Electron Spin Qubits in Quantum Dots

Lancaster 2003

Lieven Vandersypen

Jeroen Elzerman Ronald Hanson Laurens Willems van Beveren Jacob Greidanus Jort Wever Benoit Witkamp Leo Kouwenhoven

Factoring 15 with nuclear spins

Vandersypen et al., *Nature* **414**, 883 (2001)

Spins are natural, beautiful qubits!

But: no practical path for scaling liquid NMR to many more qubits

Find scalable spin system with access to *individual* spins

Key features

Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059)

- Initialization 1-electron dot $H_0 \sim \Sigma \omega_i \sigma_{zi}$ equilibrate at low *T*, high B_0
- Read-outconvert spin to chargethen measure charge

Courtesy D. Loss

ESR pulsed microwave magnetic field $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$ microfabricated wire nearby dot

SWAP exchange interaction $H_J \sim \Sigma J_{ij}(t) \sigma_i \cdot \sigma_j$ control via DC pulses on dot-dot tunnel barrier

Coherence spins have long coherence times in 2DEG: $T_2 > 100$ ns (Kikkawa&Awschalom, 1998)

Experimental progress

- 1. A tunable few-electron quantum dot circuit
- 2. Zeeman splitting for a 1-electron dot
- 3. T_1 measurement for a single electron spin in a dot

Is this really the last electron?

Few-electron Coulomb diamond

Few-electron double dot Transport through QPC J. Elzerman et al., cond-mat/0212489 $dI_{\rm QPC}/dV_{\rm I}$ 01 -1.02--1.1-00 12 00 VL (V) رح ال 11, 10 22 21 -0.96 --0.9--0.6 $V_{\mathsf{P}_{\mathsf{R}}}(\mathsf{V})$ $\dot{V}_{\mathsf{P}_{\mathsf{R}}}(\mathsf{V})$ -0.15 -0.30

- Double dot can be emptied
- QPC can detect all charge transitions, also between dots

Few-electron double dot Transport through dots

Peak height < 1 pA

2 pA

70 pA

Zeeman splitting for a single electron in a dot ?

Non-linear spectroscopy

R. Hanson et al, unpublished

 T_1 for the spin of a single electron in a dot ?

3-Level pulsed relaxation measurement

Fujisawa et al, Nature '02

Split Coulomb peak

Zeeman T_1 measurement (1)

Zeeman T_1 measurement (2)

Work in preparation

- Spin-to-charge conversion
- 10 μs charge read-out (QPC)
- Single-shot spin read-out
- Electron spin resonance
- Swap spin states in double dot
- Entangle spins in double dot

Summary

http://qt.tn.tudelft.nl/research/spinqubits

Ideas for electron spin qubits Vandersypen, Proc. MQC02, Naples (quant-ph/0207059)

Few-electron tunable double dot Elzerman et al (cond-mat/0212489)

Zeeman single electron in dot Hanson et al (unpublished)

Long *T*₁ single electron in dot Hanson et al (unpublished)

