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Coulomb glasses are systems with states localized by the disorder and long-range interactions between their
particles. We explain the model used to describe these systems and the main features of the Coulomb gap. We
present the numerical algorithms available for their simulations. We analyse tunneling experiments and their
relation to the density of states. We study the mechanism for variable range hopping conductance in these
systems and in particular the role of many-electron correlations. Recent relaxation experiments and the possible
glass transitions are also reviewed.

I. INTRODUCTION

A sufficiently strong disorder is able to localized the elec-
tronic wavefunctions of the system. The states tend to be lo-
calized in energy regimes where the density of states is small,
and delocalized where the density of states is large. The
physical properties of the system are radically different when
the chemical potential is at an energy where states are local-
ized, and when it is at an energy where states are delocalized.
The former case is that of a disordered insulator. The term
Coulomb glass refers to disorder insulators with Coulomb in-
teractions between the localized electrons. The Coulomb gap
is the gap in the single particle density of states (DOS) which
opens up in these systems as a direct consequence of inter-
actions. The small screening capabilities of localized elec-
trons at short distances is responsible for the importance of
interactions in these systems. We review several theoretical
aspects concerning these problems. Detailed reviews of the
early (and fundamental) developments of the Coulomb gap
problems were produced by Pollak and Ortuño (1985) and
by Efros and Shklovskii (1985, see also Shklovskii and Efros
1984). On the aspect of hopping conduction in the presence of
interactions there are reviews by Castner (1991) and by Ionov
and Shlimak (1991), and more recently by Ortuñoet al.(2001)
and by Zabrodskii (2001).

The effects of Coulomb interactions between particles in lo-
calized states was first address by Pollak (1970) and by Srini-
vasan (1971). Both authors predicted that interactions will
produce a deep depletion in the DOS near the chemical po-
tential. This depletion was coined the Coulomb gap by Efros
and Shklovskii (1975), who showed by a powerful argument
that the DOS at the chemical potential must be zero. They
proposed a universal soft gap in the DOS around the chemical
potential atT = 0. The gap is parabolic, linear and loga-
rithmic for 3D, 2D and 1D systems, respectively (see below).
This gap causes a depletion in the density of low-energy long-
distance excitations, while it also enhances the density of short
low-energy excitations, since the probability to find a vacant
site near an occupied site is increased by the interaction. Thus,
it promotes the high frequency hopping conductivity. Efros
and Shklovskii (1985) incorporated the effects of interactions
on the standard AC hopping conductivity model developed by
Pollak and Geballe (1961). The increase in the density of short
low-energy excitations could be responsible for the existence
of plasmon modes in these systems.

Another effect of interactions is the importance of corre-

lated electron motion, which can alleviate the Coulomb gap
in variable–range hopping conduction (Pérez-Garridoet al.
1997) and can produce aging effects in the relaxation pro-
cesses. Pollak (1970), in the first paper on the subject, already
proposed that correlated motion can happen by simultaneous
many-electron hops or by successive one-electron jumps.

In these notes, we first describe the standard model used
to describe Coulomb glasses. We also analyze the systems
to which this model can be applied. In subsequent sections
we will concentrate on the main aspects of Coulomb glasses:
tunneling experiments, hopping conduction and relaxation ef-
fects. Most of the interest in the Coulomb glass has been
transport and the glassy state. The first is interesting be-
cause experimental work is predominately on conductivity,
and the second is interesting because of certain similarity of
the Coulomb glass to spin glasses, neural networks, combina-
torial optimizations, and other related problems.

II. MODEL AND DENSITY OF STATES

The only regime in which localized interacting systems are
relatively well understood is deep in the insulating phase,
where quantum energiest arising from tunnelling are much
smaller than the other important energies in the problem,
i.e. Coulomb interactions1/〈r〉 and random energy fluctu-
ationsW . The first of these corresponds to the condition
〈r〉 � a, which in turn is compatible with the Hubbard en-
ergyU ∼ 1/a being much larger than the intersite Coulomb
interaction1/〈r〉 ≡ Nd. In the above,a is the localization
radius,N the concentration of sites andd the dimensional-
ity. We assume that the number of electrons is roughly half
the number of sites. The approximation appropriate for these
conditions are (Pollak and Ortuño 1985):

1. The tight–binding approximation.

2. t is taken into account only to the lowest contributing
order, i.e. t0 for the calculation of energies andt1 for
transition rates (see below).

3. The large value of the Hubbard energy is accounted for
by allowing only occupation of sites by zero or by one
electron.

4. Spin is neglected since exchange energies are propor-
tional tot2.
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Under these approximations, it has become standard to
use the following tight–binding Hamiltonian to describe the
Coulomb gap:

H =
∑

i

εini +
∑
i<j

ninj

rij
, (1)

whereεi is the random energy on sitei, chosen from a box
distribution with interval[−W/2,W/2]. ni is the occupation
number of sitei; it can take the values 0 and 1 only, to account
for the large value of the Hubbard energy.rij is the distance
separating sitesi andj. Usually, the number of electrons is
considered to be half the number of sites. The sites can be
arrange on a lattice or at random. We consider cyclic boundary
conditions whenever it is posible. We takee2/r as our unit of
energy andr = (4πN/3)−1/3, whereN is the concentration
of sites, as our unit of distance. We also assumekb = 1 so that
temperatures and energies are measured in the same units.

It is natural to define the single–particle energies,Ei, as

Ei = εi +
∑
j 6=i

nj

rij
. (2)

They correspond to the energy of an electron in sitei when the
positions of the other electrons are determined by the set of
occupation numbers{nj}. The one–particle density of states
(DOS) is defined as the density of energiesEi of equation (2)
when the set{nj} corresponds to the ground state occupation.

If an electron is transferred from a sitei to an empty sitej,
the change in energy of the system is

∆ji = Ej − Ei −
1
rij

. (3)

The last term is due to the electron–hole interaction. For the
ground state to be stable, the excitation energy∆ji in equation
(3) must be positive, which implies a minimum separation be-
tween sites with different occupancies in the ground state and
energies close to the Fermi level:

rij >
1

Ej − Ei
. (4)

If the states are assumed to be homogeneously distributed
through space, this minimum separation leads to a bound on
the DOSN(E) of the form (Efros and Shklovskii 1975)

N(E) ∝ |E|d−1 (5)

for d > 1, d being the dimensionality of the system. This
decrease of the DOS around the Fermi level is known as the
Coulomb gap. A selfconsistent extension of the original cal-
culation determined the proportionality constants in Eq. (5)
(Efros 1976) and also arrives at a logarithmic divergence for
the 1D case (Raikh and Efros 1987).

The Coulomb gap is universal. It does not depend, for ex-
ample, on the degree of disorder or on the filling factor. It
is always tight to the Fermi energy. Unlike in one–particle
gaps, one cannot avoid it by changing the average occupation:
the gap moves with the Fermi energy. Finally, one should re-
member that the density of excitations cannot be obtained in

this case as a convolution of the density of states, since the
excitations energies, given by Eq. (3), depend on the distance
between sites. In the case of excitations between sites located
in the Coulomb gap, and necessarily situated far apart from
each other, the density of excitationsg(E) is of the form

g(E) ∝
(

E +
1
r

)2d+1

. (6)

For shorter distances, so that one or the two sites involved
in the excitations lie outside the gap, we find an expression
similar to Eq. (6), but with a smaller exponent.

III. SYSTEMS AND MATERIALS

The Coulomb gap model has been applied by now to most
systems with wavefunctions localized by disorder. It was orig-
inally developed for compensated lightlydoped semiconduc-
tors, which still constitute an extremely good source of ex-
perimental data concerning the Coulomb gap (Castner 1991,
Zhanget al. 1993, Pignatel and Sanguinetti 1993, Itohet al.
1996, 2004, Moreiraet al.1998, Zabrodskiiet al.1998, Bog-
danovichet al.1999, Massey and Lee 2000, Satoet al.2000,
Sandowet al.2001, Helgrenet al.2002).Amorphous semi-
conductors and alloys are other types of materials where
Coulomb effects are important (Voegeleet al. 1985, Abke-
meier et al. 1992a, 1992b, Xionget al. 1999, Teizeret al.
2000, Aokiet al.2000, Ladieuet al.2000, Helgrenet al.2001,
Takaiet al.2003). Recently, Coulomb effects have also been
associated with the hopping behavior of quasicrystals (Suet
al. 2002, Yuet al.2004, Fanget al.2004).

High–TC superconductors can be turned insulator by dif-
ferent mechanism such as irradiation or change of dop-
ing. In the insulating region, these materials usually ex-
hibit the Coulomb form of VRH. Examples of this type of
materials are YBa2Cu3O7−δ (Milliken and Koch 2001), and
Nd2−xCexCuO4−δ (Woodset al. 2002) Coulomb effects are
crucial in the insulating form of the following strongly corre-
lated systems: the switchable mirror yttrium hydride (Royet
al. 2002), the alloy LaCo1−yNiyO3 (Hammeret al. 2004),
Sr2Y0.5Ca0.5Co2O7 (Yamaura et al. 2001), LaSr2Mn2O7

(Chenet al.2003).
Conductivity measurements ongranular films show over

many decades the temperature dependence characteristic of
Coulomb glasses. This has been interpreted by some as a
manifestation of the Coulomb gap (Entin–Wohlmanet al.
1983, Pollak and Adkins 1992), although unphysical values of
the parameters are obtained with the standard theory (Adkins
1989). Others interpreted the previous conductivity behaviour
as due to charging energies (alias the Hubbard gap) (Sheng
1992). For the Coulomb gap to exist in granular metals (in the
dielectric regime), a substantial fraction of the grains must be
charged in the ground state. We presented strong arguments
(Cuevaset al. 1993) that the large variation in energy of the
highest occupied level of neutral grains ionizes a large portion
of the grains. Such variations are due to their random shapes
and small sizes. Resistance fluctuations in granular Al char-
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acteristic of Coulomb glasses have been recently reported by
Bielejec and Wu (2001).

Evidence for the Coulomb gap in 2D has been found insil-
icon MOSFET’s and GaAs/AlxGa1−xAs heterostructures
both without magnetic field (Trembleyet al. 1990, Masonet
al. 1995, Van Keulset al. 1997, Khondakeret al. 1999) and
in the quantum Hall regime (Ebertet al. 1983, Briggset al.
1983, Murzinet al. 2001, Shlimaket al. 2004). Claims of
its existence have been made in amorphous CrSiO thin films
(Elefantet al.1991), Mo-C films (Leeet al.1992), the photo-
conductor Cd0.91Mn0.09Te:In (Terryet al. 1992), amorphous
In/InOx films (Kim and Lee 1993), carbon films (Besoldet al.
1997), bismuth films (Adkins and Astrakharchik 1998), beryl-
lium films (Butko et al. 2000) and arrays of Ge/Si quantum
dots (Yakimovet al.2004).

The Coulomb gap has also been claimed relevant for the
hopping conductivity ofelectrically conducting polymers
(Yoonet al.1995, Granholmet al.1997, Kodamaet al.2001,
Junget al. 2001) and stannic oxidesnanowires (Ma et al.
2004).

The model can also be applied to correlated transport of
vortices in superconductors(Fisheret al. 1991, T̈auberet
al. 1995, Sefriouiet al.2001).

IV. COMPUTATIONAL METHODS

Given the intrinsic difficulty of the Coulomb gap problem,
computer simulations have always played a very important
role in its study. At the beginning, most numerical simula-
tions of the Coulomb glass consisted primarily of finding the
ground state of the system, and considering from there on only
one–particle transitions. More recently, methods were devel-
oped to obtain an almost complete set of low–lying states of
the Coulomb glass, which allows a much more detailed con-
sideration of many–body effects.

The algorithms for the study of single–particle properties
look for pseudo-ground states by relaxing the energy of the
system through one- and two-electron transitions. They are
usually based on the method of Baranovskiiet al. (1979),
generally improved by the use of cyclic boundary conditions
(Davieset al. 1982, 1984). The standard procedure is as fol-
lows. The initial occupation by the electrons is chosen at ran-
dom, and then transitions that lower the total energy of the
system are performed in a systematic way. The occupancies
of single sites are changed until all occupied sites have neg-
ative energies and all empty sites have positive energies, thus
establishing a Fermi level. In this part of the procedure the
total number of particles is not fixed. After a Fermi level is
established, one- and two-electron transitions that lower the
energy of the system are performed and it is ensured that the
system is stable against all these transitions. Möbius et al.
(1992) did the most systematic calculation of this sort. The
results show a relatively good agreement with the theoretical
predictions, Eq. (5), although some deviations from universal-
ity are found at very low energies.

The drastic increase in computer power and the new empha-
sis on correlation effects have facilitated the implementation

of numerical methods to obtain complete sets of low–lying
states of Coulomb glasses. Mochena and Pollak (1991a) used
an approximate renormalization procedure to obtain low–
energy configurations for the first time. Talamantes and Es-
pericueta (1993) used the simulated annealing for this aim.
Schreiber and Tenelsen (1993) designed a modified Metropo-
lis algorithm to store the intermediate configurations visited
by the system in its weighted random walk. Möbius and Pol-
lak (1996) repeatedly relaxed the system from randomly cho-
sen initial states and then perform a systematic evaluation of
the ‘neighborhood’ of the low–energy states. They also stud-
ied the implications of many-electron correlations on the spe-
cific heat. We have developed an algorithm that combines in-
dependent one–electron transitions to form complex many–
electron excitations, which allows the system to relax quickly
and to jump easily from one valley to another in configuration
space (Ṕerez-Garridoet al.1997).

Dı́az-Śanchez and M̈obius designed a very efficient method
to obtain the low–energy many–particle configurations (Dı́az-
Sánchezet al. 2000). This method combines local search,
thermal cycling (M̈obius et al. 1997), and construction of
“neighboring” states by local rearrangements of the charges.
In the first step an initial set of metastable states is created
by a local search algorithm. The second step improves this
set of states by means of the thermal cycling method, which
combines the Metropolis and local search algorithms. The
third step completes the set of states by systematically inves-
tigating the surroundings of the states previously found. The
method has been improved recently with a freezing procedure.
This consider several initial configurations which are relaxed
via one– and two–electron processes. The sites that present
the same occupation in the different metastable states reached
are considered frozen and a new iteration is repeated a smaller
number of active sites until the system is manageable for an
exact solution.

V. TUNNELING CONDUCTANCE

Tunneling conductance is a standard experimental method
to obtain the single–particle density of states (McMillan and
Mochel 1981, Whiteet al. 1985, 1986). Such experiments
for a Coulomb glass should not be interpreted directly be-
cause the inevitable tunneling electrode screens partially the
long–range Coulomb interaction. We investigated the effects
of such screening on the density of states. In 2D the density
of states remains roughly linear with energy, but starting from
a finite value at the Fermi level. We found that the tunneling
conductances measured by White, Dynes and Garno (1985,
1986) in 1D and 2D granular metals could be interpreted in
terms of the Coulomb gap (Cuevas and Ortuño 1992, Cuevas
et al.1992).

A linear gap in the density of states has been observed by
Butko et al. (2000) and by Bielejecet al. (2001) in ultrathin
beryllium films.

In 3D systems the situation is more complicated since the
degree of screening depends on the distance to the electrode
and we must define a local DOS which depends on this dis-
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FIG. 1: Rescaled tunneling conductance of amorphous GdSi ver-
sus bias voltage at different magnetic fields atT = 100 mK. From
Bokachevaet al. (2004).

tance. The screening by the electrode can be simulated by
reflecting the Coulomb glass through the electrode, and re-
versing the sign of all the reflected charges. The screened ef-
fective interaction potential is then equal to (Green and Pollak
1992)

Vij =
1
rij

− 1
r̃ij

, (7)

wherer̃ij is the distance between sitei and the mirror image
of site j. The local density of states of the layer closest to
the surface shows an almost linear density of states near the
Fermi level (Cuevaset al. 1994). As we go deeper into the
bulk the density of states smoothly tends towards the standard
parabolic behaviour. The effects of screening by an electrode
has been used as evidence for the existence of the Coulomb
gap in hopping conduction as we will see.

Massey and Lee (1995, 1996, Lee and Massey 1999) in
an impressive series of tunneling experiments have claimed
a direct observation of the Coulomb gap in Si:B. It is impor-
tant that this observation is correlated with aT 1/2 hopping
conductivity. The results close to the transition still could
be explained with a classical Coulomb gap and a diverging
length scale. A gap in the tunneling conductance of amor-
phous GdxSi1−x has also been interpreted as a Coulomb gap
(Teizeret al. 2000). The application of a magnetic field can
drive a metal–insulator transition in this material which can be
monitored through the tunneling density of states (Bokacheva
et al.2004), which changes for from square root in the metal-
lic side to parabolic in the insulating side as can be appreciated
in figure 1.

VI. HOPPING CONDUCTIVITY

At low temperatures, transport in system with localized
states is dominated by incoherent hops between states. Usu-
ally, phonons are the driven mechanism of the hops. In this
hopping regime, Miller and Abrahams (1960) replaced the
transport problem in the extremely localized phase by a ran-
dom resistor network in which sitesi andj are connected by
the resistance

Ri,j = c exp
{

2rij

ξ

}
exp

{
Ei,j

kBT

}
(8)

where rij is the distance between sites andξ is the local-
ization length. Ei,j is the energy difference|Ej − Ei| if
the states are on different sides of the Fermi level,EF, and
max{|EF − Ei|, |EF − Ej |} otherwise. In this extremely lo-
calized case, each state can be associated with a site and it
decays exponentially as a function of the distance to this site.
The spatial factor in Eq. (8) arises from the phonon coupling
between states. In most treatments and numerical simulations,
the random resistor network problem is solved by a percola-
tion procedure and the total resistance of the sample is ap-
proximated by that of the single most resistive hop in the con-
ducting path due to the broad distribution resulting from Eq.
(8).

In hopping transport, we find an activated regime at not too
low temperatures and a variable–range hopping regime at very
low temperatures. We will briefly describe the implications of
the Coulomb gap on activated conductivity and, in the next
section, we will study in more detail the important regime of
variable range hopping. The activated regime corresponds to
the high temperature part of hopping transport and the DC
resistanceR(T ) is given by

R(T ) = R0 exp
{

ε3
kBT

}
(9)

ε3 is the activation energy, called in this way by historical rea-
sons, the subscript 3 referring to hops between localized states
(instead of hops between localized states and the mobility
edge, for example). The activated regime is characterized by a
fixed percolation path –theT dependence arises from the cor-
responding dependence of the most difficult hop in the path.
Above the transition temperature, between variable range hop-
ping and activated hopping, the most favourable conduction
path is fixed, as increasing the temperature can no longer re-
duce the hopping range by allowing hopping to higher ener-
gies. It is often assumed that this critical path corresponds to
nearest neighbour hopping, but this is not the case when the
wavefunctions spread over a few impurities.

For both interacting and non–interacting systems there ex-
ists an activated regime above a certain temperature, but there
are two important differences in the behavior of the activation
energyε3 in the two systems:

• The rangeσmax/σmin of conductivitiesσmax > σ >
σmin corresponding to activated behaviour, is clearly
and systematically bigger for the interacting than for the
non interacting case, and
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• ε3 varies appreciably witha/〈r〉, the ratio of localiza-
tion radius to site spacing, in non–interacting systems
but is quite independent ofa/〈r〉 in interacting systems.

These differences can be understood as arising from dif-
ferent physical causes for activation in the two types of sys-
tems. In non–interacting systems, the reason for activation
at elevatedT is hopping to a band edge, while in interacting
systems the reason is a band gap (or rather pseudo–gap). An
edge in the density of states stops the mechanism of variable
range hopping when hop lengths can no longer be reduced
by hopping to higher energies. This happens when the hop-
ping energy becomes comparable to the bandwidth. But at
this point the simple activation picture breaks down, so the
range of activation is per force limited. In interacting systems
the activation arises from the gap generated by Coulomb re-
pulsion between electrons (the Coulomb gap). This energy
must be overcome in transport. It can be reduced by collec-
tive motion of electrons which is important only for excitation
energies well below the Coulomb gap, thus leaving a wide
regime for activated behavior. Pollaket al. (1994) gave a
quantitative discussion of the width of the activated regime
for both interacting and non–interacting systems. The value
of the activation energy observed in the numerical simulation,
one third of the Coulomb gap, agrees very well with a theory
based on sequentially correlated hopping (Ortuño and Pollak
1983), and is generally observed in impurity conduction with
small impurity concentration.

VII. VARIABLE RANGE HOPPING

In the hopping regime, at very low temperatures the most
effective conducting path depends on the interplay between
the spacial and energy penalties of the hopping resistances.
As the temperature lowers it is more advantageous to jump
further in order to minimize the energy penalty. This temper-
ature dependent activation energy regime is called variable–
range hopping (VRH) and it appears in both non-interacting
and interacting systems.

In the non–interacting case, Mott (1968) deduced the fol-
lowing well–known expression for the DC conductivityσ in
the VRH regime

σ = σ0 exp{− (T0/T )α} (10)

where the exponentα = 1/(d + 1) depends on the dimen-
sionality of the system. Efros and Shklovskii (1975) modified
Mott’s argument to include the effects of Coulomb interac-
tions by considering the specific form of the single–particle
density of states in the Coulomb gap. They found that the
conductivity in this case is of the form

σ = σ0 exp{− (T0/T )1/2} (11)

with the exponent1/2 independent of the dimensionality of
the system. In this case, the characteristic temperatureT0 is
given by

T0 = β
e2

εkba
(12)

a denotes the localization radius of the electrons.β is a nu-
merical coefficient that depends on dimensionality. From the
usual percolation theory for hopping transport one obtains
β ≈ 2.8 for 3D (Shklovskii and Efros 1984) andβ ≈ 6.2
for 2D systems (Nguyen 1984). The applicability of such a
theory to the Coulomb glass has been controversial because it
neglects many–body effects, in particular the correlated mo-
tion of electrons.

We calculated numerically the conductivity by determining
the critical transition rate in a percolation path as a function of
temperature (Ṕerez-Garridoet al.1997). The current carrying
path in real space was obtained from percolation in configura-
tion space, where each ‘site’ corresponds to a configuration of
the entire system. The effective resistance between two con-
figurationsI andJ is equal to

RI,J = R0 exp
{

2
∑

r

ξ

}
exp

{
EI,J

kBT

}
(13)

whereEI,J=max{EI , EJ} and
∑

r is the minimum posible
hopping distance connecting the two configurations. A sta-
tionary current corresponds to a closed path in configuration
space, subjected to the condition that an electron is injected
from one ‘electrode’ and extracted into the other. Both col-
lective and sequential correlations are accounted for by this
method. We found that, at low temperatures, the paths in-
corporate at least two–electron transitions, and that the or-
der of the transitions is very important. The inclusion of
many–electron effects leaves Eq. (11) valid, but reducesT0

(Pérez-Garridoet al. 1997). Eq. (12) is often used to ob-
tain a from experimental values ofT0. Since our value of
β is quite different from the value used (Nguyen 1984), the
values ofa thus obtained must be reinterpreted. The weak-
ness of the calculation lies in the small sample sizes necessar-
ily considered (larger sizes would drastically reduce the tem-
perature range studied for the same number of many-electron
configurations). We have preliminary results from a new cal-
culation with better statistics and larger sample sizes which
indicate that the reduction ofT0 is smaller than we thought.
Many–electron process are marginally better than single elec-
tron transitions, assuming the classical model of the Coulomb
gap. The fluctuations of the localization length of individ-
ual wavefunctions could tilt the balance in favour of many–
electron transitions. We believe that Monte Carlo simulations
of DC conductivity in the VRH regime of interacting sys-
tems are not fast enough with present computers to properly
reach the range of temperatures of this regime (Tsigankov and
Efros 2002). The theoretical work of Meir (1996) arrives at
similar results than our simulations. Many body effects on
conductivity were also considered by Tenelsen and Schreiber
(1995), who, instead of using a percolating approach, stud-
ied the eigenvector of the transition matrix between configura-
tions which corresponds to the stationary current. We believe
that the activated behaviour that they obtained corresponds to
a single percolation path, as can be deduced by their bottle-
necks, and the consideration of larger samples should result
in a temperature–dependent activation energy.

A typical example of the behavior of the conductivity in the
VRH regime in the Coulomb glass is shown in figure 2 (af-
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FIG. 2: σ/T 1/6 as a function ofT−1/2 for yttrium hydride. From
Royet al. (2002).

ter Royet al. 2002). The data correspond to yttrium hydride
and the disorder is produced by different degrees of ultravio-
let irradiation of the samples. The authors fit the data with a
preexponential proportional toT 1/6, and claimed that this is
due to quantum critical fluctuations. The extrapolation of the
data intersect at a common point, but this is not in the vertical
axis, it corresponds to a negative value ofT−1/2.

The most important information of the previous experiment
is the value of the characteristic constantT0. Some works
obtain values ofT0 in agreement with one-electron theory,
but the general trend is a continuous increase in the num-
ber of papers finding values ofT0 in disagreement with this
theory and reporting evidence about the importance of many-
electron hops. Zabrodskii and Andreev (1993) and Zabrodskii
et al.(1998) measured the dependence of conductivity on tem-
perature for moderately doped neutron–transmutation–doped
Ge:Ga. They found aT−1/2 behaviour, withT0 smaller than
the theoretical prediction of Efros and Shklovskii by an or-
der of magnitude. On the same material, but uncompensated,
Itoh et al. (1996, 2004) and Watanabeet al. (1998) obtained
a value ofT0 in good agreement with this prediction. The
results of Moreiraet al. (1998) follow the same trend. On
the contrary, Pignatel and Sanguinetti (1993) found a value
of T0 much smaller than the theoretical predictions for un-
compensated Si:As. To a similar conclusion arrive Aokiet
al. (2000) in amorphous silicon–germanium Agrinskaya and
Kozub (2000) in compensated CdTe, and Satoet al. (2000) in
boron–doped diamond.

Massey and Lee (2000) present experimental evidence of
correlated motion involving many electrons in a Coulomb

glass. They correlate the appearance of a Coulomb gap in tun-
neling experiments with theT−1/2 behaviour in hopping con-
duction. This correlation has recently been proven by Sandow
et al. (2001) on n-type germanium. Massey and Lee (2000)
also found that DC transport excitations in Si:B have a lower
Coulomb energy than single charges introduced by tunneling.

In the quantum Hall regime, far away from the peaks, the
conductivity is exponentially small as compared toe2/h and
the conduction mechanism is by variable range hopping be-
tween localized states. Interactions play a significant role, and
T−1/2 behaviour is observed. The broadening of the peaks
of the longitudinal conductivity with temperature can be ex-
plained within this model (Polyakov and Shklovskii 1993).
The characteristic temperatures extracted from the conductiv-
ity curves and the broadening of the peaks are generally small,
for which the standard expressions of Efros and Shklovskii for
the conductivity imply large localization radii. We believe that
the experimental results can be more adequately explained
with the reduction inT0 due to many-electron hops. Mason
et al. (1995) found a Coulomb gap in a 2D electron system in
silicon MOSFET’s at zero magnetic field. Their results imply
again a smaller value of the characteristic temperatureT0 than
predicted by theory.

The prefactor in the expression of the conductivity in the
VRH regime is another interesting problem specially in 2D
systems. Often it is found a prefactor close to the quanta of
conductancee2/h (Shlimak et al. 1999, Shlimak and Pep-
per 2001, Yakimovet al. 2004). This has been interpreted
as evidence of hopping assisted by electron-electron scatter-
ing rather than by electron-phonon one (Aleineret al. 1994).
In figure 3 we plot the resistance in gatedδ–doped GaAs as a
function of the dimensionless temperature(T/TES)−1/2 (af-
ter Shlimaket al. 1999). We note that the data scale very
well and that the prefactor coincides with the quanta of con-
ductance. Shlimak and Pepper (2001) found that the pref-
actor in the Coulomb gap regime is twice that in the Mott
regime. Experimental results by Khondakeret al. (1999) in
GaAs/AlxGa1−xAs and by Butkoet al. (2000) in ultra-thin
Be films show similar trends: a value ofT0 lower than pre-
dicted by one-electron theory and a prefactor of the order of
e2/h. The universality of the prefactor and its material inde-
pendence was taken again as evidence for a phononless hop-
ping mechanism. We believe that these results could be due to
geometrical effects in the percolation problem.

Another important evidence of the Coulomb glass are the
experiments on variable range hopping conduction near a
metallic electrode which screens the interactions at lengths
larger than the distance between the electrode and the sample
(Hu et al.1995, Van Keulset al.1997, Yakimovet al.2000).
This results in a crossover fromT−1/2 to Mott behaviour as
the temperature is decreased and so the relevant length scale
becomes larger than the screening length. Once more the char-
acteristic temperature generally obtained in theT−1/2 law is
smaller than expected. We would like to mention that the pre-
vious crossover is in the opposite direction than the standard
one, which has been widely studied (Castner 1991, Nguyen
and Rosenbaum 1997, Nguyenet al.1998).
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FIG. 3: Resistivity as a function of(T/TES)−1/2 for δ–doped GaAs.
From Shlimaket al. (1999).

VIII. RELAXATION EFFECTS

Glassy behavior and, in particular, non-ergodicity are other
characteristic manifestations of Coulomb interactions in sys-
tems with localized states. The very slow transition rates of
many-electron hops important in conductivity are also respon-
sible for a very slow relaxation of the system to a state of ther-
modynamic equilibrium at low temperatures.

Davies, Lee and Rice (1982, 1984) were the first to predict
the possible existence of a glassy electronic phase in localized
systems with electron-electron interactions and established a
possible analogy between these systems and spin glasses. Pol-
lak and Ortũno (1982) and Gr̈unewaldet al. (1982) soon real-
ized the non-ergodic properties of these systems, which were
clearly emphasized in the review (Pollak and Ortuño 1985).

The time dependence of relaxation processes was first stud-
ied by Mochena and Pollak (1991b), using the recently ob-
tained sets of low–energy configurations. Later Schreiber,
Tenelsen and Vojta (1996) improved the corresponding sim-
ulation method. Our group found a power law dependence
of energy relaxation in agreement with experimental results
(Pérez-Garridoet al. 1999). This dependence seems to be
very robust, since it is obeyed by interacting systems with both
long-range and short-rage interactions and by non-interacting
systems. The longest relaxation time for a given sample can
be extremely long, it fluctuates a lot and in general is longer
for the stronger interaction.

The series of experiments by the group of Ovadyahu on
In2O3−x (Ben–Chorinet al. 1993, Ovadyahu and Pollak
1997, 2003, Vakninet al. 1998, 2000, 2002, Orlyanchik and
Ovadyahu 2004) have induced a renewed interest on the prop-
erties of electronic glasses. Slow relaxation rates had previ-
ously been observed by Adkinset al. (1984) and by Monroe
et al. (1987). The glassy behavior is impressively reflected as
a local minimum at the ‘cool-down’ gate voltage in the con-
ductance versus gate-voltage sweeps (Vakninet al. 2002). In
figure 4 we show an example of such type of results. The

FIG. 4: Conductance as a function of gate voltage at different times.
The dependence of the conductance atVg = 0 on time is plotted in
the lower–right inset. Upper–left inset: the same data as in the main
figure after substraction of a linear part and normalization. From
Vakninet al. (2002).

conductance of a InOx sample is plotted as a function of gate
voltage at different times. As the gate voltage is continuously
varying, the system is losing memory and the dip in the con-
ductance, around the gate voltage ”at equilibrium”, decreases.
The main evidence for the relevance of electron-electron in-
teractions in this experiment comes from the dependence of
the width of the dip with the density of electrons.

In the lower–right inset of figure 4 we plot the change in the
conductance atVg = 0 as a function of time. We see that the
change in the conductance is logarithmic,∆G ∝ log t. This is
the natural relaxation law for Coulomb glasses as can be better
appreciated in figure 5 (after Ovadyahu and Pollak 2003). It
represents the conductance of indium oxide as a function of
time, measured after the gate voltage has been changed from
50 to−50 V. The sample was previously kept for six days at
Vg = 50 V.

In the aging experiments, the system is first equilibrated at
a given gate voltage for a long time, then is kept at a differ-
ent voltage for a waiting timetw before the final switch back
to the original gate voltage. The relaxation time is measured
from the moment of this final switch. The conductance is in
general a function oft and tw and very often depends only
on the ratiot/tw. When in addition this dependence only in-
volves the first power oft/tw we refer to this behavior as sim-
ple aging. This is the case shown in figure 6 where the conduc-
tance as a function oft/tw has been plotted (after Ovadyahu
and Pollak (2003)). Part (a) corresponds to a voltage change
of 100 V and part (b) to a change of 400 V. The characteristic
logarithmic relaxation is valid up to times of the order of the
waiting time.



8

FIG. 5: Conductance as a function of time after the gate voltage was
change from 50 to−50 V. From Ovadyahu and Pollak (2003).

FIG. 6: Conductance as a function oft/tw for two sets of aging
experiments. In part (a) the difference in the gate voltages applied is
100 V and in part (b) it is 400 V. In both cases the data for different
waiting times collapse in a single curve. From Ovadyahu and Pollak
(2003).

Aspects of the glassy behavior have been captured by the
simulations of Yu (1999) and Grempel (2004). Yu (1999) an-
alyzed the time dependence of the formation of the Coulomb
gap and claimed that the dip in the conductance as a function
of gate voltage, observed in the previous experiments, is a di-
rect reflection of the gap in the density of states, which needs
very long times to form. Grempel (2004) found simple aging
in the relaxation of Coulomb glasses at low temperatures. Tsi-
gankovet al.(2003) did not find aging in their simulations, but
claimed that many–particle hops between different pseudo–
ground states, not posible to consider in their program, are
responsible for the glassy behavior. They deduce the impor-
tance of the slow relaxation processes through the dispersion
of the values of the conductivity in different pseudo–ground
states. They claimed that they are very similar in the strong
disorder case, due to its universality, and quite different in the
weak disorder limit (but with strong localization in any case).

Typical glassy effects have also been observed in ultrathin
films of metals well in the insulating side of the thickness
tuned superconductor–insulator transition (Martinez-Arizala
et al.1998, Hernandezet al.2003). These authors observed a
logarithmic relaxation of the resistance, aging and hysteretic
effects in response to changes in gate voltage. Bielejec and
Wu (2001) have measured resistance relaxation and fluctu-
ations in the normal state of quench-condensed granular Al
films. They found ultraslow non–exponential relaxation, hys-
terisis and large resistance fluctuations which decrease in fre-
quency as1/f and increase in size as the temperature is low-
ered. They argue that these fluctuations are a direct manifes-
tation of correlated many-electron hops of the Coulomb glass.
1/f noise in the resistivity has been theoretically predicted
by Kogan (1998), who argue that it is due to intervalley tran-
sition, and by Yu (1999), who extended Mott’s argument for
variable range hopping to relate fluctuations in the density of
states to fluctuations in the resistivity.

The critical behavior of the Coulomb glass is still contro-
versial. Davies, Lee and Rice (1982) addressed the problem
for the first time and studied a 3D Coulomb glass with diago-
nal disorder and sites on a regular lattice. They found a peak
in the specific heat and a kink in the susceptibility which could
be interpreted as a phase transition, although the analog of the
Edwards-Anderson order parameter seemed to be non-zero at
any finite temperature. Vojta (1993) found a lower dimension
between 3 and 4 for the spherical model of the Coulomb glass,
which includes diagonal disorder. On the other hand, Grannan
and Yu (1993) found a transition in 3D systems without diag-
onal disorder. The critical temperature obtained was much
lower than the characteristic energies of the problem. Vojta
and Schreiber (1994) pointed out the crucial role of diagonal
disorder on the possible transitions and they claimed that the
results of Grannan and Yu are only valid in the absence of
such a disorder. We performed numerical simulations of 1D,
2D and 3D systems with and without diagonal disorder (Dı́az-
Sánchezet al. 2000). These are only valid at very low tem-
peratures, far from any posible critical temperature different
from zero. We found that with diagonal disorder there are no
transitions in any of these dimensions, while without disorder
it seems to be a line of critical points up to a given tempera-
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ture for 2D and 3D systems. As compared with spin glasses,
the long–range character of the interaction may decrease the
lower critical dimension. The simulations by Grempel (2004)
in 2D systems without diagonal disorder are compatible with
a glass transition at zero temperature. Müller and Ioffe (2004)
predicted a

Efros’s group has proposed in a series of controversial pub-
lications (Efroset al.2000, Menasheet al.2000) that the oc-
cupied sites of a 2D Coulomb glass change with time even at
very low temperatures.

Pastor and Dobrosavljevic (1999) predicted the existence
of a glass phase for a mean-field model of interacting spinless
fermions in the presence of disorder. This phase is character-
ized by a pseudo-gap in the density of states and disappears
when quantum effects are important. This bring us up an old
and interesting question: to what extent are the existence of
the Coulomb gap and of the glass phase interconnected?

IX. FUTURE DIRECTIONS

The proper inclusion of quantum effects continues to be
the main challenge in our understanding of these systems.
This is crucial to understand for example the metal–insulator
transition in 2D disordered systems (Kravchenkoet al. 1994,
Popovíc et al. 1997, Abrahamset al. 2001, Lewalleet al.
2002).

There is a growing experimental evidence for the exis-
tence of an effective electron temperature higher than the sam-
ple temperature in VRH experiments at very low tempera-
tures. This requires a mechanism, different from the electron–
phonon coupling, to transfer energy between electrons. It
could even be the driving force in VRH under some circum-
stances (Fleishmanet al.1978). A posible candidate are plas-
mons in Coulomb glasses. Their existence was suggested by
Shahbazyan and Raikh (1996), who showed that they are not
posible in non–interacting localized systems, but they could
exist in a Coulomb gap as a consequence of the increase of
low energy excitations. We are presently studying numer-
ically this problem. From the experimental side, Zhanget
al. (1998) already proposed an empirical hot electron model
to explain non–ohmic effects in doped Si and Ge. Gershen-
sonet al. (2000) and, independently, Marnieroset al. (2000)
claimed that at sufficiently low temperatures VRH transport
is assisted by electron–electron interactions and that the re-
sistance is solely related to the electron temperature. Similar
conclusions have been extracted for arrays of quantum dots
(Yakimovet al.2004).

The previous problem is also related to quantum creep, the
nonlinear response of disorder systems with many metastable
states to an applied electric field (Nattermannet al. 2003).
Experimental results showing the field dependence predicted
for quantum creep have been reported by Ladieuet al. (2000)
and by Yuet al. (2004).

An interesting problem is the effects of Coulomb correla-
tions on the shot noise in the variable–range hopping regime
(Kuznetsovet al.2000, Korotkov and Likharev 2000, Safonov
et al.2003)

X. CONCLUSIONS

Evidence for the existence of Coulomb glasses is very
strong in many different types of materials. They could even
represent the prototype of systems with states localized by
disorder at very low temperatures. Tunneling experiments
and variable range hopping conductivity are excellent com-
plementary tools for their study. The general trend is that
Coulomb gaps are more strongly alleviated in conductivity
than in tunneling. This could be produced by many-electron
effects, which would be responsible for the lowering of the
characteristic temperature in variable range hopping. The ef-
fects of screening by metallic electrodes should clarify many
of these questions.

Many-electron correlations are also responsible for ex-
tremely low relaxation rates and the lack of ergodicity in
Coulomb glasses. These systems are excellent for the study
of glassy properties in general, and aging in particular, since
they can be excited in many posible ways.
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Cuevas, E., Ortũno, M., Ruiz, J., Gasparian, V., and Pollak,

M., 1994, Philos. Mag. B,70, 1231.
Davies, J. H., Lee, P. A., and Rice, T. M., 1982, Phys. Rev.

Lett.,49, 758.
Davies, J. H., Lee, P. A., and Rice, T. M., 1984, Phys. Rev. B,

29, 4260.
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