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OUTLINE
 What isthat & whereto take it from?
 How to use it (1 or 2 simple examples)?
e Including interactions
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What iIs that

N :
szdd’rTr TV VQ)Z ITVW AQ

Nonlinearity condition:
Q°=1 TrQ=0
— r(Q) =

How to get here — and where from?
How to use this?

Why to be bothered?




Why to be bothered?

The first application (1979-1981):

putting some foundation under the Gang-of-
Four* speculations

*Abrahams, Anderson, Licciardello, and Ramakrishnan, 1979



[3-function=d Ing/d InL

5(9) Pert. Theory in 2D:
................................................................................. 9/gp=1— g, tInL/C
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RG within the NLOM:
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Metal - insulator transition in 3D
All states are localized for 2D and 1D



And more ...

NLoM describes, apart from g(L) itself

* mesoscopic distribution functions (of UCF etc)
e correlations of energy levels and wavefunctions
* long-time asymptotics of different observables

e statistics of rare events

and changing of the above with increasing disorder.

Also, it's a natural tool for describing some non-
perturbative (ie non-analytic in g—1) effects
. and more ...



Where to get it from?



Starting Point: The TOE model

/
THE THEORY OF EVERYTHING
Z +ZV +1ZU -«-@eractloD
i
Y
@e +disordD

A field-theoretical approach :

e addressing only low-energy modes
e averaging over weak disorder



Start with a toy model (to get to
the TOE one)

A generic, after diagonalization, 1-particle Hamiltonian

H=) eala T= Hla)=¢,|o)
7
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Gaussian Integrals

>
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Represent det(e —H)~!=I1 (e —¢,)~! as a Gaussian integral:

det 8— H]dc*dc@ ick(eT—en)cq

— /2)3*2)3 e?; ZC}{ C§(5+—€a)0a

Pc*Dc is a symbolic notation for the product over all dc,




Functional Inteqgral

Transform the exp:

Z Cz(gl — E(}:)Cf}' — Z Cj;(gi — E{_-F)Cﬁ \/‘dd?“[pj;[pﬁ

e a3
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¥ (r) Y(r) :
- | “Action” S
“Partition function”:

7t = det(et — /Dw Dip et

Integration over “all fields” means integration over all C & C



Green’s Functions

O
obtained by variable’s shift in a \/g / d:z?e_ax%r%x _ ehQCE
Gaussian integral: X=X+ h/a T
— 0
Apply to the functional integral, a product of Gaussian ones:

ZF = / Dy Dypei S+ ) g+ omib G
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Fermions do it like Bosons

... but upside down

7T = det(&:+ = ﬁ) —

G = % /W SDYDY

/ DYDi e

S = [alrg)e - Hoir)

For our 1-particle toy model both fermionic and bosonic
representations are equivalent.

Having the TOE model as a target, we will deal with

fermions from now on.



From the Toy to Anderson model

by diagonalizing

HngaaTaaO <: H:Z&:a,f,a,7 +JZ
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T @7
Gaussian white noise: 52
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A typical value of a short l ...............................
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Averaging Green’'s Function(s)

with the white-noise Gaussian
<G> - /GVP(V)DV potential of the previous slide

Explicit form of the P{V(r)} ~exp |—mv7y fdd'rvz

Gaussian distribution:

Gaussian integration of G,, which is exp of V would be
straightforward, if only G,, were not a fraction:

| ¥ DYDY
[ tSDYDY
S— [atriitr) [ & - V)] vl

Gy =



Replica Method (or Trick)

E > (@1 e jin) = N “replicas” of the field
' . WS

Then Gziflp e Dq}pq}j In =27
n Zn

As Z -1 as N-0, in this “replica” limit the denominator
of G can be averaged independently of the numerator:

(G) — lim L (- '>V The averaged 1-particle G is
n—0n < . '>V trivial, but (GG) is as easy:

_ 1 ()
<G+(5 + %w)@ (e — %w)) = ,élfo 20 >:’;




Why it works ?

Perturbatively, thisis amethod, not atrick. One expands S to get
diagrams to be compared with those of direct diagrammatic technique

S P - S \\‘. exist in the impurity
5 > e ey U, " s techniques
Q exist in QFT but not
| | In the impurity techniques
| |

Killed by the replicatrick: each closed |loop has an extran

9 An interaction loop does survive
> >




Alternatives

ALSO KILLED IN SUSY TECHNIQUES AS
FERMION AND BOSON LOOPS HAVE
, | OPPOSITE SIGNS
! ' NEVER APPEAR IN KELDYSH TECHNIQUES
Why Replicas?

*SUSY - by far the best for non-perturbative calculations

for non-interacting electrons cannot be generalised for
Interactions in any meaningful way

*Keldysh techniques would probably be better but
replicas are considerably easier



How It works?

One just calculates the Gaussian integral:

- B STl 2;
<. . ‘>V — ( .. ) /Dvegilp-v-\lfﬂyrpl‘[/‘%—;_ ( - ) _— _%(IIJ 111),;'

ATvTy
Thus, one arrives at a quartic in W action S Particularly, in

calculating the product <G+(5 + 3w)G (€ — %w)> the action is

. |
— [q% ! (_ 1 A) U — TR\
5} d%r { § + 5w e ( )

{ =ep—er, A =diag(l,,,—1,), and ¥ is 2n-component:

V= (El_l_a"' JE’I’Z_I_?El—"" ;En_:)



Slow Modes

The full action is too complicated. A proper FT describes )
interacting slow modes that should be extracted from (V' - V)

Cooperons
B D

r

Diffusons

(P~P)




Hubbard-Stratonovich transfomation

= iip R 1/;T —the “disorder” field that includes both
(9% . slow channels: cooperon and diffuson

To get rid of — (T - 11»')2 o« —tr ¢, use

ATUT
00 00

/e_QQHQ‘QdQ:e—qQ /G_QQdQ Applying to the matrix

field g above gives
— 0 — 0

Z = /eis DQ DYDY  Qis 2nx2n matrix field and

TV

iS— [d%Tr { — Q2+iﬁ —er%wAJr ! Qv
STel 2Tl



Effective Functional

Integrate out W using det A = [DU - Wexp{i VA D}

The remarkable identity det A = exp][ tr In A] gives iS—=—F with

% o 1 B
F=§TI'Q —§TI'111[ €+2(JJA+—Q:| ’TI_/DQe £

the saddle-point

approximation at w=0: i> Q) = UTAU
d% - A = diag(1,,,—1,)
Q= —£+ —Q ;
(ZT) 2T
This is equivalent to It makes the first term in F

Irrelevant (const), leaving one

Q° =1 IrQ) =0  todealonly with Trin(...)



Gradient Expansion
Substitute Q=U*AU Into Tr In (U ... U¥)

1 g A
F= —ETrln[—g + 21/\ ~U [g, U+] +wUAUq

E/L/
Gyt

SincefEﬁQ/Qm—u N vpn - V., one

solution to the saddle ..
expands thisin powers of VQ and w,

-point approximation

with expansion parameters (¢ and wt

\

The lowest

F = /dd’r‘ Tr [WUD (VQ)Z + Zm/wAQ] nonvanishing
8 - orders of the
expansion -

Finally, the nonlinear o model



Limits of validity

Saddle-point + gradient expansion are legitimate provided
that min is deep enough (dimensionless F >>1):

Dimensionless gy = D42 > ]

conductance

Massive modes (Q?#1) can be neglected at the same
condition that justifies the gradient expansion:

This variant of the NLoM is not applicable to
the ballistic regime, L<f




Regions of applicability
Ballistic SUSY NLoM

/—/%
/_/%

Ergodic Diffusive Ballistic
AAAAAYAA A ARNNNNNNONNONONNNONNNNLLLLL LA L L4 E
J E_=hD/L?2 hlt, Er

It's indispensible in
describing crossover

to strong disorder

(when dimensionless
conductance g decreases)

Critical Ballistic

A/t y~ep



Symmetry classes

Matrix elements Ensemble [  Realization in NLoM

real orthogonal 1  symplectic space

guarternions
(2 x 2 matrices) simplectic 4  orthogonal space



Diagrammatics in NLoM

Lecture 2: OUTLINE
e Observable quantitiesin NLoM

e Parameterization & diagrams
e Level Sratistics
* Beyond perturbations with replicas
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Observable quantities

Response functions

<§©3’>:> ...++...

Conductivity o(r,r")

(00 )= -

LDoS correlations




Observables & source fields

A product of any number of Green functions can be
written as a pre-exponential factor in the y-y field theory

A better alternative is to introduce source fields that allow
one to exponentiate these factors “in groups™

) R
N/ = U tr (he v @) o et (R

Any number of such groups is obtained by repeated dif. :

52 iSthr(h-w@@)
@ x $73° »

As Y ® ¢ — @, this structure is preserved in NLoM




Conductance in NLoM
o(r,r’) is a response to an external E field introduced by
p—op—-cA, mm> V—-0=V —-cA

Current density | «0/OA so that o(I',I'’) is given by

1 0*InZ[A]
(o)) = 15 54 (r) DA ()| a0 where
Z[A] = /DQeFW, F[A] = [””D (8QY —I—%MAQ}
1 f



DoS in NLoM

Since DoS by itself is not affected by disorder, we consider
DoS correlation function

D [, .\ __ 1 [l ~ 1, Na, =)\ 1
RQ\W}— /”\2 \V\C‘I‘W Vké‘:}/ —
\“/
Although no source field is required, it's better to have one
1 2InZ[Q Y%y
Ro(w) = o D21 FIQ| = F + —"Tr AQ

(rn LAY 002 |Q=0" 4
n =70

By 2 - Q(r) this can be generalised to a spatial
correlation function of two LD0S

How to carry out calculations?



Parameterization

First one resolves constraints Q%=1 & Tr Q=0. Examples:

2 2

10 0 B B, is unconstrained
A = X ]In : W = ( , n) n
(0 1) —B) 0/ nxn matrix field
Expanding Q in W, one finds F=F;(\W)+0F(W) where

Fy — —%Tr {D (VI — z‘wwﬂ
1TV 2 . .
OF = ?Tr QW + higher powers in W

O = Ae" or Q—A(W+\/1+W2) or Q = (1—E)A(1—E)_

Note that higher powers depend on the parameterization!



How It works perturbatively

o I . Omitted t
* Expand €77 inOF and OF in W
* Calculate Gaussian integrals ( (0F )™), ig;fi‘gﬁ‘lgntl?e n=0
1

1 _F, _
(WW), =~ /WWe X Dot =

W
In the lowest order 0 Fq = %Tr QW? y [> IQ
W

In this order R, is contributed by 5FQ

R, = qu <:>



R, in the diffusive regime

A% 1 Al ]
Baw)="3 ) (Dq? — iw)?’ (v) LA

q
In a finite system, q=(27/L)(n,,n,,n,), integers n; =0

. .9 W r-2 _D d d'g
Dif. regime: ¢ <<5:Lw @Ec:ﬁ<<waz>zq:_>[/ (27

7,d—4 d%g C, [ L. 4—d_ C, /A 2—d/2
Ro(w) ~ 2 Jte (¢ —iL;%)? = 2 \ L — g2 \ w

For d=2, this does not work:

o0

[ d?q gdq [ dz
R — 2R — 1mRe =
e/(q2 L2 " e/ (¢ —iL;?%)? J (z—iL3?)?
0 —00




Higher orders

§Fo = “;” {mez - —TrQW‘l} ) Qq + Q’%j+ .

b,
16

Tr (VWW?) — Tr (VW) W?)] + ...

= = does not
@ @ contribute in

VW W VW "~ VW _~ e ond order

W VW W W

Contributions come from { (OF g )% ), and { (6F¢ )?0 Fvo)2 Yo

Both replica limit and angular integration severely cut the
number of contributing diagrams




R, in the diffusive regime in 2D

0%

Results:

o= (2




R, in the ergodic regime, o <E_

A? 1 A?
RQ(C«U) = mg%ezq: (Dq2 — ?:w)2 > _ﬁw2w2

Higher order perturbative corrections ~(A/w)™:
Perturbation theory breaks down for w <A

It is not that good at E_ > w>>A either. Exact result

AN W2 unitary case
Ro(w) = — (5) sin (z) ﬂzyz

Non-analytic in A/w = nonperturbative.



Exploring Replica Symmetry

 For w<E. the NLoM containsthe w term only:

Zn(w) = /DQ exp [—igTr AQ]
* The saddle-point: Q obeys[Q,A]=0, i.e. Qisadiagonal
matrix with equal (as Tr Q=0) number of =1 elements.
e .". the saddle-point is highly degenerate.

n

Zalw) = 3~ (CB)” [ DQexp [-i5Tr A,

. p=0
A=diag(l, ,,—1,, 1,,—1,)

 Normal choice p=0; any p gives the same perturbatively



Breaking Replica Symmetry
o Calculating the integralsyields

n iw(2p—n) P T+ 4)
2 € P —= (P
Zn(w) = Zo [F'g] ' (2w)(n_p)2+p2 Fn =G };[1 T'(n+2—3)
p:

«Symmeltry Is broken by extending summation to p=o (as
F P=0 for n>p), and taking thereplica limit n—0.
oIt works: F PocnPas n—=0 and only p=0,1 terms contribute:
—iwn, tw(2—n)
€

€
Zn(w) = s Tn Ao(n—1)%+1

givesthe exact result for S, and thus R...

Breaking replica symmetry leads to correct non-
perturbative results




Summary

e |t's up and running

e |[t's much easier to use than to derive, but this Is
much easier to declare than to demonstrate

Next time

 Including interactions (Coulomb and BCS)
e Mapping to various known models
* Describing superconductor-insulator transition



Announced at the last lecture:

* |Includingmteractions (Coulo nd BCS)
e Mapping to vario models
e Describing su or-insulator transition

Lecture 3: changing gears to

Functional bosonization for
Luttinger liquid



Hubbard-Stratonovich transfomation: change
from fermionic to bosonic representation

S = [dwt,(@)i0, + &~ Vi@  (@=r7

L dmda b (Vb (2 Vel — 2 Vb (2 Vi ()
! Qj TN\ )\ ) VU VA | A ANV
Note that we use the ||near2|zed spectrum
T
E=——¢c_~v.(lpl —n.)
D 2m F F \NIL Lo/
but in d>1 it does not split e’s into 2 species
“Tr { OU D + @ \——Trln(—z&r—cf%— +id |
2\ ITa ) 2 \ 2Tel )

NLoM would follow from the saddle point approximation



Pure Interaction in 1D

Noly (! \oly (
) \ ) \

W\ )W )

o o
. .

In the simplest spinless case, keeping only forward-
scattering local interaction, one gets from a linearised
Tomonaga-Luttinger Hamiltonian a naive bosonic one:

H=

L o
= i/ o {E(}OL +pr)” + 9(pr — pr) } (z);
—L/2 -

repulsion: g<1; free Fermions =1 (see Giamarchi’'s lectures)



Hubbard-Stratonovich in D>1 is an entirely different
“bosonisation” procedure than the operator onein 1D

The aims of this talk

e To Introduce a “functional bosonisation” for the

Luttinger liquid in the spirit of the approach used
In the derivation of NLoM

e As an application, to derive the LDoS v(g,X) at

an arbitrary distance X from a single impurity
(“end”) in the Luttinger liquid



Effective Functional
St ) = [de[03©)0:0,(€) — H(w" )

No spin!; n=(L,R) =%, £= (X,7); [ae = [L/2 /ﬁ

JE= L0

H is obtained from the Hamiltonian by substituting fermionic
operators by continuous fields in the Matsubara representation

7 /QSW,w ]pw*pw



Hubbard-Stratonovich transfomation

Introduce ¢ xp —the bosonic field to decouple the p? term
f Do oipFda—3xVy Txg
f Do a—30xVy Tx

— 30 Vorp _
(U

This results in the effective action (withdy. = 0; F iv.0, )

5[, ] = / AE V() (D — i6)) 1 (€)
1 / —1 / /
3 A OV (6 -€) 6(6)



Fermion-Boson Decoupling

Gauge transform eliminates the mixed term in the derivative
WYn F— ¥nt 7, Wy = Z%T (¥ ()T]HT] — @

Thus, fermions and bosons decouple

_ % / dede’ (&) VT e=&) (&)
— /df 2/);(5) an 7/)77(5)

Where is the trick? V# V, because of the Jacobian of the GT



Jacobian

0

In J[¢] =) Trln ] =Y ~Tr(igg,)"
— O e — n
nN== n=+ n=1
inJ = =5 A6’ SON(E-Eole)  smammmn
2 RPA polarization operator
H(q7 Q) — ! UFq is exact for the LL

ﬂ-/UF ) + Viq (Dzyaloshinskii, Larkin, “73)

The Jacobian of the gauge transformation gives the screening!

VitV i=Vot4 Il


Igor


Exact Green’s function
Green’s function is (since 9y fz;'irne'i@?? ):

Gy (€:€)) = ({70 s ()€ )
()=~ [ o SDy*Dy Dy
((...)}—Z/...e VDY Do

1 / — / / %
S = /d»sdg SOVTHE=E) ol€) + /dﬁwf) Oy (&)

Opbly = @ = we need ((6,0,)) from (p0:)=V (£ —E)

9_:915(9:91%—@92



Bosonic Averaging
From(0, — wwr0,)0(&) = ¢(&), it follows that, e.g.

(22 | . 292N /n (NA (ENN 92 17/
\Urr T UpUpe ) WIS )VINS )/} — TV VS )

This equation is solved by the Fourier transform:

1. |sin(z, — 2]
(61(£)01(E)), ==1 L
1(5) 1(‘5) b 9 1l ‘SiH(Z o Zl)‘l/g

v — T g [y ) © — T L g [y

Zp = TLAT T 1T/ V) Z=TLAT T 1X/V)

Yy — 9 /n 0 = (1 1 1/ /’77'/)7 \\_1/2

© = Yp/Y J— = PPV YR ’
wilere V/O(q> — V/E) — V/E)<q ™ T/fUF>



Pure Luttinger Liquid:
Summary of the Approach

* Any correlation function can be calculated

in terms of (8,(£)8,("))) and (Y™ (&)Y (&)

e Calculating GF in this way reproduces the
results for LDoS in the pure LL



Adding an Impurity

A g(k) . :
left-movers right-movers Back-scattering couples

left- and right-movers:
the bosonic excitations
> are no longer free:

Impurity adds a new “coupling” term:

= vy [ doA(@) [ @0 (@) + 61 ()5 (o)



Impurity Coupling

Smp= —tr [ AEN@) P30 (©) + 02O ©)
couples fermiopic and bosonic fields after the gauge transform:

S = 00 [N [0 (€0 (€) + € P02 ()0 (6)

— the problem is no longer exactly solvable.

Green’s function (that defines the tunnelling LDoS) is now

G,y (6:€) = Z{\(( Sy, ) (g S ))

4y = <<{.‘_‘S““l}>> IS to be calculated



Calculating Z,

Symbolically:

7, — i}fUFQZ {<(f£ ij_)2n>

fr:cf/ en(@—H’)B
Jeg y

|
f /)

(n)

The fermionic average cancels an unpleasant
denominator of the bosonic one, both resulting In
a formal expression in terms of

v =7l (1T +ivg/vy)



Formal Results

X0

1 R 2n

— n=0

Il .
) H /dgkdgi?)\(xk))\#c(x%) |P‘rz-(z>‘2g
k=1"

n
H blﬂ(Z7 — Zj) blIl(Z?/ — Z;)
i<j

P,(z) =



Re-Bosonization

le In terms of a new impurity functional above is given by

7y = <€_S)‘[@]>o Sy\[0] = —g /d$ A(x) cos O(&)
The functional average (...), is performed with the weight

1
S,[0] = / 1€ [(9,0)? + 12(0,0)”

TG
sin(z; — 2)

The Green’s function (with x(21) = arg — ,
sin(z; — 2/)

élm(f’f) L <92%M£) Eﬂfﬂe—ﬁﬂﬁﬁd>

)

0



Self-consistent harmonic
approximation

Assumption: ax<ikl (a~T/ep)
the impurity potential A(X)=40(X) is weak but non-perturbative

SCHA: the deviation of ® from ¥ is prohibitive so that cos
potential is substituted by the quadratic approximation:

AT

NCEN St / dr, [0(0, 1) — v(0, 7))’

What is left is a (rather gory) calculation of Gaussian integrals



Green’s Function

2 / AN
—G(z,2;7) =
Pr
( 1
7 1(1_ r T
(){ rmnxr//\_]‘ &\12(9 g) |1 . nr\m/()m | (T\\| mnxr//’; /\_1\ =
1 I_lllC]JA\ll ,uo/J |J_ CO_\ £Ppt T W) |7 Hiaxia& , 1y ) X
(sin T )9 - -
)
a2lite) /sinaT \? T
" F et cos(2p,z + P) |, min(z, A7) > 7
N1 (14g) I \ sinh a7 / ]
\ \blIl QT )2\g )

X is the distance from the impurity, A = A7, & = gp,.|z|, 7 = /7]

Friedel oscillations can be easily extracted



Well known LDo0S

Suppression of the LDoS at the impurity point

at the impurity
e \Y in the bulk

)

Corresponds to “end” and bulk LDoS in Leonid Glazman'’s
lecture this morning



Local Tunnelling DoS

IS obtained at an arbitrary distance from the impurity



Local Tunnelling DoS

different regions at a distance x from the impurity

A

[
o

A

gpe ||,

i

—9———¢/ I
m /f
1
S
|
| >:‘

\_1 o 75



Summary

* Functional Bosonization works: it reproduces known results
for Friedel Oscillations & LDoS and allows one to find LDoS
at an arbitrary distance from the impurity

 In many way, it is analogue of field-theoretical treatment of
higher-dimensional models

» The operator and functional approaches are equivalent for
exact results; however, ease of use for approximations may
be different



Appendix : Jacobian

In J|o| = Z Trln |— 5 Pl = — > > —Tl (10gq)"
Ja -~ 1N

a=-F a==1+n=|1
| T |
where g_(£,&) = g7 (&) = ,-
+ 20, sin(z; — 21)

The nt" term is

n T
(ga &)" /Hdl;dﬂ I'®(z £ Zeg) H@("'&’Ti)"
i=1

with T’

T
((1) ~ . * —_ ~ _ _ )2?,3 .
rn (/_.Flj ceey /.,Fn) S ga'(/"Fi". F?+l O H <. — € Fi
i=1 t

- SH—l



2: Jacobilan

Only symmetric part of the vertex contributes to the integral:

Sym[r;l’_(zplj R )]O( Vél"r?(slj o..S’ﬂ,) H Sk.

3 2y
Hi<j(8?: o SJ) k=1

where A, is an absolutely anti-symmetric polynomial

By power counting, its order is n(n-3)/2>n(n+1)/2 — only

possible for n=1 and n=2 loops, whose calculation is
straightforward (after dealing with inevitable divergences)



