Spin dependent transport through magnetic domain walls in nanowires *from channel blocking to adiabatic transmission*

Víctor Gopar, Rodolfo A. Jalabert, D.W.

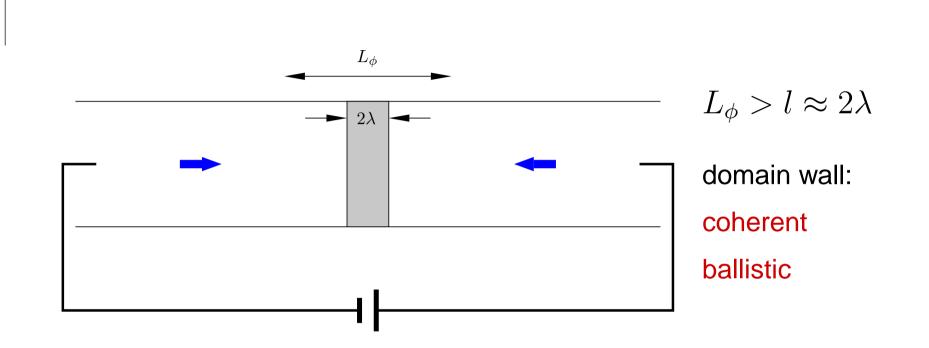
Institut de Physique et Chimie des Matériaux de Strasbourg, France

Robert L. Stamps

University of Western Australia, Perth

Discussions: Horacio Pastawski, Xavier Waintal

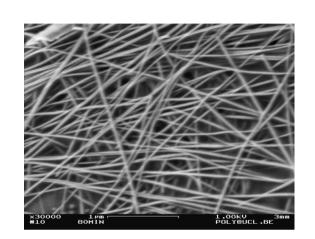
Ferromagnetic quantum wires



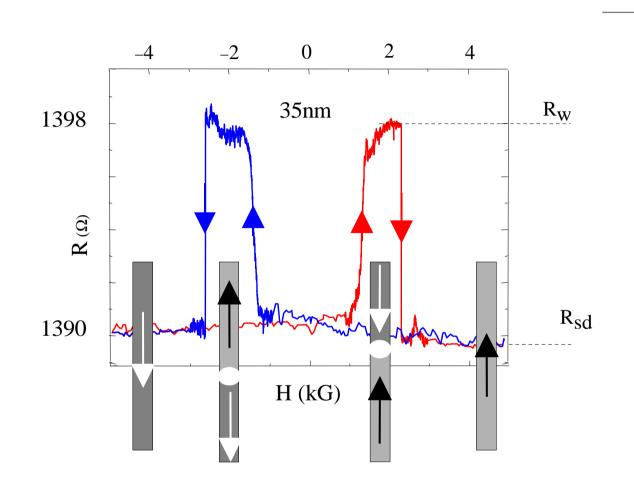
Experiments:

- U. Ebels *et al.*, PRL 84, 983 (2000): Co wires, \emptyset 35 nm, single domain wall
- G. Dumpich et al., JMMM 248, 241 (2002): polycrystalline Co wires

A single domain wall can increase the resistance



U. Ebels *et al.,* PRL 84, 983 (2000)



Anisotropic Magneto-Resistance: negative contribution Domain wall scattering: positive contributions

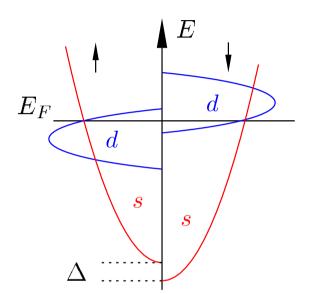
Model Hamiltonian

Band structure of Co: very complex

Roughly:

- d : large effective mass \rightsquigarrow magnetism
- s: low effective mass, mobile \rightsquigarrow transport

Assumption: *s*-electrons move in a magnetic configuration defined by the static d-electrons

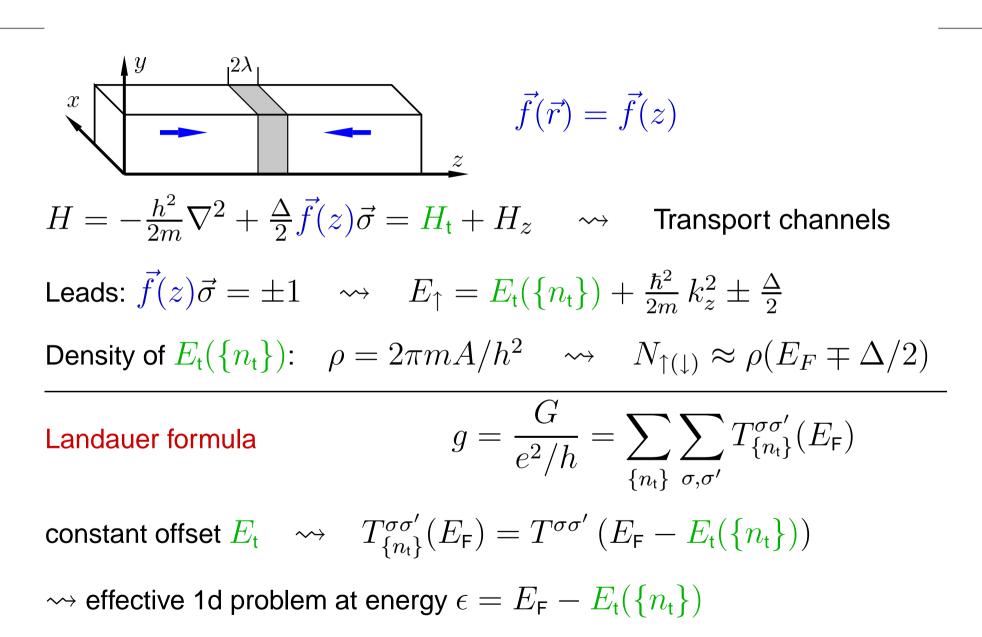


Effective Hamiltonian for s-electrons

$$H = -\frac{h^2}{2m}\nabla^2 + \frac{\Delta}{2}\vec{f}(\vec{r})\vec{\sigma}$$

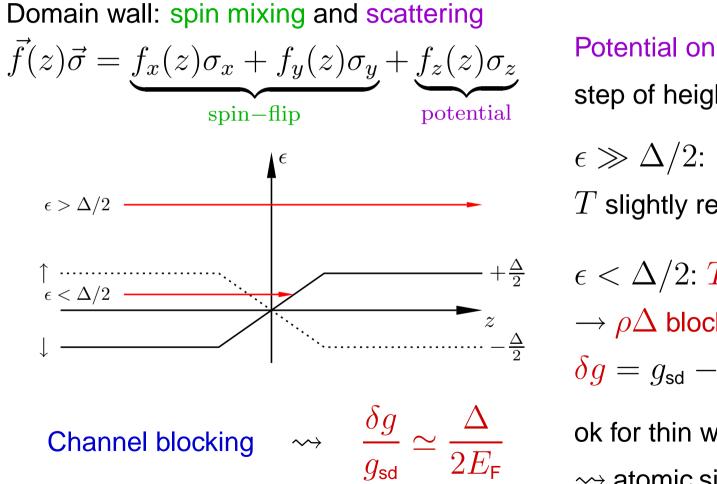
 Δ : energy difference between *s*-electrons with $\uparrow\uparrow$ and $\downarrow\uparrow$ $\vec{f}(\vec{r})$: local magnetization direction due to the *d*-electrons

Conductance



Channel blocking

No domain wall, single domain: $g_{\rm sd}=N_{\uparrow}+N_{\downarrow}\approx 2\rho E_{\rm F}$



Potential only: step of height $\pm\Delta$ T slightly reduced $\epsilon < \Delta/2$: T = 0 $ightarrow
ho\Delta$ blocked channels $\delta q = q_{\rm sd} - q_{\rm w} \simeq \rho \Delta$ ok for thin walls $\lambda \to 0$ → atomic size domain walls

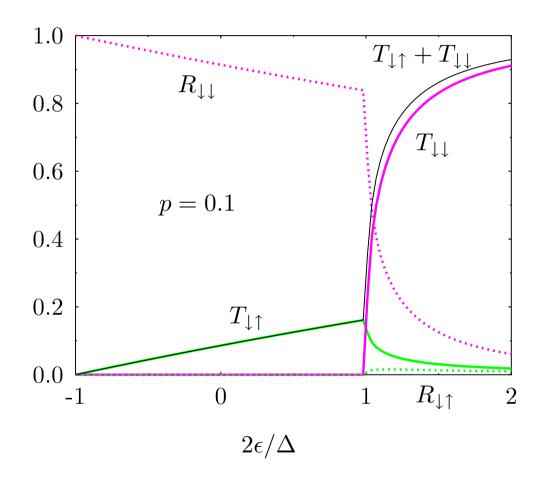
Transmission with spin-flip ($\lambda > 0$ **)**

 $\epsilon \gg \Delta/2$: small correction (Cabrera&Falicov '74) $\epsilon < \Delta/2$: important? *s*-electron at $E_{\rm F}$: $\epsilon > 0$ Spinor $(\phi_{\uparrow}, \phi_{\downarrow})$ $\vec{f} = (f_x, 0, f_z)$ $\epsilon < 0$ $\left[\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} - \frac{\Delta}{2}f_z + \epsilon\right]\phi_{\uparrow} = \frac{\Delta}{2}f_x\phi_{\downarrow}$ Thin wall $p = \left(\frac{\Delta}{2E_{\rm F}}\right)^{1/2} k_{\rm F} \lambda \ll 1$ $\left[\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + \frac{\Delta}{2}f_z + \epsilon\right]\phi_{\downarrow} = \frac{\Delta}{2}f_x\phi_{\uparrow}$ perturbation in the spin-flip $T_{\downarrow\uparrow}(\epsilon) = (C_{\mathsf{wall}}p)^2 \left(1 + \frac{2\epsilon}{\Delta}\right) \quad \rightsquigarrow \quad \frac{\delta g}{a} \simeq \frac{\Delta}{2E_E} \left(1 - (C_{\mathsf{wall}}p)^2\right)$

Shape-dependence $C_{wall} = \frac{1}{\lambda} \int dz f_x$

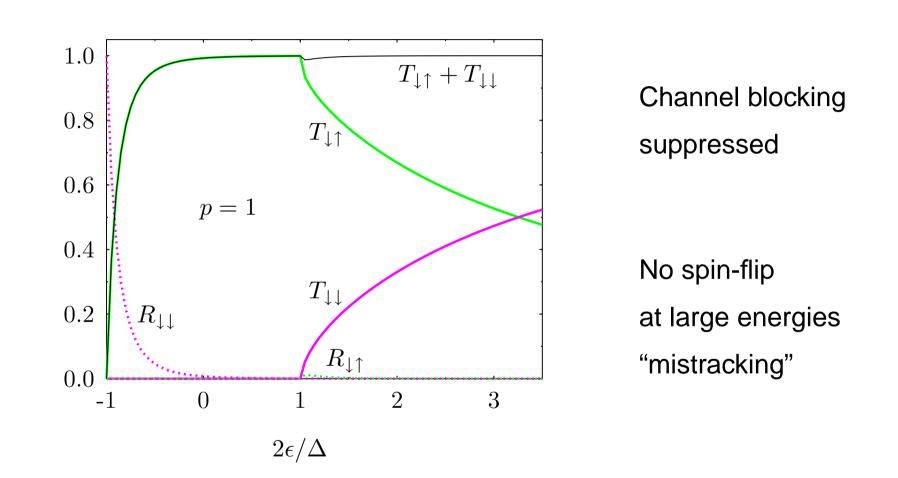
at least for linear $f_z=z/\lambda$ ____

Result for thin domain walls



Different shape: (Bloch wall) $f_z = \tanh(z/\lambda)$ **Recursive GF Channel blocking** persists No spin-flip at large energies

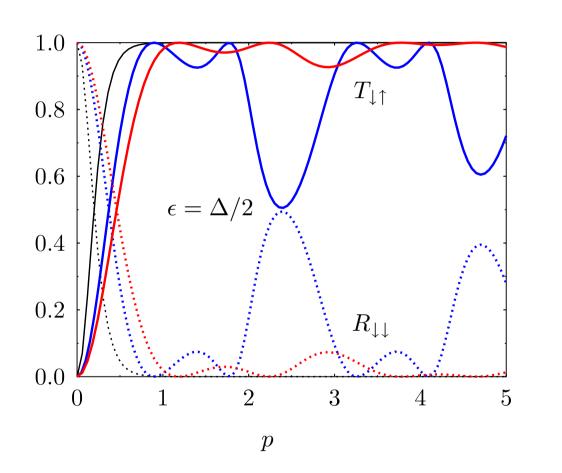
Result for thicker domain walls



Very thick walls $p \to \infty$: $T_{\downarrow\uparrow} \to 1$

"adiabatic transport"

Shape dependence in the intermediate regime



Bloch $f_z = \tanh(z/\lambda)$ linear $f_z = z/\lambda$ trigo $f_z = \sin(\pi z/2\lambda)$

Edges → Fabry-Perot

Conclusions

Channel blocking in ferromagnetic quantum wires with thin domain walls: important in atomic contacts

Transmission without spin-flp persists in ferromagnetic quantum wires with thicker domain walls at higher energy ("mistracking, non-adiabatic") ~> GMR: relevant except for extremely thick domain walls

GMR

Example: $L \approx 20 \mu \text{m} > l_{\text{sf}} \approx 60 \text{nm} > L_{\phi}, l \approx 2\lambda \approx 10 \text{nm}$

