Gated devices using self-assembled monolayers

Nikolai Zhitenev Artur Erbe Zhenan Bao Weirong Jiang Eric Garfunkel Alexei Ermakov

Bell Labs

Rutgers University

- 1. Conductance of molecules: theory and experiment
- 2. Molecular junctions on quartz tips & in planar geometry.
- 3. Scanning probe characterization of SAM and molecule-metal contacts .

Transport through molecules:

Tunneling electron shoots through moleculeTunneling electron dwells on molecule(Coherent transport)(Incoherent transport)

N. D. Lang and Ph. Avouris

PHYSICAL REVIEW B, VOLUME 64, 125323

Example of calculation: J. Heurich, J.C. Cuevas, W. Wenzel, and G. Schon cond-matt 2002

 $|\alpha_a|^2 = 0.007, \ |\alpha_b|^2 = 10^{-11}, \ |\alpha_c|^2 = 0.06, \ |\alpha_d|^2 = 0.02.$

Self-Assembled Monolayers

Break junctions

Experiments: tunable contacts

FIG. 3. Scanning electron microscope picture of a suspended junction before breaking.

FIG. 7. Typical (a) asymmetric (solid line) and (b) symmetric (dashed line) I-V curves recorded at room temperature for gold-T3-gold junctions. Both curves were obtained by averaging over five voltage sweeps.

M. A. Reed et al., Science 1997 C. Kergueris et al, PRB 1999

Scanning probes

0.0

Tip bias (V)

0.5

L. A. Bumm et al., Science 1996

-0.5

-10

-20

-30

-40

-1.0

S. Datta et al, PRL 1997

Z. J. Donhauser et al, Science 2001

X.D. Cui et al, Science 2001

1.0

Experiments: fixed contacts

W. Liang et al., Nature 2002

J. Park et al., Nature 2002

Typical discrepancy between theory & experiment:

FIG. 2. Top: Experimental I-V characteristic of a benzene-1,4-dithiolate molecule measured by Reed *et al.* [1]. Bottom: Conductance of the molecule of Fig. 1 as a function of the external bias applied to the metallic contacts.

calculation (:400)

FIG. 5. Conductance of the molecule of Fig. 1 with one Au atom between the model metal surface and the sulfur for each contact as a function of the external bias applied to the metallic contacts.

"improved" calculation (:20)

Sensitivity to exact contacts configuration:

HOMO-LUMO gap in benzene ring is 6.5 V, In BDT bonded to "top" site is 1.2 V In BDT bonded to "hollow" site – soft gap

Red curve – DOS, Black - transmission

Molecular junctions on tips and in planar geometry using shadow angle evaporation

Low temperature IV curves: steps for all molecules

IV curves: different temperatures

Gate potential effect:

Conductance @ different V_{gate}

What is the origin of the structure?

1. Coulomb blockade on single molecule?

$$E_{\text{Charging}} \sim 1-4 \text{ V}$$

2. Metal cluster with size 5-20 nm?

- 3. Coupling to molecular vibrations?
- 4. Metal island within self-assembled monolayer?

Vibrations:

Molecule	Spacing (mV)	# resonances	# samples	E _{ph} (mV)
T2	38	10	3	36
T3	22	8	4	26.1
TBT	125	6	3	
T 4	35, 45, 24	30, 22, 8	7	20.3

Low frequency vibration:

E

Tunneling through coupled electron-vibration levels:

'Metal' island within SAM

Size of 'metal' island must be determined by molecule-specific delocalization length within SAM (polaron formation?)

Soft gap vs. Coulomb-blockade gap:

Au-molecule-Au junctions:

Au-molecule-2nm Au clusters-Au junctions:

Temperature dependence:

Shadow mask for molecular junctions in planar geometry

Artur Erbe, Bell Labs

Planar junctions: ~100 x 100 nm², P3 molecules

Main surprise: junctions are larger, conductance is still low $< 10^{-8} \Omega^{-1}$

Results: IV curves vary broadly, can be separated in two groups

Scanning probe studies of conjugated molecules and metal-molecule contacts

Jeol JSPM-5200

Lowest current: 1 pA

C8:P3 – 1000:1, RT, Nitrogen

STM images of dithiols:

Solution-based passivation with metal ions: Au, Cu, Pt

to passivate the surface: better structure and IV measurements
to reveal defects & provide height contrast

P3

P3: concentrated Au cyanide, 1min

F1, diluted Au cyanide, 10 s

F1

200 nm

200 nm

- No molecular order yet
- The depth of defects is close to the length of molecule
- Defect density can be low enough not to have shorts on 100 nm scale

Yve Chabal's group at Rutgers:

GI-FTIR spectra of the C–C stretch modes of

T2(14a), T3 (16a) and T4(38a).

Inset shows schematically the orientation of **14a**, **16a** and **38a** on the gold surface.

	P3	F1	T2	Т3	T4
Oxidation Potential	1.38	1.33	1.31	0.98	0.81
Melting point	175- 178	142-143	133-135	143-144	225-226

Contact to molecules:

0.3 nm Au on top of SAM with conjugated molecules

STM tip trajectory: height+

conductance

100x100 nm²

F1

P3 Height 0.3 nm –no bonding

Au diffusion to bonding centers

Height 1.5 nm –good bonding

T3/0.3nm Au

Well-bonding case: 0.3 nm evaporated, ~1.5 nm visible cluster size

P3/0.3nm Au

Poor bonding: 0.3 nm evaporated, most clusters ~0.3-0.5 nm

Conclusions

1. Making molecular device is still tricky – shadow masking, trapping, printing...but possible without shorts

2. Molecule-metal contact remains the least defined link in devices.

Better control of interface during device fabrication:

- atomically flat gold substrates: Au growth on mica, patterning, transfer to other substrates
- Second bond: comparing different metal deposition (evaporation, electrochemistry, stamping)
- correlation between scanning probe techniques and devices

Lucent Technologies Bell Labs Innovations