half metals are ferromagnets whose density of states shows only one occupied spin-polarized sub-band at the Fermi energy E_F . Normal ferromagnets, like Fe and Co, have not only spin-polarized **3d** electrons but also unpolarized **4s** electrons at E_F . Half metals are compounds of more than one element and are mostly oxides or Heusler alloys.

CrO₂

Chromium dioxide is the only simple oxide that is a ferromagnetic metal. Its resistivity increases rapidly as the temperature approaches the Curie point (T_c =398K)

Fe₃O₄

The oldest magnetic material known to man, Fe_3O_4 is also the half-metal with the highest Curie temperature of 860K.

Double Perovskites

Mixed Valence Manganites

 $T_{\rm C}$ of mixed-valence manganites cannot be increased above 400K.

Double Perovskites such as Sr_2FeMoO_6 and Sr_2FeReO_6 are claimed to be half metals with T_c higher than 400K.

A₂BB'O₆, **A**=Ca, Sr, Ba **B** – 3d transition metal (Fe, Co) **B**' – 4d transition metal (Mo, Re)

Useful Properties

Magnetoresistance of a ceramic sample of Sr_2FeMoO_6 made by a novel combustion synthesis procedure.

(R.P. Borges et al., J. Phys.: CM 11 (1999) L445-L450.)

Evidence for Half Metallic Behaviour

- Spin polarized positron annihilation (FS for one spin only)
- Measurement of magnetic moment
- Tunnelling of electrons
- Optical spectroscopy

The measured photoelectron emission spectra of spin-up and spin-down electrons from the surface of a thin film of La0.7Sr0.3MnO3. The spectra illustrate the lack of detectable spindown photoelectrons at the Fermi level, or even a few tenths of an eV below. Such a result, which indicates metallic spin-up electrons but a gap in the spin-down spectrum, is expected for half metallic character. The result also requires that both the bulk and the surface of the system be half metallic (because both regions are probed in this photoemission experiment). (Adapted from J.-H. Park et al., Nature, volume 392, page 794, 1998.)

Self-Interaction-Corrected Local Spin Density (SIC-LSD)

$$E^{\text{SIC-LSD}}[n] = E^{\text{LSD}}[n] - \Sigma_a \delta_a[n_a]$$
$$\delta_a[n_a] = E^{\text{XC(LSD)}}[n_a] + E^{\text{H}}[n_a]$$

Corrects Local-Spin-Density (LSD) for spurious self-interaction.

Is <u>sizeable</u> for a localised electron, i.e. when an electron spends a long time on a particular site.

□It <u>reduces</u> to the LSD for delocalised electrons.

Minimization of SIC-LSD Energy Functional

The aim is to minimize Eq. (8) under the constraint that the orbitals ψ_{α} be orthonormal

$$\langle \psi_{\alpha} | \psi_{\alpha'} \rangle = \delta_{\alpha \alpha'}$$
 (9)

Varying E^{SIC} with respect to ψ_{α}^{*} leads to the SIC equations:

$$\left(H_0 + V_{\alpha}^{SIC}\right)\psi_{\alpha} = \sum_{\alpha'}^{\alpha\alpha} \lambda_{\alpha\alpha'}\psi_{\alpha'} , \qquad (10)$$

where $\lambda_{\alpha\alpha'}$ are Lagrange multipliers associated with the constraint (9). H_0 is the LSD Hamiltonian:

$$H_0 = -\Delta + V_H(\mathbf{r}) + V_{ext}(\mathbf{r}) + V_{xc,\sigma}^{LSD}(\bar{n}(\mathbf{r}))$$
(11)

$$V_H(\mathbf{r}) = 2 \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r'$$
(12)

$$V_{xc,\sigma}^{LSD}(\bar{n}(\mathbf{r})) = \frac{\delta E_{xc}^{LSD}[\bar{n}]}{\delta n^{\sigma}(\mathbf{r})}$$
(13)

and V_{α}^{SIC} is the self-interaction potential for orbital α :

$$V_{\alpha}^{SIC}(\mathbf{r}) = -2 \int \frac{n_{\alpha}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 r' - V_{xc,\sigma_{\alpha}}^{LSD}(\bar{n}_{\alpha}(\mathbf{r})) .$$
(14)

Because of the state-dependent potential, one can not proceed straightforwardly by making a unitary transformation of Eqs. (10) to diagonalize λ . Note that V_a^{SIC} vanishes for an extended state. This implies that any set of orbitals solving the Kohn-Sham equations of the LSD energy functional will also solve Eq. (10), thus providing a local minimum of E^{SIC} .

$$N_{val} = Z - N_{core} - N_{s-core} - N_{SIC}$$

Magnetite

Fe₃O₄ → a mixed valent compound → FeO + Fe₂O₃ → Fe²⁺ + O²⁻ + (2 Fe³⁺ + 3O²⁻) → The Verwey transition at 122 K (monoclinic structure)

A-sites are occupied by Fe^{3+}

B-sites are occupied by Fe^{3+} and Fe^{2+}

Shull, Wollan, Koehler, PR 84, 912 (1951)

Configurations studied: Fe 3+ and Fe 2+ on alternating (001) planes all octahedral Fe's to be 3+ all octahedral Fe's to be 2+ LSD

Fe

0

LSD

SIC-LSD

Tetrahedral Sites

Octahedral Sites

*Fe*³⁺

*Fe*²⁺

*Fe*³⁺

Summary of Results for Fe₃O₄ (cubic)

 m_{tot} = 2.0 μ_B

Summary of Results for Fe₃O₄ (orthorombic)

Double Perovskites

Fe Mo

A₂FeMoO₆ A=Ba,Sr,Ca

Ba - cubic Sr - tetragonal

Ca - monoclinic

Characteristics:

- -- half-metallic behaviour
- -- metallic conductivity
- -- large Curie temperature
- -- intrinsic tunnelling-type magnetoresistance at room temperature and low field

K.-I. Kobayashi et al., Nature 395, 677(1999)

∆R/R (%)	Ca_2FeMoO_6	Sr_2FeMoO_6	Ba ₂ FeMoO ₆
(at 77K, 1T, ceramic)		15.0%	13.5%
(at 290K, 50mT, ceramic)		2.6%	1.6%
(at 77K, 1T, pressed powder)	3.5%	6.0%	
(at 290K, 50mT, pressed powde	e r)	1.0%	-4
(at 4.2K, 7T, poly. ceramic)		42.0 %	(%) 8 8
(at 300K, 7T, poly. ceramic)		10.0 %	-12

R.P. Borges et al., J. Phys.: CM 11 (1999) L445-L450.

Summary of Results for Perovskites

Moment (µ _B)	Ca ₂ FeMo(Re)O ₆	Sr ₂ FeMoO ₆	Ba₂FeMoO₆
M _{tot}	4.000 (3.000)	4.000	4.000
M _{Fe}	3.758 (<mark>3.872</mark>)	3.711 (<mark>3.645</mark>)	3.811
М _{Мо} (Re)	-0.404 (-1.124)	-0.425 (- <mark>0.349</mark>)	-0.414
M _(Ca,Sr,Ba)	0.005 (<mark>0.020</mark>)	0.021 (<mark>0.021</mark>)	0.020
M ₀₁	0.104 (<mark>0.019</mark>)	0.112 (<mark>0.112</mark>)	0.094
M ₀₂	0.107 (<mark>0.013</mark>)	0.113 (<mark>0.107</mark>)	
<u>М</u> ₀₃	0.108 (<mark>0.113</mark>)		
Volume [(au) ³]	777.523 (773.823)	830.219	884.027

Energy Considerations and Valency

Fe³⁺ (3d⁵) is the most favourable configuration (half-metallic). **Fe²⁺ (3d⁶)** configuration is insulating.

Point Defect Induced Half-Metallicity in Transition Metal Oxides

• Transition metal monoxides: point defect creation

Cation site in octahedral coordination

(I.S. Elfimov et al., PRL 89, 216403 (2002); M.R. Castel et al., PRB 55, 7859 (1997).)

Super-cell Setup: NiO

- + 8 Niper layer > 31 Ni and one impurity
- + O positions: add (0,0.5,0) to the Ni positions

3% vacancy doping realized

NiO in FM and AF2 arrangements

MnO in FM and AF2 arrangements

FM

Insulator — Half-metal transition (3% vacancy doping)

AFM

Distribution of magnetic moments around vacancy in the NiO super cell

AF₂

FΜ

Green — Ni-up Red — Ni-down Blue — Oxygen

 $\begin{array}{l} M \; (Ni_{bulk}) = 1.66 \; \mu_B \\ M \; (O_{bulk}) \; = 0.34 \; \mu_B \end{array}$

Total Magnetic Moments

Table 1: Total magnetic moment for a supercell with and without vacancy. IS and HM denote the insulating and half-metallic solutions, respectively. In brackets it is shown how the total moment of the supercell (without vacancy) comes about.

		Total moment in μ_B	State
NiO	AF2 bulk	0	IS
	AF2 with vacancy	0	HM
	FM bulk	$64(=32\cdot 2)$	IS
	FM with vacancy	60	HM
MnO	AF2 bulk	0	IS
	AF2 with vacancy	3	HM
	FM bulk	160(=32.5)	IS
	FM with vacancy	153	HM

Conclusions

- Fe3O4: the charge ordered insulating phase is not the lowest energy solution for either cubic or orthorhombic, low temperature, structure.
- SIC-LSD leads to large Mo spin moment in double perovskites that is always anti-parallel with respect to Fe spin moment. Fe³⁺ is the lowest energy solution.
- 3% TM vacancy doping induced transition from insulating to half-metallic behaviour with NiO becoming HMAF. More studies are necessary .

Acknowledgements

W.M. Temmerman (Daresbury) D. Ködderitzsch (Halle) G.M. Stocks (Oak Ridge) L. Petit (Aarhus) A. Svane (Aarhus) H. Winter (Karlsruhe)

Thanks to: P.H. Dederichs (Jülich) T. Saha-Dasgupta (Calcutta) V. Antonov (Kiev)