Quantum Noise
L S Levitov (MIT)

Windsor Summer School, August 2004
e Noise and counting statistics for electron transport:

— Background on noise exp/th: (i) electron transport; (ii) optics

— Scattering matrix approach (intro)

— Noise in mesoscopic systems: current partition, binomial statistics
— Generating function for counting statistics

— Passive current detector; Keldysh partition function representation

e Tunneling — Odd vs even moments, nonequilibrium FDT theorem
— Third moment Ss
— Comparison to Glauber theory of photocounting

e Driven many-body systems

— Many particle problem — one particle problem (the determinant formula)
— Coherent electron pumping

— Phase-sensitive noise, ‘Mach-Zender effect’, orthogonality catastrophe
— Coherent many—body states — nolse- m|n|m|zmg current pulses

— Comparison to quantum optics



NOISE INTRODUCTION

Fluctuating current I(t) (electrons or photons)

Correlation function Go(7) = I(¢t)I(t + 7) (time average, stationary flow)
Temporal correlations due to quantum statistics and/or source

Photons counted individually, destroyed at counting

Electrons counted in a flow, without being pulled out of a many-body
system, no single-electron resolution yet (ensemble)

Noise spectrum S(w) = [~ e~ “7S(r)dr,

—00
—2

where S(7) = ((I(®)I(t+ 7)) =I)I[(t+71)—1
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PHOTON CORRELATIONS
Joint photocount probability of detecting photons at times ¢ and ¢ + 7:

Go(t) = (EETt + ) ED(t +1)ED (@) = It +7) :)
where : ... : is normal ordering of quantum fields (no re-emission!)

Normalized second-order correlation function go(7) = 632(7')/72

For a coherent field E(®)(t) — ¢(*)(t) (a c-number), thus g, = 1, while
for a generic classical field go(7) > 1 (super-Poissonian noise).

For a field obeying Gaussian statistics with zero mean, g»(0) = 2:
(BEDWET (@ + EW @ + )EW () = (BED@®EM(E + n)(ET( +
TVEW (1) + (B ED @))(ET(t + 1) EW (¢ + 7))

g2 (O) chaotic — 292 (O) coherent

Photon bunching (Hanbury-Brown and Twiss): e.g., ga(7) = 1 + el
(Lorentzian spectrum), with v~ = 7. the correlation time (go(7 > 7.) —

1).

Antibunching for nonclassical light, g2(7) < 1, sub-Poissonian noise.
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PHOTON COUNTING, CLASSICAL THEORY

Radiation of intensity I(¢) makes a counter click with probability Ap(t) =
al (t)dt, where o« is the detector sensitivity.

Assuming independence of photocounts at different times, the probability
P, of n counts between ¢t and ¢’ is

Py(t,t') = H (1—Ap(t;)) = exp (— Z Ap(tz-)) = exp (—a/t I(ti)dti)

t<t; <t/ t<t; <t/

Pt t) =S apt") T (1-Ap(t:) :/t oI (+")dt" exp (—a/t I(ti)dti)

t! t<t; <t/
1 ¢! " t!
P,(t,t) = — (/ aI(t")dt") exp (—a/ I(ti)dti)
’I’L' t t
Example: constant intensity radiation, I(t) = I, Poisson distribution
Po(T) = Ly exp(—n), i =IT
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PHOTON COUNTING, QUANTUM THEORY

Generalize classical expression (Glauber theory):
P,(T) = (: 5(aTI)" exp(—aT1l) :)
> T » T (—
where [ = 7 [ I(t)dt = 7 [ B (£)EH(t)dt

Note: operator normal ordering : ... : and (...) = Tr(...p)

Assumptions: short detector reset time, no re-emission

For a single mode, I = a'a, ,u(T) aT"
m . n+m
P (T) = (: Z(pata)" exp(—pata) ) = 32,50 "Lt ((a®) ™ "a™*")

Ex I: for a coherent state aly) = n|¢> obtain Poisson distribution

’I’L

P,(T) = Zrexp(—n), 7 = pln|?

Ex Il: for a number state a™a|n) = n|n) obtain binomial distribution
Prcn = Ciip™(1— p)" =™, O =

m!(n—m)!
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IF YOU ARE AN ELECTRON

Never Swim
Alonhe
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ELECTRON TRANSPORT

Coherent elastic scattering (mesoscopic systems, point contacts, etc.)
— scattering matrix approach

Interactions (nanotubes, quantum wires, QHE edge states) — Luttinger
liquid theory, QHE fractional charge theories

Quantum systems driven out of equilibrium (quantum dots, pumps,
turnstiles, qubits)

Current autocorrelation function:

Galm) = (IO (¢ +7) + 1(t +7)1())

(Note: no normal ordering, electrons counted without being destroyed)
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MESOSCOPIC TRANSPORT (CRASH COURSE)

A quintessential example (point contact): 1d single channel QM scattering
. 2 . . .
on a barrier, _2h_m¢” + U(x)1 = et). Scattering states in asymptotic form:

Functions Functions
olkx uk(x) r Vk(X) —ikx

-~ ) e
- {12 glkx 1r (2 ik <
irl/2 e—IkX > 11 < irl/2 e|kx

Express electric current through ¢¥(x) =), (&kuk(x) + Bkvk(x))
j(2) = 2= (— 9T ()0 (2) + hec) = e 3, e TFITEE gt (1), ()

A k+k o . (a] t ivrt\ (a
_ E : i(k—k")x k! k
i) c— “om © (b:,) (—i rt r— 1) (bk> (z>0)

Time-averaged current (at eV < Ef only energies near Er contribute):
(j(z)) = evr >, t{afar) + (r - 1)(bfbr) = evpt [ 55 [nr(e) — nr(e)] =
(et/h) [ [f(e —eV) — f(e)]de = <tV

62

Ohm's law: I = gV (IR = V') with conductance g = 1/R = 5t (Landauer)
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Multiterminal system, reservoirs, scattering states

Vit T
iVr o Vit

Scattering manifest in transport — quantization of ¢ in point contacts
of adjustable width (many parallel channels which open one by one as a

function of Vj44.)

2
g:%zntn

Conductance quantum:
2¢2/h =1/13kQ~!

adapted from van Wees et al. (1991)

Single channel S-matrix: S = ( ) (optical beam splitter)

CONDUCTANCE (2675

(I 1
-20 =1.3 -1.6
GATE VOLTAGE (vals)
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Electron beam partitioning

Incident electrons transmitted /reflected with probabilities ¢, r =1 —¢;

At T' = 0, bias voltage eV = ur, — pur, transport only at up < e < ur:
i) Fully filled Fermi at € < ur, pg; (i) All empty states at € > ur, ugr.

2 .
Mean current I = 2eNy_, g = ef:; t< = <{V (two spin channels)

Noiseless source (zero temperature) — binomial statistics with the number
of attempts during time 7: N, = (ur, — ur)7/2nh =eV1/h

Transmitted charge (Q) = 2eN.7 = (2e?/h)V T — agrees with microscopic
calculation!
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MESOSCOPIC NOISE

Find noise power spectrum for a single channel conductor (no spin):
Su = ((3(t)7(0) + 7(0)3(t)))e " dt

_|_ .
Sy —i(ep—ep)t [ Qs t vt ag
J(t) Zk’k’ cvre (b;:,) (—z\/ﬁ r—1 b

2

s = Buvtewnste e (([(3) (Lovm +7) ()] )
= 3, or(([tlafar — bfbi) + ivri(agby — bian)] x [h.c.]))

Averaging with the help of Wick's theorem, obtain
2
So =< [de [t*(n(1 — nr) + nr(l — ng)) + rt(ne(l — ng) + np(l — ny))]

For reservoirs at equilibrium, with ny r(e) = f(e F %eV), have

2

So = [tQkT + rteV coth

=[®

eV] ) gkT eV < kT, thermal noise;
2kTS re2geV eV > kT, shot noise

Note: So(eV > kT) = re*I — Shottky noise, suppressed by » = 1 — ¢ (Lesovik '89)
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Noise due to electron beam partitioning

7

Se00 @ S=ls
LIRS N

Incident electrons with ur < € < ur, transmitted/reflected with probabilities

t,r=1—1t(

Noiseless source (zero temperature) — binomial statistics with the number
of attempts during time 7: N, = (ur, — pr)7/27h =eV1/h

Probability of m out of IV, electrons to be transmitted:
P, = CtmeN=m (O = N!/m!(N — m)! — binomial coefficients)

Mean value: m = Zév mP,, = t0;(t +r)Y =tN
Variance: dm? = m2 —m?* = (t0;)*(t +r)N —m?* = rtN
Variance = (1 —t) x Mean

— agrees with microscopic calculation!
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Noise in a point contact, experiment

Conductivity, G [e¥h]

Moise, 8 [10-2 A4Hz)

Gate ‘-’ullnl.:r\"_ vl
1)

FIG, 2. Naoise spectral density S(p) and normalbized hnear
conductance & vs gate voltuge V. The noise is measured for
Vor = 00.5,1,1.5,2, and 3 m¥. Imsct: Dependence of the first
peak height (same scale as in main fipure) on injection vollage
Ve The dashed straight line is-the predicted behavior, The
conductance is shown for Ve = (0.5, 1.5, and 3 mV.

Shot noise summed over channels, Sp = ) 2—;’ftn(l — t,) — minima on
QPC conductance plateaus (adapted from Reznikov et al. '95)
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Example: photon beam splitter with noiseless source

Consider n identical photons, in a number state |n), incident on a beam
splitter.

() = (0 ) (5
n) = 2 (af,)" 0}

(\/_a’out + Z\/_bout) |0>

- \/%(Zz g " mCmtm/Q (n m)/2( out) (bjut)n_m|0>)

_Zm non— m(ng)l/th/2T(n—m)/2|n7n_m>

Probability to transmit m out of n photons is P,,, = C*"t™r™ ™™ — binomial
statistics
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SHOT NOISE HIGHLIGHTS (FOR EXPERTS)

e Noise suppression relative to Scottky noise So = el (tunneling current). In a point
contact Sy = (1 — t)el (Lesovik '89, Khlus '87)

e Multiterminal, multichannel generalization; Relation to the random matrix theory;
Universal 1/3 reduction in mesoscopic conductors (Buttiker '90, Beenakker '92)

e Measured in a point contact (Reznikov '95, Glattli '96)
e Measured in a mesoscopic wire (Steinbach, Martinis, Devoret '96, Schoelkopf '97)

e Fractional charge noise in QHE (Kane, Fisher '94, de Picciotto, Reznikov '97, Glattli
'97 (v = 1/3), Reznikov '99(v = 2/5))

e Phase-sensitive (photon-assisted) noise (Schoelkopf '98, Glattli '02)
e Noise in NS structures, charge doubling (Kozhevnikov, Schoelkopf, Prober '00)
e Luttinger liquid, nanotubes (Yamamoto, '03)

e QHE system; Kondo quantum dots; Noise near 0.762/h structure in QPC (Weizmann
group, recent)

e Third moment S35 measurement (Reulet, Prober '03, Reznikov '04)
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EXPERIMENTAL ISSUES, BRIEFLY

e Actually measured is not electric current but EM field. Photons
detached from matter, transmitted by ~ 1 m, amplified, and detected;

e Matter-to-field conversion harmless if there is no backaction:

e Device + leads + environment. Engineer the circuit so that the
interesting noise dominates (e.g. a tunnel junction or point contact of high
impedance)

e Detune from 1/ f noise

e Limitations due to heating and detection sensitivity
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FULL COUNTING STATISTICS
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COUNTING STATISTICS GENERATING FUNCTION
Probability distribution P,, — cumulants my = ((n*))

m1 = 1, the mean value;
mo = 0n2 = n2 — w2, the variance:
mg = on3 = (n — )3, the skewness;

Generating function x(\) = > e"** Py, (defined by Fourier transform),

In [x(V)] = Y (0"

k>0

While P,, is more easy to measure, x(A) is more easy to calculate!

The advantage of x(\) over P, similar to partition function in a ‘grand
canonical ensemble’ approach

Ex I: Binomial distribution, P, = Cyp™(1 — p)"~™ with N the number
of attempts, p the success probability — y(\) = (pe’* + 1 — p)¥

Ex II: Poisson distribution, P, = Z;e™", x(\) = exp(ii(e* — 1))
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COUNTING STATISTICS, MICROSCOPIC FORMULA |
WANTED: A microscopic expression for the generating function

X(A) =2, P(q)e** for a generic many-body system
Spin 1/2 coupled to current: Hei spin = Hei(p — aos, q)

Counting field a = —%fcé(:c — xo) measures current through cross-section
r = Xy

Ex. Coupling to classical current H = %agl(t); time evolution of spin:

1) = =002 1), | 1) = 02 ¢>

Spin precesses in the XY plane, precession angle 6(t) = )‘fo t")dt'
measures time-dependent transmitted charge

Disclaimer:  We attempt to clarify microscopic picture of current
fluctuations, not to describe realistic measurement
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COUNTING STATISTICS, MICROSCOPIC FORMULA I

In QM current is an operator and [I(t), I(t')] # 0 — Need a more careful
analysis!

Spin density matrix evolution (ensemble-averaged):

(0) iH_\t_—iHt (0)
p(t) = (e_thpoeth) — . 'O,TT © <€ Ae (© A >€lpT¢
<€1HAte_ZH_At>elp¢T) p¢¢)

<--->el = Trel(---pel)

Examine the classical current case: spin precesses by 6, = An for n
transmitted particles.

(0) —i6n (0) (0) ixny (0)
p e ""p p (e™")p
P(t) — Zn Py, ( ienTT(O) (0) N) — ( " (0) (0) N)

—iAn
€ Pt Py (e )by Py

Identify (e?9(t)) = (e™*9) with x()), the generating function
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MAIN RESULT:
X () is given by Keldysh partition function

YO\ = <TK exp (-i ] ﬁA(t’)dt’> >

with the counting field A(f) = £\ antisymmetric on the forward and
backward parts of the Keldysh contour Cy; = [0 — ¢t — 0]

Properties:

1. Normalization: » P, =1, since x(A=0) =1
2. Py= [e (N >0
3. Charge quantization: x(A) is 2m-periodic in A (for noninteracting
particles)
Features:

— Describes not just spin 1/2 but a wide class of passive charge detectors,

such as heavy particle H = p?/2M — X\f(t)q at large M (no recoil);
— Minimal backaction, measurement affects only forward scattering:
H,0.]=0;

— Good for generic many-body system

L Levitov, August 2004, Windsor Summer School Quantum Noise 20



VARIETY OF TOPICS

e Tunneling problem. S5, S3 Nonequilibrium FDT theorem. Relation with
Glauber theory of photocounting.

e Driven many-body systems. For noninteracting particles (fermions or
bosons) x(A) can be expressed through time-dependent one-particle S-

matrix. Pumps, coherent current pulses, photon-assisted noise — next
lecture

e Mesoscopic noise in normal and superconducting systems (Nazarov,
Nagaev)

e Mesoscopic photon sources (Beenakker)

e Entangled EPR states, counting statistics (Fazio)

e Spin current noise (Lamacraft)

e Backaction of spin 1/2 counter (Muzykantsky)

e Role of environment (Kindermann)

e Quantum information /entropy (Callan & Wilczek, Vidal, Kitaev)

e Orthogonality catastrophe, Fermi-edge singularity
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COUNTING STATISTICS OF TUNNELING CURRENT

Focus on the tunneling problem (generic interacting system). Tunneling

Hamiltonian A A A A
H=Hi1+Hs+V
where 7—21,2 and V = j12 + j21) describe leads and tunneling coupling). The

counting field A(¢) is added to the phase of the tunneling operators Jya, Jo1
as

T = e2 O J1o(t) + e 3O Jyy (1)
with Ag<t<r = A. (Justified using one-particle tunneling problem.)

Transform the bias voltage into a phase factor, Jis — Jise iVt

Jo1 — J21€°Vt. In the interaction representation, write

X(A) = <TK exp <27€; V,\(t')(t’)dt’> >

using cumulant expansion, as a sum of linked cluster diagrams.

L Levitov, August 2004, Windsor Summer School Quantum Noise 22



The lowest order in the tunneling coupling j12, j21 is given by linked clusters
of order two. Obtain y(A\) = eV, where

1 A A
A) = —— %7{ <TKV>\(t/)(t’)VA(tu)(t”)> dt'dt”
2 Co,t

More explicitly,

W) = (e =1)Ni9(t) + (e =1)Nasy1(2)

Nio = // J21 J12 t")ydt'dt” Ny = // J12 J21 t'")) dt'dt"”

with Nj_>k = n,,t the mean particle number transmitted between the
contacts in a time ¢ (cf. Kubo formula).

Resulting counting statistics is bi-directional Poissonian:

X(A) = exp [(€* —1)N1_a(t) + (€7 —1)Nosy1(t)]
True Iin any interacting system, in the tunneling regime.
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NONEQUILIBRIUM FLUCTUATION-DISSIPATION THEOREM

(iN)F (34"

The cumulants are generated as In x(A) = >~ ; ~5; v with ¢o the
' 0

tunneling charge. Obtain

N1z — N21)t, k odd
(3g*) = gf 12772
(n12 + n21)t, k even

Setting £k = 1,2, relate nq13 &= ny; with the time-averaged current and the
low frequency noise power:

nig — n21 = I/qo, mMni2+ N2 = 52/613.
Relate the second and the first correlator:
Sy = (6¢°)/t = (N1o2+ Nasy1)/ (N1o2— Naoy1)gol = coth(eV/2kgT)qol

Nyquist for eV < kT, Schottky for eV > kgT.

A universal relation — holds for any I — V' characteristic (linear responce
not required, ¢f. FDT in equilibrium)
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Application in metrology

Primary Electronic Thermometry
Using the Shot Noise of a Tunnel

Junction | I
. u.ﬁwli:.m.?'-fﬂmwﬁﬂ!ﬂlwnwﬂmﬂ* et
Lafe Spietz,’ K. W. Lehnert,'2 L. Siddiqi," R. J. Schoelkopf’ _
i : T P,
We present athermometer based on the eledricalneise from a tunnel junction G, I%W%# Jﬁ-""-

In this thermameter, temperature is related to the voltage across the junction 3 | o s O L €
by a relative noise measurement with only the use of the electran dharge, 2% Eﬁ“;ﬁﬁﬂ?%ﬂmﬁwﬁ#

Boltzmann's constant, and assumption that electrons in a metal obey Fermi- 1 R O i B S - S
Dirac statistics. We demonstrate proof-of-concept operation of this primary a9 | g ?;ﬂrwr.ﬂq*w‘ﬁtﬂ'#.ﬂ#uﬁhi.
thermometer over four orders of magnitude in temperature, with as high as

01% accuracy and 0L0E% precision in the range near 1 kelvin The self- B L1 =
calibrating nature of this sensor allows for 2 much faster and simpler mea- x=eV/2kT

surement than traditionsl johnson noise thermometry, making it potentially Fig- 3. Normalized junction noise plotted versus
attractive for metrology and for general use in cryogenic systems. normaized voltage at various temperatures.
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(GENERALIZED SCHOTTKY FORMULA FOR Sj

Relate the third cumulant (d¢°) = (dg —5_q)3 = S3t with (dq) = It.
Obtain a Schottky-like relation for the third correlator spectral power Sjs:

S5 = (64°)/t = GBI
— independent of the mean/variance ratio (n12 — n21)/(n12 + n21).

Since Ni_,9/Ny_y1 = nia/ne; = exp(eV/kpT) (detailed balance), the
relation S5 = g2 holds at any voltage/temperature ratio.

?

oA
= °

Good for using shot noise to determine particle charge in Luttinger liquids
and fractional QHE (heating limitation: Ss = qoI requires eV > kgT).

A possibility to measure tunneling quasiparticle charge at temperatures
kBT 2 eV
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The 3-rd correlator in terms of the counting distribution profile:
(g) = It = mean; ((6¢*)) = Sot = variance; ((dg°)) = Sst = skewness

107"

10 “}

Counting probability
H
o

10 ¢ 1
! - - - Gaussian '
ll ‘\
10° . ; ‘ ‘ ‘ ‘ ‘ ‘ \
0 5 10 15 20 25 30 35 40
Transmitted charge q/e*

The third moment determines skewness of the distribution P(q) profile. This is illustrated by a bi-directional Poissonian distribution

and a Gaussian with the same mean and variance. For S5 > 0 the peak tails are stretched more to the right than to the left.

Measurement of Ss:
Tunnel junction (B. Reulet, J. Senzier, and D.E. Prober, Phys. Rev. Lett. 91, 196601
(2003)); point contact (M. Reznikov, unpublished)
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TUNNELING SUMMARY::

1) The counting statistics of tunneling current is bi-directional Poissonian,
universally and independently of the character of interactions and thus of
the form of I — V' dependence.

2) Nonequilibrium FDT relation So = coth(eV/2kgT)qol

3) Shottky-like relation for the third correlator S3 = g3 at both large and
small eV/kgT.
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PHOTOCOUNTING AS ‘TUNNELING OF PHOTONS’

A system of photons interacting with atoms in a photodetector:
H=H,+H.+V

with the free EM field and atoms in the detector described by H, and H,,
V= Z (uj,ke%)‘b;r-ak + u;‘f,ke_%ka};bj)
gk
a “tunneling operator” which describes photon-atom interaction (photon
absorption and atom excitation). Use canonical Bose operators of photon

modes aj, and the operators b; describing atom excitation.

Note: (i) Bose statistics OK; (ii) “Tunnel current’ unidirectional (no photon
re-emission); (iii) Counting field inserted in V.
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FINDING Xx(A) FOR PHOTODETECTION

Yi(A) = <u_—;(t) Z/l,\(t)>, Us(t) = Texp (-i /0 t VA(t’)dt’> |

The task S|mpI|fied by the weakness of the photon-atom interaction
— ‘Markov apprx’ analogous to our 2-nd order cumulant apprx in the
tunneling problem. Only pairwise averages of atom operators are needed:

(bI(E)bys(¢)) = 0, (b;(t)bT,(')) = 7;6(t —t')8;; with T; a microscopic ‘click’
time (the J-function has width ;).

Main difference from tunneling: photon coherence time can be much longer
than the measurement time ¢. Need to account for the long coherence
times.

Method: average over atoms in the partition function x(\), while keeping
the photon variables free.

Consider xsra(A) — xe(A ) with T] < A <<t Teoh. EXpand:
Us(t + A) (1 "y f”A ydt — L [P @) T d dt") U (1)
(similar for U~} (t + A)).
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COMPARISON TO GLAUBER THEORY
0N = (etsa) = eW)/A = Dol = 1) (U E)alarth )

with m, = Y. 7j|u; x| the detector efficiency parameters.

Glauber formula is the solution of this Eqn:
=TIxP0), D0y = (s exp (mt(e™ — Dalar) + )
k

with : ... : the normal ordering symbol and (...)p = Tr(...px) (different
photon modes are independent).

Recall: normal ordering = no re-emission

Counting probability of m photons in one mode:

.'.

t m
pgf) _ M< : (a;rﬁak)me_nktaka"’ Vg

m)!
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LARMOR CLOCK FOR QM COLLISION

Nuclear reaction, tunneling, resonance scattering, etc. — How long does it take?

Add a fictitious spin 1/2 to particle: U(z) — Uesr = U(z) + sw(z)o,
with fictitious field w(x) nonzero in the spatial region of interest.

Potential barrier Resonance scattering

}

i e o

Spin precesses about the Z axis during collision: precession angle measures time.
Analysis similar to passive detector (one particle!) yields

x(w) = Tr(S-'S,p) = /e_inP(T)dT

with P(7) interpreted as probability to spend time 7 in the region of interest

. —eg+iv/2 . N iy
Resonance scattering: S(e) = % gives x(w) = 5_2+ij X ziﬁﬁﬂ with

detuning A = 2(e — €p). Obtain positive or negative probabilities!
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COUNTING STATISTICS OF A DRIVEN MANY-BODY SYSTEM
Time-dependent external field and scattering (noninteracting fermions)

We obtain the generating function in the form of a functional determinant
in the single-particle Hilbert space:

Y(\) = det (i +n(t,t) (T,\(t) _ 1))

Aj

. by N
Th(t) = ST, (0)S\(t),  Sa(t)ij = €T S(t)ie” "
with reservoirs density matrix n(t,t')r—o = 27T(t_it,+z.5) = <o e—ic(t=1) 3
time-dependent S-matrix S(t) and separate \; for each channel

\\2 fyy 3
1, =
4

N

Time-dependent field (voltage V' (%), etc.) included in S)(t). No time delay:
S(t,t") ~ S(t)o(t — t') (instant scattering apprx. — nonessential)
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SIMPLE AND NOT-SO-SIMPLE FACTS FROM MATRIX ALEBRA
Useful relations between 2-nd quantized and single-particle operators:

N
A — F(A) = Z Aijajaj
ij=1
(mapping of matrices N x N —s 2% x 2V),

Tre' ™ = det (1 + eA)

— fermion partition function Z = Tre= P with —8H =T'(A))
Note: For A = 0 obtain 2% = 2V

Tr (eF(A)eF(B)> = det (1 + eAeB)

Tr (eF(A)eF(B)eF(C)> — det (1 + eAeBeC)

Proven using Baker-Hausdorff series for In(e*e' ) (commutator algebra for

X, Y the same as for I'(X), T'(Y))
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DERIVING THE DETERMINANT FORMULA 1

Write c.s. generating function as
Y(\) = Tr (pelem_ﬂe—mﬂ)
with Hin =T'(hay), p = e P*0. Obtain
x = Z 'det (1 + e‘ﬁhoeih—ﬂe‘ih/\t) — det [(1 + e‘ﬁhO)_l (1 + e‘ﬂ’”‘oeih—ﬂe—ihﬂ)]
Finally, with n = (1 + eﬁho)_l, have

X(\) = det (1 — @+ ne-rtema)

L Levitov, August 2004, Windsor Summer School Quantum Noise 35



DERIVING THE DETERMINANT FORMULA 11

Relate forward-and-backward evolution in time with scattering operator:

At

Thus (t'|eth-2te=hat|t) = S 1(£)S\(t)(t —t')
with |t) a wavepacket arriving at scatterer at time t.

x(A) =det (1 — 7 +nS",S))

A single-particle quantity — Fermi-statistics accounted for by det!

(Generalize to bosons: det(1 + ...) — det(1 —...)™ 1)
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A MORE INTUITIVE APPROACH: DC TRANSPORT

For elastic scattering different energies contribute independently:

W =TT, e 1 =ew (¢ fnxmz7),

(quasiclassical dV = dedt/2mh).

\\2 iy 3
1 =
-Z 4

3

Sum over all multiparticle processes:

Xe()\) — Z 6%()\2'14—...+>\ik—>\j1—...—)\jk)Pi

ila'“)ikzajla"')jk

1r--slk |j1a°"7jk ?
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with the rate of k particles transit 1, ...,%2, — 71, ..., J& IS given by

21—[ (1 —n;(e an

1# 1=1q

P_ Sjla ajk
X253

’Ll,...,’l:k|j1,.. J ‘ (AEE

with Sfll fk’“ antisymmetrized product of £ single particle amplitudes.

This is equal to our determinant (Proven by reverse engineering)
Positive probabilities!
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POINT CONTACT (BEAM SPLITTER): 2 X 2 MATRICES

Xe(A) = (1 = 1) (1 = ng) + (|811]> + 222721851 |2)ny (1 — ny)
+ (|S92]? + e%(*l‘*Q)\SmIQ)na(l —n1) + |det S|°ning, (1)
with nl,g(e) = f(E:F%GV) and Sl’j IS unitary: |Sli‘2+‘s2i‘2 = 1, |det S| = 1.

Simplify: xc(A) = 14+t(e* —1)n1 (1 —ng) +t(e™* — 1)na(1 — nq) Here
t = |S21]? = |S12|? is the transmission coefficient and A = Ay — Ay.

At T =0, since np(e) =0 or 1, for V> 0 have

eM+1—t, e <ieV;
Xe()‘) — 1
].7 |€| > §€V

Full counting statistics: x-(\) = (e*p + 1 — p)V{") — binomial, with the
number of attempts N(7) = (eV/h)T.

Similar at V' < 0, with e* — e~ (DC current sign reversal).
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Note: the noninteger number of attempts is an artifact of a quasiclassical
calculation. More careful analysis gives a narrow distribution Py of the

number of attempts peaked at N = N(7), and the generating function as a
weighted sum )\ Pnxn(A). The peak width is a sublinear function of the

measurement time 7 (in fact, N2p—¢ o In7), the statistics still binomial,
to leading order in t.
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STRATEGIES FOR HANDLING THE DETERMINANT

Two strategies:

1) For periodic S(t), in the frequency representation 7 is diagonal,
n(w) = f(w), while S(t) has matrix elements S, ,, with discrete frequency

change W' — w = n ), with Q the pumping frequency. In this method the
energy axis is divided into intervals n{) < w < (n 4+ 1), and each interval

is treated as a separate conduction channel with time-independent S-matrix
S w-

2) The determinant can also be analyzed directly in the time domain:
Oy In y(\) = Tr [(1 +n(Ty — 1)) aga}

with T)(t, 1) = S" Y (£)S\()d(t — 1), n(t,t') = Lt — ¢/ +i6) 7%
The problem of inverting the integral operator R =1+ n(T) —1) is the

so-called Riemann-Hilbert problem (matrix generalization of Wiener-Hopf,
well-studied, exact and approximate solutions can be constructed)
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PHASE-SENSITIVE NOISE
Charge flow induced by voltage pulse V(¢) in a point contact

A pulse V (t)corresponds to a step A6 in the forward scattering phase:

s = (o2 ) =5 V(i

— o0

The mean transmitted charge g = teAO /2w — independent of pulse shape
In contrast, the variance d¢? exhibits complex dependence:

_ et012 e [12
5(] 1 — t // dtldtQ 012 = —/ V(t,)dt,
1 _ 2 h tq

Gives §¢2 oc (1 — cos AB) In(tmaz/to) + const — periodic in the pulse area
and log-divergent (¢4 ~ h/ksT)

Interpret the log as orthogonality catastrophe: long-lasting change of
scatterer at Af # 27n causes infinite number of soft particle-hole excitations

Shot noise is phase-sensitive — Mach-Zender effect in electron noise
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MINIMIZING UNHAPPINESS

1—exp (z e %V(t’)dt’) .
GRS dt1dts — min

— an interesting variational problem, solved by pulses of integer area 27n:

Find noise-minimizing pulse shapes: [[

1=1...n

Lorentzian pulses (overlapping or nonoverlapping)

Degeneracy: §¢2 = e%*t(1 — t)n, the same for all ¢;, 7

Addicted

e}

{ -"J:z’sag::pin £88
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COHERENT TIME-DEPENDENT MANY-BODY STATES

Variance of transmitted charge §¢2 = e%t(1 —t)n — independent of pulse
parameters t;, 7;, same value as for binomial distribution with the number

of attempts n

Binomial counting statistics from the functional determinant (exactly
solvable Riemann-Hilbert problem):

X(\) = (te* +1—-1)"

Interpretation: pulses ~ independent attempts to transmit charge
Coherent current pulses:

Noise reduced as much as the beam splitter partition noise permits
Similarity to coherent states (QM uncertainty minimized)

Analogs in quantum optics?
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MEASUREMENT OF PHASE SENSITIVE NOISE

Instead of a train of pulses (which is difficult to realize) used a
combination of DC and AC voltage, V = Vpe 4+ Vac cos 2t — oscillations
in noise power (Bessel functions), while DC current is ohmic:

08 2
— =2 D tw(l —twm) | > Ji(Vac/E)8(eVe — nhQ)

8VDC - T

Observed in mesoscopic wires (Schoelkopf '98), point contacts (Glattli '02)

VIEW LETTERS 16 MarcH 1998
2
& 10
= T3
L
— 5
s = 4
E b} Experiment E 3
= .
£ _ §E
; |ILI_:I€ER!I!E >
=2 2] =
4] ;— — 20 GHz E
™ g = 25GHz
5 S eeeee Theory L
= 4 i
E] 3 1 1 ] 1 L= H
E 20 15 - 5 0 510
% Power (dB)
-ﬁ FIG. 2. Differsntal noise g5, /dV) at a voltage of ~40 gV
s 4 function of the applied microwave power. Solid curves
show the measwed nose for microwave fequences of 20

= € . and 25 GHz, while the dashed lines are calculated according

Voltage (UV) v Eq.{1). For high applied frequencies, the data show a

FIG. 1. Theoretical and experimental variation of differen- damped oscillatory behavior consistent with the expacted Bessz|
tial shot noise vesus voltage, with 20 GHz ac excitation. functioms.
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CASE STUDIES

(i) Voltage pulses of different signs (b ivanov, H-W Lee, and LL, PR 56, 6839 (1997) )

h 2’7’1 27’2
V(t) = - -~
(t) e ((t—t1)2+712 (t—t2)2+722)

give rise to the counting distribution

iAo i 2] — 22
YO =1—2F + F(e* + e ™), F=t1—1t) |
1 — 2
with 219 = t19 + ¢7y 2. The quantity A = |...|* is a measure of pulses’
overlap in time: A = 0 (full overlap), A =1 (no overlap).

Note: x(A) factorizes for nonoverlapping pulses

(i) Two-channel model of electron pump ((D vanov and LL, JETP Lett 58, 461 (1993) )

S(r) = rot B+ be 7 A4 aet?”
T) = — o — - .

! T/ A + qge QT _ B — be’LQT )
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which is unitary provided |A|?> + |a|®> + |B]> +|b|> = 1, Aa + Bb = 0
(time-independent parameters).

For T'=0 and puy, = pupr the charge distribution for m pumping cycles is
described by

m

x(A) = (1 —|—p1(ei>‘ —1) —i—pz(e_“‘ — 1))

with p; = |a|*/(|a]* + |b|?) and p2 = [b|*/(|al? + |b]?): at each pumping
cycle an electron is pumped in one direction with probability pq, or in
the opposite direction with probability ps, or no charge is pumped with
probability 1 — p; — po.

Also can be solved at i;, # pr: more complicated statistics.
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COUNTING STATISTICS OF A CHARGE PUMP
DC current from an AC-driven open quantum dot. (Exp: Marcus group '99)

5
GaAs Al Ga; As —1um

The time-averaged pumped current is a purely geometric property of the

path in the S-matrix parameter space, insensitive to path parameterization
(Brouwer '98, Buttiker'94).

Noise dependence on the pumping cycle? Bounds on the ratio noise/current?

Here, consider generic but small path Vi(t), Va(t):
l
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COUNTING STATISTICS FOR A GENERIC PUMPING CYCLE

Focus on the weak pumping regime, a small loop in the matrix parameter
space: S(t) = eA(V)S(0) with perturbation A(t) (antihermitian, trATA < 1)
and S is the S-matrix in the absence of pumping.

Expand In y()\) = det (i +n(t, 1) (ST_ L()Sa () — 1)) in A(t):
Iny = %tr (ﬁ (A2_)\ + A%\ —2A_>\A>\)) — %tr(ﬁBA)2

with Ay () = €193 A(t)e=193,  By(t) = Ax(t) — A_\(2)

Using 73._, = fip—o, separate a commutator:

Inx(\) = %tr (R[Ax, A_5]) + % (tr (7°BY) — tr(2By)?)

The commutator is regularized as the Schwinger anomaly (splitting points,
t', t" =1t +e€/2), which gives

; f At/ ") tr (A () AN(F) — AN(E) A\ (1)) dt
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Average over small e (insert additional integrals over ¢/, ¢, or just replace
Ax(t) = 2 (Ax(t) + Ax(t)), etc.) In the limit € — 0, obtain

(ln X)l = SL 7{‘51“ (A_)\atA)\ — A)\atA_)\) dt

7

The second term of In x is rewritten as

tr (B (t’))thdt,

(In x)2

Now, combine (Inx); with (Inx)s, and simplify
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BI-DIRECTIONAL POISSONIAN STATISTICS

Convenient decomposition A = ag + z + 2T, such that lo3,a0] = 0,
03, 2] = =2z, |03, 21| = 227, gives

;A ‘A ‘A ;A
Ay = e M193 46193 = qo + €227 + 6722
P

B, = (eZT—e_Z%> W, W=z -z

In this representation,

1nX:Sgl)‘y{tr([ag,W]atW) 1_COS)‘ ]{7{“ t_t/ W) gy

v

The first term is identical to the Brouwer result (invariant under
reparameterization and has a purely geometric character), the second term
describes noise.

Note the \-dependence: u(e'* — 1) +v(e™* — 1) — 2P statistics

X(A) = exp (u(e”™ — 1) + v(e™™ — 1))

L Levitov, August 2004, Windsor Summer School Quantum Noise 51



Prove that
1) u,v > 0 for generic pumping cycle W (¢);

2) u = 0 or v = 0 for special paths W (t) holomorphic in the upper/lower
half-plane of complex time ¢;

Then the ratio current/noise = (v — v)(u + v) is maximal or minimal

(equal iqo_l per cycle), when u =0 or v =0. The counting statistics in
this case is pure poissonian.
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Example of a single channel system (two leads) driven by Vi(t) =
ay cos(Qt + 0), Va(t) = as cos(2t). The pumping cycle:

Wi(t) = (z*(zt) Zé”) ,  2(t) = 21V1(t)+22Va(t), (21,2 system parameters)

Current to noise ratio, 1/J, in the units of el

Current to noise ratio, I/J = qo_l(u —v)/(u + v), as a function of the driving signal parameters for a single channel pump.

The two harmonic signals driving the system are characterized by relative amplitude and phase, w = (Vl/V2)ei9. Maximum

and minimum, as a function of w, are I/J = :i:qo_l.
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PUMP NOISE SUMMARY::

1) Pumping noise is super-poissonian; counting statistics is double-
poissonian;

2) The current/noise ratio can be maximized by varying the pumping
cycle (relative amplitude or phase of the driving signals);

3) Extremal cycles correspond to poissonian counting statistics with a
universal ratio ,
current/noise = £q,

(another generalization of the Schottky formula).
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