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Part 1 Without interactions

Random Matrices, Anderson
Localization, and Quantum Chaos



RANDOM MATRIX THEORY

ensemble of Hermitian matrices
N xN

with random matrix element N —©
E, - spectrum (set of eigenvalues)
0, = <Ea+1 —Ea> - mean level spacing
< ...... > - ensemble averaging
g = E,.—E, - Spacing between nearest
- 5, neighbors

Level repulsion

- distribution function of nearest

neighbors spacing between

STEIRIEINNTNA P(s=0)=0

P(s<<1)ocs’ p=1,2,4



Dyson Ensembles and Hamiltonian systems

Matrix elements Ensemble B
real orthogonal 1
complex unitary 2

2 x2 matrices  simplectic 4
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RANDOM MATRICES

N x N matrices with random matrix elements. /N — o0

Dyson Ensembles

Matrix elements Ensemble £ realization

real orthogonal 1 T-Inv potential

2 x2 matrices simplectic 4 T-Inv, but with spin-
orbital coupling



i

Reason for P (S) — 0 when s—>0:

1.

‘'H. H..)
N ’ EZ_Elz\/(HZZ_Hll)Z_I_‘HlZ‘Z

L N

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

If H12 is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((Hyo- Hy1) and Hy,)
should be small and thus P(s) c S L =1

Complex H, (unitary ensemble) == both Re(H,,) and

Im(H 12) are statistically independent ==> three mdependen‘r
random variables should be small => P(S) o §° ,B 2



Dyson Ensembles and Hamiltonian systems

Matrix elements

real

complex

2 x 2 matrices

Ensemble

orthogonal

unitary

simplectic

B
1

2

A

realization

T-inv potential
broken T-invariance
(e.g., by magnetic field)

T-inv, but with spin-
orbital coupling



Main goal is to classify the eigenstates
ATOMS 'rer'gr’ns of the quanﬂ}lm numb%r's

For the nuclear excitations this
NUCLEI program does not work

Study spectral statistics of

E.P. Wigner: a particular quantum system
- a given nucleus

Random Matrices Atomic Nuclel
e Ensemble e Particular quantum system
e Ensemble averaging e Spectral averaging (over Q)

NPV TSI Statistics of the nuclear spectra

are almost exactly the same as the
Random Matrix Statistics
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Why the random matrix ?
Q " theory (RMT) works so well
" for nuclear spectra =

. These are systems with a large
Original o mber of degrees of freedom, and
ansSWer. therefore the “complexity” is high

| ater it  there exist very “simple” systems
with as many as 2 degrees of

became freedom (d=2), which demonstrate

clear that RMT - like spectral statistics



Classical ( ) Dynamical Systems with  degrees of freedom

The variables can be '
Integrable separated and the problem l=> d mtegrals
Systems reduces to d one- of motion

dimensional problems

Examples

1. A ball inside rectangular billiard; d=2

« Vertical motion can be * Vertical and horizontal
separated from the components of the
horizontal one momentum, are both

Integrals of motion

2. Circular billiard: d=2

 Radial motion can be  « Angular momentum

separated from the and energy are the
angular one Integrals of motion



Classical Dynamical Systems with  degrees of freedom

Integrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion

Rectan%ular and circular billiard, Kepler problem, .
1d Hubbard model and other exactly solvable models, .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy

Examples T B

Kepler problem
In magnetic field

Sinai billiard Stadium



*Nonlinearities

Classical Chaos I T

*Exponential dependence on
the original conditions

*Ergodicity

i

l“- -
LY

Quantum description of any System
with a finite number of the degrees
of freedom is a linear problem -
Shrodinger equation

()’ What does it mean Quantum Chaos 7



Bohigas — Giannoni — Schmit conjecture

VoLUME 52 2 JANUARY 1984 Numbegr |

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M, J. Giannoni, and C. Schmit
Division de Physique Théorvique, Institul de Physique Nucleaive, F-91406 Orsay Cedex, France
(Received 2 August 1983)

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In

summary, the question at issue is to prove or dis-

prove the following conjecture: Spectra of time-
reversal-invariant systems whose classical an-
alogs are K systems show the same fluctuation
properties as predicted by GOE
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Chaotic
classical analog

Wigner- Dyson
spectral statistics
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No quantum
numbers except
energy



Q: What does it mean Quantum Chaos 7

Two possible definitions

Chaotic Wigner -
classical Dyson-like
analog spectrum



Classical Quantum

t?
Integrable <—= Poisson

7 Wigner-

Chaotic Dyson

0 0.5 1 1.5 2 2.5 3



Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities

‘As well as in the case of Random Matrices
(RM) there is a luxury of ensemble averaging.

*The problem is much richer than RM theory

*There is still a lot of universality.

Anderson At strong enough
disorder all eigenstates

localization (1958) are localized in space
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f=3.04 GHz f=7.33 GHz

Anderson Insulator Anderson Metal



Poisson to Wigner-Dyson crossover

Important example: quantum
particle subject to a random
potential - disordered conductor

® Scattering centers, e.g., impurities

Models of disorder:

Randomly located impurities
White noise potential
Lattice models
Anderson model
Lifshits model



Anderson * Lattice - tight binding model
M @) d 6| e Onsite energies &; - random

 Hopping matrix elements 1 ij

I l and ! are nearest
neighbors

uniformly distributed 0 otherwise

Anderson lransition

I<L I>h
Insulator Metal

All eigenstates are localized There appear states extended

Localization length g all over the whole system



Anderson Transition

I<I I>1
Insulator Metal

All eigenstates are localized There appear states extended

Localization length g all over the whole system

The eigenstates, which are Any two extended

localized at different places eigenstates repel each other
will not repel each other

d d

Poisson spectral statistics Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

20

—L
o

Energy/Spacing
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~
O
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Quantum Dot

1. Disorder (x — impurities)

2. Complex geometry

3. e=2.l 10NS for a while

Realizations:

* Metallic clusters
* Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)

» Carbon nanotubes



Energy
scales

One-particle problem (Thouless, 1972)

‘ d
Mean levelispacing O, = 1/vxL

l 5 L IS the system size;
—
d IS the number of
- dimensions

D IS the diffusion const

E 7 has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

g=E,/0, O ouless g=Gh/e’

conductance



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
B Insulator Metal &
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots

with Thouless
conductance g

N xN

Random Matrices

The same statistics of the

random spectra and one-

particle wave functions
(eigenvectors)



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

g=E,/8, TR o= Ghe
L=2L=4L =8L ....

without quantum corrections

E .ocL” 6, cL”




unstable
fixed point

Metal — insulator transition in 3D
All states are localized for d=1,2
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Anderson transition in terms of

pure level statistics

metal, W=5
critical, 16.5
insulator, 100

Wigner

Var S

Scaling of level spacing variance

0.7 Linear size of 3D cube

0.2

12 14 16 18 2D
disorder W
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Integrable Chaotic

All chaotic
systems
resemble
each other.

Sinai
billiard

billiard

All integrable
systems are

m'l'e.gr‘able in Disorered
their own way cyeended

diéordered
localized



Anderson metal;
E T > 51, g > 1 Wigner-Dyson spectral
statistics

Disordered

Systems:

Anderson insulator;
Poisson spectral statistics

E.<o; g<l1

« Is it a generic scenario for the ’)

= Wigner-Dyson to Poisson crossover *

Speculations

Consider an integrable system. Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of quantum numbers. The
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements
of the hopping between different sites (Anderson model !?)



Q . Does Anderson localization provide

= a generic scenario for the Wigner- =
Dyson to Poisson crossover

Consider an integrable system. Each state is
characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum
numbers. The whole set of the states forms a lattice in

this space.

A perturbation that violates the integrability provides
matrix elements of the hopping between different sites
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson



The very definition of the localization is
not invariant - one should specify in which
space the eigenstates are localized.

Level statistics is invariant:
Poissonian basis where the |
statistics eigenfunctions are localized

Wianer -Dvson basis the eigenfunctions
Stagtistics 750 \v/ are extended




Do samiconductor Y

Low concentration Electrons are localized on \@{

of donors === donors = Poisson AV A

Higher donor e, Electronic states are \-f \-f
concentration extended = Wigner-Dyson

Example 2 TWO

. 7n
Integrals p, =—;

Lattice in the Iéicnceo(nssl,{gﬁ{:e)
momentum space energy Ideal billiard - localization in the
) 2% momentum space
= Poisson
[ONONONONONONONONONCERNONONONO)
220000000007 Deformation or - delocalization in the
smooth random  momentum space

ooooooooooooowopx

potential = Wigner-Dyson
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Localization
and diffusion
In the angular
momentum
space

e>0 Chaotic IO

M
I

0.4

& — 0 Integrable circular billiard

stadium - wk
osf

Poisson
c=0.01

%\ 2=0.012

l%‘h\ﬁ

Angular momentumis ¢
the integral of motion |

o

1 2 3 &
5

h=0 &<l

Diffusion in the
angular momentum

Wigner-Dyson
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space
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D.Pollblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

_tZ( H—lc)' +C|+1o |o)+UZn|a | —o +V Zni,ani+1,0"

,0,0'

V=0 Hubbrd integrable
model J Onsite n. neighbors
extended interaction Inferaction
V =0 Hubbard nonintegrable
model
1 T T e e
12 sites \ U=4 V=0 1+t 2 U=4 V=4 °
3 particles 1r ‘ '
Zero total spin
Total momentum 7/6
(1) AP TP :21-, _3.0.,.Li.4.-é-s




D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

N/ AL % \"{J \"'ﬂexchange
171D #-J model on X1~ \_{t \"'ﬂwopping

a periodic chain

A1 4

forbidden

J=It

2 a
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Quantum Dot

1. Disorder (x — impurities)

2. Complex geometry

3. e=2.l 10NS for a while

Realizations:

* Metallic clusters
* Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)

» Carbon nanotubes



Part2  Disorder/Chaos + Interactions
Zero-Dimensional Fermi-liquid
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What does it on-Fermi liquid ?

What does it mean Fermi liquid ?



Eermi Liguia

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

What cloes It mean?



Fermi statistics
Low temperatures

Not too strong interactions
Translation invariance

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers — momentum, spin %2 , charge e

b) decay rate is small as compared with the excitation energy

2. Substantial renormalizations. For example, in a Fermi gas

on/ou, y=c¢/T, x/Qus
are all equal to the one-particle density of states.

[hese guantities are different in a Fermi liquid



Signatures of the Fermi - Liquid state

1. Resistivity is proportional to 77
L.D. Landau & l.Ya. Pomeranchuk “To the properties of metals at very

low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

..The increase of the resistance caused by the interaction between
the electrons is proportional to 77 and at low temperatures exceeds
the usual resistance, which is proportional to 7°.

.. the sum of the momenta of the interaction electrons can change
by an integer number of the periods of the reciprocal lattice.
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by
the thermal oscillations of the lattice.



Signatures of the Fermi - Liquid state
1. Resistivity is proportional to 77

L.D. Landau & l.Ya. Pomeranchuk “To the properties of metals at very
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649
Umklapp electron — electron scattering dominates the

charge transport (?!) n(p

2. Jump in the momentum distribution
function at 7=0.

2a.  Pole in the one-particle Green function

. VA
Py

Fermi liquid = 0<Z<I (?!)




Landau Fermi - Liquid theory

p

Momentum

Momentum distribution  n(p)

Total energy En(p)}
Quasiparticle energy &(B)= E/on(p)
Landau f-function f(p,p')=0E(p)/on(p)

Does it make sense to speak about the Fermi — liquid state
in the presence of a quenched disorder

Q i Can Fermi — liquid survive without the momenta f)



" Does it make sense to speak about the Fermi — ?
= |iquid state in the presence of a quenched disorder =

1. Momentum is not a good quantum number — the
momentum uncertainty is inverse proportional to the
elastic mean free path, I. The step in the momentum
distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp
processes and thus does not behave as 7 2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a

function of the energy, & The residue , Z, makes no sense

Neverineless even in tne presence of the disorcler
Excitations are similar to the excitations in a disordered Fermi-gas.

|. Small decay rate
ll. Substantial renormalizations

=)
(D)
CD




Energy
scales

One-particle problem (Thouless, 1972)

‘ d
Mean levelispacing O, = 1/vxL

l 5 L IS the system size;
—
d IS the number of
- dimensions

D IS the diffusion const

E 7 has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

g=E,/0, O ouless g=Gh/e’

conductance



Zero DimensionalEermitLiguid

At the same time, we want the typical energies, &, to
exceed the mean level spacing, o, :

0, << ¢ << E;




Quantum Dots with
dimensionless

conductance g

N xN

Random Matrices

The same statistics of the
random spectra and one-
particle wave functions <@ 4o

(eigenvectors)



TWO-BOdy Set of one particle states. ¢
Interactions and o label correspondingly

spin and orbit.

&, -one-particle orbital energies M opys -interaction matrix elements

&y are taken from the shell model
Nuclear
Physics s are assumed to be random
o RANDOM: Wigner-Dyson statistics
Quantum Y y
Dots Moss 22222222



Vatrix Elements

Diagonal - o, 3,7,8 are equal pairwise
MatriX a=y and ,3=5 or a=0 and B=y or a=f and y=0

Elements — %7
Offdiagonal - otherwise

» Diagonal matrix elements are much bigger
|t turns than the offdiagonal ones

O Ut t h at M diagonal >> M offdiagonal

in the limit » Diagonal matrix elements in a particular
sample do not fluctuate - selfaveraging




100)Y model: Short range e-€ interactions

N A oy A is dimensionless coupling constant
U)==s(F) = |
V Is the electron density of states

one-particle
eigenfunctions

electron ¥ (x) isarandom
4 wavelength “ -
function that

Ve rapidly oscillates

/\ —> /\’\ [y, @) 20
L as long as
\/\/ \ Vo (X720 T-invariance
IS preserved




- » Diagonal matrix elements are much bigger than
In the limit the offdiagonal ones
g —> ®© Ivldiagonal >> M

* Diagonal matrix elements in a particular sample
do not fluctuate - selfaveraging

offdiagonal

A
Maﬂaﬂ:;jdr‘w HWﬁ
. (F) =

volume

More general: finite range interaction potential U(F)

The same
conclusion




Universal (Random Matrix) limit - Random
Matrix symmetry of the correlation functions:

All _correlation functions are inva_riant under
arbitrary orthogonal transformation:




There are only three operators which are quadratic In
the fermion operators a’ , d , and invariant under RM
transformations:

total number of particles

total spin

0?0?0?0?




Charge conservation - C o+ A
(gauge invariance) no o T oty TT

N\

Invariance under -No S only SZ
rotations in spin space

Therefore, in a very general case

Only three coupling constants describe all of
the effects of e-e interactions



In a very general case coupling constants
describe effects of electron-electron interactions:

H = Zé‘aﬂa +H.
a

=eVA+E N+ IS+ A, T'T.

LL. Kurland, I1.L.Aleiner & B.A., 2000

See also

P.W.Brouwer, Y.Oreg & B.1.Halperin, 1999
H.Baranger & L.1.Glazman, 1999

H-Y Kee, I.L.Aleiner & B.A., 1998



In a very general case coupling constants
describe effects of electron-electron interactions:

where 51 IS the one-particle mean level spacing



Only one-particle part of
the Hamiltonian, HO |
contains randomness

@ —uD



E determines the charging energy
C (Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
BCS pairing



E.P. Wigner, Conference on Neutron Physics by
Time of Flight, November 1956
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L.D. Landau, ”Fermi-Liquid Theory” Zh. EXp. Teor.
Fiz.,1956, v.30, p.1058

J. Bardeen, L.N. Cooper & J. Schriffer, “Theory of
Superconductivity”; Phys.Rev., 1957, v.108, p.1175.



Example 1. Coulomb Blockade

eaVg —J'u"— e cwg-{_ﬁfﬂﬂj—

V

g
gate voltage —
1.
o
.i
I .
. % ..
H()f ¢
(&)

Coulomb Blockade N —= A +1 transition

N2 N1 N N+l N82 N-1 N N+l N+2
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0.04}

0.02¢

6.2F

6.0 s |
5.8¢ il
5.6} il
5.4 A a
52 — B=-30mT, , had
-400 -350 -300 -250
. Vg (MV)
<
Q,
(@)
L L | | O | Y O O e J\ L
-300 -280 -260 -240 -220
V4 (MV)

Coulomb Blockade Peak Spacing
Patel, et al. PRL 80 4522 (1998)
(Marcus Lab)




Example 2. Spontaneous Magnetization

1. Disorder
(ximpurities) § chaotic
one-particle
2. Complex motion
geometry

3. 8-€ interactions

e Dot in the ground state

Q * What is the spin of the Quantum



How to measure the Magnetization — of the Coulomb

blockade peaks in the magnetic field

peak position [mV] peak spacing [mV]

17 —
2350 et A et i e i p D

o
JG'”ﬂ“l‘-"r':J'r LA
1/2 ﬁjﬂ_ﬁﬂ“-’ &

+

-24.0—

-24.5

-25.0—

peak spacing [mV]

-25.5

-26.0 —

-zs.s—f"

| | | | | | | | | | B (mT
0 200 400 GO0 B0 0 200 400 GO0 8OO II'{ )

B, [mT] B, [mT]

+— | | | |
e
12 T e 0 200 400 600 00




In the presence of magnetic field

I-AIint :Zf:ana +JS%+BeS

] ] the probability to find a ground state at a given
Scalin O magnetic field, B, with a given spin, .S, depends on
the combination rather than on B and J separately




Probability to observe a triplet
state as a function of the
parameter X

@ - results of the calculation
based on the universal
Hamiltonian with the RM one-
particle states

The rest — exact diagonalization
for Hubbard clusters with
disorder. No adjustable
parameters

()

0.8

ih)

0.8




| Excitations are similar to the excitations in a disordered Fermi-gas.

ll.  Small decay rate
lIl. Substantial renormalizations

Isn’t it a Fermi liquid ?

Fermi liguid behavior follows from the fact that

different wave functions are almost uncorrelated




CONCLUSIONS

Anderson localization provides a generic scenario for the
transition between chaotic and integrable behavior.

One-particle chaos + moderate interaction of the electrons —
to a rather simple Hamiltonian of the system, which can be
called Zero-dimensional Fermi liquid.

The main parameter that justifies this description Is the
Thouless conductance, which is supposed to be large

Excitations are characterized by their one-particle energy,
charge and spin, but not by their momentum.

These excitations have the lifetime, which is proportional to
the Thouless conductance, I.e., is long.

This approach allows to describe Coulomb blockade
(renormalization of the compressibility), as well as the
substantial renormalization of the magnetic susceptibility and
effects of superconducting pairing




BCS Hamiltonian @@ Finite systems

S e N, + EA?+IS? + Ay T'T.
commute with does not commute
each other with K.E.




double
occupied

empty

single
occupied



double
occupied

empty

single
occupied

a.a' a gos- ) mixes(a ) and (,B)

- S
at the same time aaTaa¢amaﬂ¢(7/)5) =0

This single-occupied
states are not effected
by the interaction.

They are blocked

The Hilbert space is
separated into two
Independent Hilbert
subspaces

Blocking effect .
(V.G.Soloviev, 1961)
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Theory of Superconductivity™

J. BarpeeNn, L. N. Cooprer,f anp J. R. SCHRIEFFER]
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H:ica=2 3 exbi®bu+2 3 | x| buby™ byx=c_xicxt,

— 2 Viwbe*be. (2.14) b =cxt¥oi”
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One-particle The energy is

energy BCS measured relative
to the Fermi level

interaction



BCS Hamiltonian; no single-occupied states

R one-particle levels; one-particle energies &,

+ +
Z £, .8, , — Agcs Z a qa  asadg

0<a<n-1 0<a,p<n-1

o=T. a#p

Anderson spin chain

T* _1 gy >a', a,, T'=a' .a*, T =a.a, SU;
2 i S " " algebra

Z gTZ Agcs Z Z ‘9 BCSI:+|:—

0<a<n-1 O<a#p<n-1 0<a<n-1




Anderson spin chain

HABCS = Z ga-ll-\az _ﬂ’BCS Z -l,-\a+-|,-\a_ =

O<a#p<n-1

Zf + 1 4 Superconducting
a Azes  Order parameter [NA 2‘] 20

Z N Total number of
& the particles




Anderson spin chain

PaN 1 Pa N PaN
z _ 4| + + oAt + -
Ta B 2[ L+ ZT¢a 'B’Gaﬂ’aj Ta -4 “’Ta ad TO! B aa,Taa,¢
o=1,

HABCS = Z ga-ll-\az _ﬂ’BCS Z -l,-\a+-|,-\a_ =

0<a<n-1 O<a#p<n-1

2= K |
Z a = Total number of the particles

For a fixed number of the particles (closed

system we can add the term —gN’=const to the
hamiltonian:




Integrable model
Richardson solution - Bethe Ansatz

-1 2 1
= - E = E
ABCS+ 2 E,-E, 2. E —2¢ 2 E.

0<p<n-1 0<p<n-1

N equations for the parameters E,

How to describe dynamics in the time domain ?



Gaudin Magnets

>
>

H, — Hamiltonian H

BCS Hamiltonian

o — Intgrals of motion




Overhauser interaction of electronic spins in quantum dots



Overhauser interaction of electronic spins in quantum dots




Overhauser interaction of electronic spins in quantum dots

SREQLBQ
SRR L&

*More than 10 of nuclear spins per electron

‘Excange interaction of the electronic spin with the
nuclear ones.

*Collective effect of the nuclei on the electron is
pretty strong.
‘No interaction between the nuclear spins

S, — spin of the electron

SM — nuclear spins
v, () —the electron w. f.
B — magnetic field ||z




Overhauser interaction of electronic spins in quantum dots

2f

0<p<n-1, fza o — 55
Central spin problem

Gaudin problem

N>
Q

=T
2

i
[
o:|:>

eN 7/0(:>

gO_ga
B=A



2T T

> £ _AT?

0<p<n-1, p=a €o ~ €5

Gaudin problem
S =T
2

‘90 _ga
B= A

)

Hoy=H, 7.,=

Idea:

Can we consider the classical dynamics of these Hamiltonians?
‘Can it be described explicitly?

‘What are connections between the classical and quantum dynamics?

PN
—

Substitute quantum T <5
spin operators by

classical vectors —J

1> S
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