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Cord Müller
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Invitation: five ways to trap a photon

• Cavity with quality factor Q = ω
Γ
� 1

PSfrag replacements

ω
Γ

• Photonic band gap: periodic dielectric
ε(ω, r) such that d.o.s. ρ(ω)→ 0
or other metamaterials [poster S. Guenneau]

• Electromagnetically induced transparency:

pump nr(ω) =
√

ε(ω) such that probe

group velocity vgr ∝ 1/n′
r(ω)→ 0

[Exp. with BEC by L. Hau, Nature (1999)]

PSfrag replacements

vgr

c

EIT

• disorder -induced localisation of microwaves by aluminium
spheres [Chabanov & Gennack, Nature 2000, PRL 2001]

• Optics with colloidal suspensions
[P.W. Anderson: “theory of white paint”, 1985]

or semiconductor powder
[D. Wiersma et al., Nature (1997)]
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Why light and cold atoms?

Propaganda response:

• Light scattering by cold atoms:

Coherent backscattering (CBS) by Sr

[Bidel et al., PRL 88, 203902 (2002)]

– excellent laser coherence & polarisation control

– atoms are identical resonant point scatterers

– photons (almost) don’t interact

• Matter waves in a light potential:

Mott-Hubbard transition with Rb BEC

[Greiner et al., Nature 415, 39 (2002)]

– tunable potential

– controlled interaction

– direct observation
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A. External degrees of freedom:

• Want quenched disorder — need slow atoms:
Doppler effect negligible if
vrms < vDoppler = Γ/k ∼ 10 m/s

• Typical magneto-optical traps produce clouds
of up to N ∼ 1010 atoms (diameter 5 mm) with
vMOT ∼ 10 cm/s

• Below recoil velocity vrec ∼ 1 mm/s:
matter waves with λT > λ

• Evaporative cooling ⇒ Bose condensation

Around vMOT: dilute sample of fixed classical
point scatterers in d = 3.

PSfrag replacements

T, v

vDoppler

vMOT

vrec

nλ3
T ∼ 1

0
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B. Internal degrees of freedom:

• Identical point scatterers with huge cross-
section: a0 �

√
σtot ∼ λ PSfrag replacements

ωe

Γ
|Jm〉

|Jeme〉

. . .

k, ε

∆ω

• Monodisperse with razor-sharp resonance

ωe/Γ ∼ 108

• Internal degeneracy J > 0

• Dipole transition saturates: inelastic multi-
photon processes dephase Cooperon

PSfrag replacements

k1

k2

k3

k4

[2-photon scattering: T. Wellens et al., quant-ph/0403068]

[Master eq. approach: V. Shatokhin, CAM, A. Buchleitner]

• ‘Giant’ magnetoactivity BΓ ∼ 10−4 T
[PhD by O. Sigwarth, poster 2.24]
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Theory of everything?
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Theory of really everything

• Matter-light Hamiltonian with dipole interaction (~ = c = 1):

Hphot =
∑

k,ε⊥k

k a†
kε

akε, ε · k = 0 transverse

• Ensemble average 〈. . . 〉 = Tr{ρat(. . . )} → effective photon
transport theory w/ translational and rotational symmetry

• Fixed classical scatterers: focus onto internal quantum degrees
of freedom
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Microscopic photon scattering theory

• Diagrammatic single-particle transport theory:
[Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]

Calculate
〈

GR
〉

,
〈

GAGR
〉

, . . . for dilute medium nλ3 � 1.

〈G〉: Photon self-energy Σ(ω) = ⊗+ ⊗ ⊗ ⊗ ⊗+ . . .
defines elastic mean free path `(ω).

• Resonant scalar t-matrix of each atom

⊗ = × e × =
g2

ω − ωe + iΓ/2
δij

• Continuity equation for density Φ(q,Ω) =
∑

kk
′

〈

GAGR
〉

−iτtrΩΦ + i`q · J = 2π`ρ(ω)

defines transport time
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[Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]

Calculate
〈

GR
〉

,
〈

GAGR
〉

, . . . for dilute medium nλ3 � 1.

〈G〉: Photon self-energy Σ(ω) = ⊗+ ⊗ ⊗ ⊗ ⊗+ . . .
defines elastic mean free path `(ω).

• Resonant scalar t-matrix of each atom

⊗ = × e × =
g2

ω − ωe + iΓ/2
δij

• Continuity equation for density Φ(q,Ω) =
∑

kk
′

〈

GAGR
〉

−iτtrΩΦ + i`q · J = 2π`ρ(ω)

defines transport time τtr = `/c + 1/Γ
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Microscopic photon scattering theory

• Diagrammatic single-particle transport theory:
[Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]

Calculate
〈

GR
〉

,
〈

GAGR
〉

, . . . for dilute medium nλ3 � 1.

〈G〉: Photon self-energy Σ(ω) = ⊗+ ⊗ ⊗ ⊗ ⊗+ . . .
defines elastic mean free path `(ω).

• Resonant scalar t-matrix of each atom

⊗ = × e × =
g2

ω − ωe + iΓ/2
δij

• Continuity equation for density Φ(q,Ω) =
∑

kk
′

〈

GAGR
〉

−iτtrΩΦ + i`q · J = 2π`ρ(ω)

defines transport time τtr = `/c + 1/Γ= `/vgr + τWigner(ω)?
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Ward identi-ology

• Resonance correction to transport time is O(Ω)-residue in
Ward identity [v. Rossum & Nieuwenhuizen, RMP (1999)]

• Propagator compensation works as usually:

Im Σ(2) = Im (⊗ ⊗ ⊗ ⊗)

7→ U (2,I) =
⊗ ⊗ ⊗

⊗
+
⊗ ⊗
⊗ ⊗

+
⊗

⊗ ⊗ ⊗

• Resonance generates additional vertices:

U (2,II) =
⊗ ⊗ ⊗ ⊗
⊗

+
⊗ ⊗ ⊗
⊗ ⊗

+ c.c.

• “Optical theorem”: Im Σ(1) = Im⊗ 7→ U (1) =
⊗
⊗
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III. Experimental signatures

Part 1: resonant radiation trapping
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Radiation trapping

• Resonance-dominated transport: τtr ≈ τnat = Γ−1 � `/c
typical values: ` ≈ 10−4m, τnat ≈ 30 ns
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trap cycles. The signal-to-noise ratio allows a reliable

measurement of the diffuse intensity down to about 1%

of the initial, steady-state value.

Our analysis of the experimental data relies on the

theory of multiple elastic scattering by resonant point

scatterers [6,7] adapted to the case of cold atoms [14].

The propagation along a multiple scattering path can

be decomposed into elementary steps involving a scatter-

ing event and the propagation in the effective medium up

to the next scattering. The transport time �tr associated

with this elementary step is the sum of the Wigner time

delay �W for the scattering process and the propagation

time with the group velocity. In our experimental con-

ditions, the Wigner time (of the order of �nat) is much

longer than the free propagation time (‘=c � 1 ps for

‘ � 300 
m). The dynamics is thus ‘‘scattering domi-

nated,’’ in contrast to the usual media where it is ‘‘free

propagation dominated.’’

The Wigner time delay, the group velocity, and the

mean-free path vary rapidly in the vicinity of the atomic

resonance. Even for a dilute gas (the case we consider

here), where the index of refraction nr of the medium is

close to unity, the group velocity vg—related to the

derivative dnr=d!—can be much smaller than c. The

propagation time depends on the distance between two

consecutive scattering events; its average value is ob-

tained when it is equal to the mean-free path. For strongly

resonant point scatterers, although �W, vg, and ‘ depend

on the detuning from resonance �L � !L �!0, the aver-

age transport time per scattering event

�tr � �W 	
‘

vg

� 1=� � �nat (1)

is predicted to be equal to the natural lifetime, indepen-

dently of the detuning from resonance [6]. Equivalently,

the transport velocity can be written vE
�L� � ‘=�tr �
‘
�L�=�nat. For an on-resonance mean-free path ‘
0� �
300 
m, the transport velocity is 4 to 5 orders of magni-

tude smaller than c. For short scattering paths, the fluc-

tuations of the path length induce fluctuations in the

transport time. For more than a few scattering events,

such fluctuations self-average, and the total transport

time is the product of the scattering order by �nat.
The decay of the scattered light after the incoming

laser beam is switched off can be written as a sum of

decaying exponentials, each corresponding to an ‘‘eigen-

mode’’ of the RT, usually called a ‘‘Holstein mode’’ [8].

At late times, it is dominated by the lowest mode: the

signal decays exponentially with a time constant �0. In

the elastic diffusion theory, �0 is a function of the dif-

fusion coefficient D � vE‘=3 � ‘2=3�tr and of the thick-

ness L of the medium, scaling like L2=D. The detailed

expression depends on the geometry of the medium. For

large optical thickness b, one gets

�0 ’
3

��2
�natb

2; (2)

where � is a numerical factor whose value is 1 for a slab, 4

for a sphere, and 5.35 for an inhomogeneous sphere with

Gaussian density [15]. The observation of �0 requires one

to measure the signal at late times, once the higher-order

modes have decayed.

In order to analyze the experimental results, we devel-

oped a Monte Carlo (MC) simulation of multiple scatter-

ing by the atomic cloud, described in [16]. In short, the

calculation follows the propagation of a photon in the

effective medium, with proper random choices of posi-

tions and directions of scattering events. We take into

account the inhomogeneous density of the sample, the

residual velocity of the atoms (Doppler effect), the recoil

frequency shift, as well as the finite linewidth of the

incoming laser. We compute the distribution of the scat-

tering orders in the diffuse transmitted light and affect to

the Nth scattering order the time delay N�nat. This proce-

dure yields the impulsional response of the system, which

is convolved by the excitation to get the temporal profile

of the transmitted intensity. This approach neglects in-

terference effects between different multiple scattering

paths responsible for the speckle pattern of the scattered

light and, e.g., coherent backscattering; this is legitimate

since we are in a dilute medium (k‘ 
 1) and the speckle

is averaged out in a large solid angle.

Examples of raw decay curves for resonant light

(�L � 0) are shown in Fig. 2(a) for different numbers of

atoms in the cloud, i.e., for different optical thicknesses.

Each curve has been normalized to the steady-state value

(t < 0). After a transient at short time, an exponential

decay is clearly visible. The dashed curves correspond

to the MC simulations without an adjustable parameter.

The values of �0 are obtained by fitting the signals to an

exponential decay between roughly 10% and 1% of the

steady-state value and displayed in Fig. 2(b) (circles). The

solid line is the analytic prediction, Eq. (2). The dashed

line is the result of the MC simulation. The different

behavior of these two curves at large optical thickness

is discussed below (Doppler effect included in the MC).

probe beam

cold

atoms

0 t

PM

0 t

FIG. 1. Radiation trapping (RT) experimental scheme. A

pulsed probe beam is sent through the center of a laser-cooled

atomic cloud. The transmitted diffuse light is collected as a

function of time in a solid angle close to the forward direction.
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We observe, for an optical thickness b � 34, a decay

constant �0 � 56�nat. From this value and the experimen-

tal measurement of the mean-free path, we deduce (using

an analysis based on the Holstein modes of a Gaussian

cloud) the values of the minimum diffusion coefficient

and transport velocity at the center of the atomic cloud:

D ’ 0:66 m2=s and vE ’ 3:1� 10�5c.

The physical picture employed so far relies on the

prediction that the transport time is frequency indepen-

dent [6]. To check this nonintuitive assertion, we mea-

sured the RT decay as a function of detuning. To minimize

the effect of frequency redistribution (see below), we

measured the ‘‘early’’ decay constant �i at relatively short

time, i.e., before frequency redistribution takes place, but

after higher Holstein modes have decayed. Two distinct

experiments were performed. First, we used a sample

containing a fixed number of atoms Nat whose optical

thickness varies as a Lorentzian with �L. The measured

early decay constant (circles), plotted in Fig. 3(a), is

maximum at resonance and has a width of roughly �.

From Eq. (2), one expects �i
�L� / b2
�L��tr. A small but

significant difference with the expected b2 behavior is

due to the nonmonochromatic excitation, as confirmed by

the MC simulation (solid line). In a second experiment,

we adjusted Nat for each detuning value to maintain a

constant optical thickness (b � 10:7� 1:0). This cancels

the trivial change of optical density with detuning. Since

b is now constant, �i is directly proportional to the trans-

port time. As shown in Fig. 3(b), this quantity is nearly

constant (20% rms fluctuations, mean value 7:3�nat),
while, e.g., the scattering cross section varies by a fac-

tor of 5. This observation confirms the theoretical pre-

diction of a frequency-independent transport time for

resonant point scatterers, at least in the explored range.

Note that these observations do not rely on the validity of

the diffusion approximation, Eq. : indeed, the geomet-

rical properties and the mean-free path—and thus the

multiple scattering paths—are identical for all points in

Fig. 3(b). The observation of a constant decay time is thus

a direct proof of the constancy of �tr.
The main physical ingredient which distinguishes our

MC approach from the elastic scattering theory of Eq.

is the Doppler effect. It may appear surprising that the

velocity of the atoms plays a role in a laser cooled sample,

where the Doppler width is negligible compared to the

natural width (typical velocity spread vrms such that

kvrms � �=30). This is however a single scattering argu-

ment. In the course of multiple scattering, the frequency

of the scattered wave performs a random walk resulting

in frequency redistribution. For a large number N of

scattering events, the frequency spreading is such that

h�!2i ’ 
2=3�N
kvrms�
2. For an initially monochromatic

excitation, the width of the frequency distribution will

reach � after N0 � 250 scattering events. Thus, frequency

redistribution is expected to play a significant role for

optical thicknesses larger than b �
������

N0
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FIG. 3. Variation of transport time with frequency. We mea-

sure the ‘‘early’’ time (2< t=�nat < 10) decay constant �i (in all

these experiments, after an initial transient over � 2�nat due to

the higher Holstein modes, an exponential decay is observed

for at least 10�nat, as in Fig. 2) as a function of the detuning �L

from resonance, in two separate experiments. (a) The number

Nat of atoms in the cloud is fixed, with an optical thickness at

�L � 0 of 22.4. The circles correspond to the experimental data

and the solid line to the MC simulation. (b) For each value of

�L, we adjust Nat to maintain a fixed optical thickness b �
10:7� 1:0. �i is then nearly constant.
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FIG. 2. Decay of resonant light trapped in the atomic cloud.

We record the decay as we vary the number of atoms in the

cloud. (a) shows the data for three optical thicknesses (solid

lines): b � 34 (1), 19 (2), and 2.4 (3), and the Monte Carlo

results (dashed lines). The measured decay constant �0 is

plotted in (b) as a function of the optical thickness b (circles).

It is compared to the prediction of Eq. (2) for a sample with

Gaussian density (solid line), and to the MC calculation

(dashed line).
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PSfrag replacements

b = 34

19
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2.4

Optical Thickness b

Diffusion D = `2

3τtr
∼ b2

τ0
≈ 1 m2/s

is slow: vtr = `
τtr
≈ 3× 10−5c

• Time scale is set. What about interference?
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Radiation trapping

• Resonance-dominated transport: τtr ≈ τnat = Γ−1 � `/c
typical values: ` ≈ 10−4m, τnat ≈ 30 ns
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trap cycles. The signal-to-noise ratio allows a reliable

measurement of the diffuse intensity down to about 1%

of the initial, steady-state value.

Our analysis of the experimental data relies on the

theory of multiple elastic scattering by resonant point

scatterers [6,7] adapted to the case of cold atoms [14].

The propagation along a multiple scattering path can

be decomposed into elementary steps involving a scatter-

ing event and the propagation in the effective medium up

to the next scattering. The transport time �tr associated

with this elementary step is the sum of the Wigner time

delay �W for the scattering process and the propagation

time with the group velocity. In our experimental con-

ditions, the Wigner time (of the order of �nat) is much

longer than the free propagation time (‘=c � 1 ps for

‘ � 300 
m). The dynamics is thus ‘‘scattering domi-

nated,’’ in contrast to the usual media where it is ‘‘free

propagation dominated.’’

The Wigner time delay, the group velocity, and the

mean-free path vary rapidly in the vicinity of the atomic

resonance. Even for a dilute gas (the case we consider

here), where the index of refraction nr of the medium is

close to unity, the group velocity vg—related to the

derivative dnr=d!—can be much smaller than c. The

propagation time depends on the distance between two

consecutive scattering events; its average value is ob-

tained when it is equal to the mean-free path. For strongly

resonant point scatterers, although �W, vg, and ‘ depend

on the detuning from resonance �L � !L �!0, the aver-

age transport time per scattering event

�tr � �W 	
‘

vg

� 1=� � �nat (1)

is predicted to be equal to the natural lifetime, indepen-

dently of the detuning from resonance [6]. Equivalently,

the transport velocity can be written vE
�L� � ‘=�tr �
‘
�L�=�nat. For an on-resonance mean-free path ‘
0� �
300 
m, the transport velocity is 4 to 5 orders of magni-

tude smaller than c. For short scattering paths, the fluc-

tuations of the path length induce fluctuations in the

transport time. For more than a few scattering events,

such fluctuations self-average, and the total transport

time is the product of the scattering order by �nat.
The decay of the scattered light after the incoming

laser beam is switched off can be written as a sum of

decaying exponentials, each corresponding to an ‘‘eigen-

mode’’ of the RT, usually called a ‘‘Holstein mode’’ [8].

At late times, it is dominated by the lowest mode: the

signal decays exponentially with a time constant �0. In

the elastic diffusion theory, �0 is a function of the dif-

fusion coefficient D � vE‘=3 � ‘2=3�tr and of the thick-

ness L of the medium, scaling like L2=D. The detailed

expression depends on the geometry of the medium. For

large optical thickness b, one gets

�0 ’
3

��2
�natb

2; (2)

where � is a numerical factor whose value is 1 for a slab, 4

for a sphere, and 5.35 for an inhomogeneous sphere with

Gaussian density [15]. The observation of �0 requires one

to measure the signal at late times, once the higher-order

modes have decayed.

In order to analyze the experimental results, we devel-

oped a Monte Carlo (MC) simulation of multiple scatter-

ing by the atomic cloud, described in [16]. In short, the

calculation follows the propagation of a photon in the

effective medium, with proper random choices of posi-

tions and directions of scattering events. We take into

account the inhomogeneous density of the sample, the

residual velocity of the atoms (Doppler effect), the recoil

frequency shift, as well as the finite linewidth of the

incoming laser. We compute the distribution of the scat-

tering orders in the diffuse transmitted light and affect to

the Nth scattering order the time delay N�nat. This proce-

dure yields the impulsional response of the system, which

is convolved by the excitation to get the temporal profile

of the transmitted intensity. This approach neglects in-

terference effects between different multiple scattering

paths responsible for the speckle pattern of the scattered

light and, e.g., coherent backscattering; this is legitimate

since we are in a dilute medium (k‘ 
 1) and the speckle

is averaged out in a large solid angle.

Examples of raw decay curves for resonant light

(�L � 0) are shown in Fig. 2(a) for different numbers of

atoms in the cloud, i.e., for different optical thicknesses.

Each curve has been normalized to the steady-state value

(t < 0). After a transient at short time, an exponential

decay is clearly visible. The dashed curves correspond

to the MC simulations without an adjustable parameter.

The values of �0 are obtained by fitting the signals to an

exponential decay between roughly 10% and 1% of the

steady-state value and displayed in Fig. 2(b) (circles). The

solid line is the analytic prediction, Eq. (2). The dashed

line is the result of the MC simulation. The different

behavior of these two curves at large optical thickness

is discussed below (Doppler effect included in the MC).
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FIG. 1. Radiation trapping (RT) experimental scheme. A

pulsed probe beam is sent through the center of a laser-cooled

atomic cloud. The transmitted diffuse light is collected as a

function of time in a solid angle close to the forward direction.
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We observe, for an optical thickness b � 34, a decay

constant �0 � 56�nat. From this value and the experimen-

tal measurement of the mean-free path, we deduce (using

an analysis based on the Holstein modes of a Gaussian

cloud) the values of the minimum diffusion coefficient

and transport velocity at the center of the atomic cloud:

D ’ 0:66 m2=s and vE ’ 3:1� 10�5c.

The physical picture employed so far relies on the

prediction that the transport time is frequency indepen-

dent [6]. To check this nonintuitive assertion, we mea-

sured the RT decay as a function of detuning. To minimize

the effect of frequency redistribution (see below), we

measured the ‘‘early’’ decay constant �i at relatively short

time, i.e., before frequency redistribution takes place, but

after higher Holstein modes have decayed. Two distinct

experiments were performed. First, we used a sample

containing a fixed number of atoms Nat whose optical

thickness varies as a Lorentzian with �L. The measured

early decay constant (circles), plotted in Fig. 3(a), is

maximum at resonance and has a width of roughly �.

From Eq. (2), one expects �i
�L� / b2
�L��tr. A small but

significant difference with the expected b2 behavior is

due to the nonmonochromatic excitation, as confirmed by

the MC simulation (solid line). In a second experiment,

we adjusted Nat for each detuning value to maintain a

constant optical thickness (b � 10:7� 1:0). This cancels

the trivial change of optical density with detuning. Since

b is now constant, �i is directly proportional to the trans-

port time. As shown in Fig. 3(b), this quantity is nearly

constant (20% rms fluctuations, mean value 7:3�nat),
while, e.g., the scattering cross section varies by a fac-

tor of 5. This observation confirms the theoretical pre-

diction of a frequency-independent transport time for

resonant point scatterers, at least in the explored range.

Note that these observations do not rely on the validity of

the diffusion approximation, Eq. : indeed, the geomet-

rical properties and the mean-free path—and thus the

multiple scattering paths—are identical for all points in

Fig. 3(b). The observation of a constant decay time is thus

a direct proof of the constancy of �tr.
The main physical ingredient which distinguishes our

MC approach from the elastic scattering theory of Eq.

is the Doppler effect. It may appear surprising that the

velocity of the atoms plays a role in a laser cooled sample,

where the Doppler width is negligible compared to the

natural width (typical velocity spread vrms such that

kvrms � �=30). This is however a single scattering argu-

ment. In the course of multiple scattering, the frequency

of the scattered wave performs a random walk resulting

in frequency redistribution. For a large number N of

scattering events, the frequency spreading is such that

h�!2i ’ 
2=3�N
kvrms�
2. For an initially monochromatic

excitation, the width of the frequency distribution will

reach � after N0 � 250 scattering events. Thus, frequency

redistribution is expected to play a significant role for

optical thicknesses larger than b �
������
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FIG. 3. Variation of transport time with frequency. We mea-

sure the ‘‘early’’ time (2< t=�nat < 10) decay constant �i (in all

these experiments, after an initial transient over � 2�nat due to

the higher Holstein modes, an exponential decay is observed

for at least 10�nat, as in Fig. 2) as a function of the detuning �L

from resonance, in two separate experiments. (a) The number

Nat of atoms in the cloud is fixed, with an optical thickness at

�L � 0 of 22.4. The circles correspond to the experimental data

and the solid line to the MC simulation. (b) For each value of

�L, we adjust Nat to maintain a fixed optical thickness b �
10:7� 1:0. �i is then nearly constant.
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FIG. 2. Decay of resonant light trapped in the atomic cloud.

We record the decay as we vary the number of atoms in the

cloud. (a) shows the data for three optical thicknesses (solid

lines): b � 34 (1), 19 (2), and 2.4 (3), and the Monte Carlo

results (dashed lines). The measured decay constant �0 is

plotted in (b) as a function of the optical thickness b (circles).

It is compared to the prediction of Eq. (2) for a sample with

Gaussian density (solid line), and to the MC calculation

(dashed line).
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trap cycles. The signal-to-noise ratio allows a reliable

measurement of the diffuse intensity down to about 1%

of the initial, steady-state value.

Our analysis of the experimental data relies on the

theory of multiple elastic scattering by resonant point

scatterers [6,7] adapted to the case of cold atoms [14].

The propagation along a multiple scattering path can

be decomposed into elementary steps involving a scatter-

ing event and the propagation in the effective medium up

to the next scattering. The transport time �tr associated

with this elementary step is the sum of the Wigner time

delay �W for the scattering process and the propagation

time with the group velocity. In our experimental con-

ditions, the Wigner time (of the order of �nat) is much

longer than the free propagation time (‘=c � 1 ps for

‘ � 300 
m). The dynamics is thus ‘‘scattering domi-

nated,’’ in contrast to the usual media where it is ‘‘free

propagation dominated.’’

The Wigner time delay, the group velocity, and the

mean-free path vary rapidly in the vicinity of the atomic

resonance. Even for a dilute gas (the case we consider

here), where the index of refraction nr of the medium is

close to unity, the group velocity vg—related to the

derivative dnr=d!—can be much smaller than c. The

propagation time depends on the distance between two

consecutive scattering events; its average value is ob-

tained when it is equal to the mean-free path. For strongly

resonant point scatterers, although �W, vg, and ‘ depend

on the detuning from resonance �L � !L �!0, the aver-

age transport time per scattering event

�tr � �W 	
‘

vg

� 1=� � �nat (1)

is predicted to be equal to the natural lifetime, indepen-

dently of the detuning from resonance [6]. Equivalently,

the transport velocity can be written vE
�L� � ‘=�tr �
‘
�L�=�nat. For an on-resonance mean-free path ‘
0� �
300 
m, the transport velocity is 4 to 5 orders of magni-

tude smaller than c. For short scattering paths, the fluc-

tuations of the path length induce fluctuations in the

transport time. For more than a few scattering events,

such fluctuations self-average, and the total transport

time is the product of the scattering order by �nat.
The decay of the scattered light after the incoming

laser beam is switched off can be written as a sum of

decaying exponentials, each corresponding to an ‘‘eigen-

mode’’ of the RT, usually called a ‘‘Holstein mode’’ [8].

At late times, it is dominated by the lowest mode: the

signal decays exponentially with a time constant �0. In

the elastic diffusion theory, �0 is a function of the dif-

fusion coefficient D � vE‘=3 � ‘2=3�tr and of the thick-

ness L of the medium, scaling like L2=D. The detailed

expression depends on the geometry of the medium. For

large optical thickness b, one gets

�0 ’
3

��2
�natb

2; (2)

where � is a numerical factor whose value is 1 for a slab, 4

for a sphere, and 5.35 for an inhomogeneous sphere with

Gaussian density [15]. The observation of �0 requires one

to measure the signal at late times, once the higher-order

modes have decayed.

In order to analyze the experimental results, we devel-

oped a Monte Carlo (MC) simulation of multiple scatter-

ing by the atomic cloud, described in [16]. In short, the

calculation follows the propagation of a photon in the

effective medium, with proper random choices of posi-

tions and directions of scattering events. We take into

account the inhomogeneous density of the sample, the

residual velocity of the atoms (Doppler effect), the recoil

frequency shift, as well as the finite linewidth of the

incoming laser. We compute the distribution of the scat-

tering orders in the diffuse transmitted light and affect to

the Nth scattering order the time delay N�nat. This proce-

dure yields the impulsional response of the system, which

is convolved by the excitation to get the temporal profile

of the transmitted intensity. This approach neglects in-

terference effects between different multiple scattering

paths responsible for the speckle pattern of the scattered

light and, e.g., coherent backscattering; this is legitimate

since we are in a dilute medium (k‘ 
 1) and the speckle

is averaged out in a large solid angle.

Examples of raw decay curves for resonant light

(�L � 0) are shown in Fig. 2(a) for different numbers of

atoms in the cloud, i.e., for different optical thicknesses.

Each curve has been normalized to the steady-state value

(t < 0). After a transient at short time, an exponential

decay is clearly visible. The dashed curves correspond

to the MC simulations without an adjustable parameter.

The values of �0 are obtained by fitting the signals to an

exponential decay between roughly 10% and 1% of the

steady-state value and displayed in Fig. 2(b) (circles). The

solid line is the analytic prediction, Eq. (2). The dashed

line is the result of the MC simulation. The different

behavior of these two curves at large optical thickness

is discussed below (Doppler effect included in the MC).
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FIG. 1. Radiation trapping (RT) experimental scheme. A

pulsed probe beam is sent through the center of a laser-cooled

atomic cloud. The transmitted diffuse light is collected as a

function of time in a solid angle close to the forward direction.
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We observe, for an optical thickness b � 34, a decay

constant �0 � 56�nat. From this value and the experimen-

tal measurement of the mean-free path, we deduce (using

an analysis based on the Holstein modes of a Gaussian

cloud) the values of the minimum diffusion coefficient

and transport velocity at the center of the atomic cloud:

D ’ 0:66 m2=s and vE ’ 3:1� 10�5c.

The physical picture employed so far relies on the

prediction that the transport time is frequency indepen-

dent [6]. To check this nonintuitive assertion, we mea-

sured the RT decay as a function of detuning. To minimize

the effect of frequency redistribution (see below), we

measured the ‘‘early’’ decay constant �i at relatively short

time, i.e., before frequency redistribution takes place, but

after higher Holstein modes have decayed. Two distinct

experiments were performed. First, we used a sample

containing a fixed number of atoms Nat whose optical

thickness varies as a Lorentzian with �L. The measured

early decay constant (circles), plotted in Fig. 3(a), is

maximum at resonance and has a width of roughly �.

From Eq. (2), one expects �i
�L� / b2
�L��tr. A small but

significant difference with the expected b2 behavior is

due to the nonmonochromatic excitation, as confirmed by

the MC simulation (solid line). In a second experiment,

we adjusted Nat for each detuning value to maintain a

constant optical thickness (b � 10:7� 1:0). This cancels

the trivial change of optical density with detuning. Since

b is now constant, �i is directly proportional to the trans-

port time. As shown in Fig. 3(b), this quantity is nearly

constant (20% rms fluctuations, mean value 7:3�nat),
while, e.g., the scattering cross section varies by a fac-

tor of 5. This observation confirms the theoretical pre-

diction of a frequency-independent transport time for

resonant point scatterers, at least in the explored range.

Note that these observations do not rely on the validity of

the diffusion approximation, Eq. : indeed, the geomet-

rical properties and the mean-free path—and thus the

multiple scattering paths—are identical for all points in

Fig. 3(b). The observation of a constant decay time is thus

a direct proof of the constancy of �tr.
The main physical ingredient which distinguishes our

MC approach from the elastic scattering theory of Eq.

is the Doppler effect. It may appear surprising that the

velocity of the atoms plays a role in a laser cooled sample,

where the Doppler width is negligible compared to the

natural width (typical velocity spread vrms such that

kvrms � �=30). This is however a single scattering argu-

ment. In the course of multiple scattering, the frequency

of the scattered wave performs a random walk resulting

in frequency redistribution. For a large number N of

scattering events, the frequency spreading is such that

h�!2i ’ 
2=3�N
kvrms�
2. For an initially monochromatic

excitation, the width of the frequency distribution will

reach � after N0 � 250 scattering events. Thus, frequency

redistribution is expected to play a significant role for

optical thicknesses larger than b �
������
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FIG. 3. Variation of transport time with frequency. We mea-

sure the ‘‘early’’ time (2< t=�nat < 10) decay constant �i (in all

these experiments, after an initial transient over � 2�nat due to

the higher Holstein modes, an exponential decay is observed

for at least 10�nat, as in Fig. 2) as a function of the detuning �L

from resonance, in two separate experiments. (a) The number

Nat of atoms in the cloud is fixed, with an optical thickness at

�L � 0 of 22.4. The circles correspond to the experimental data

and the solid line to the MC simulation. (b) For each value of

�L, we adjust Nat to maintain a fixed optical thickness b �
10:7� 1:0. �i is then nearly constant.
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FIG. 2. Decay of resonant light trapped in the atomic cloud.

We record the decay as we vary the number of atoms in the

cloud. (a) shows the data for three optical thicknesses (solid

lines): b � 34 (1), 19 (2), and 2.4 (3), and the Monte Carlo

results (dashed lines). The measured decay constant �0 is

plotted in (b) as a function of the optical thickness b (circles).

It is compared to the prediction of Eq. (2) for a sample with

Gaussian density (solid line), and to the MC calculation

(dashed line).
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trap cycles. The signal-to-noise ratio allows a reliable

measurement of the diffuse intensity down to about 1%

of the initial, steady-state value.

Our analysis of the experimental data relies on the

theory of multiple elastic scattering by resonant point

scatterers [6,7] adapted to the case of cold atoms [14].

The propagation along a multiple scattering path can

be decomposed into elementary steps involving a scatter-

ing event and the propagation in the effective medium up

to the next scattering. The transport time �tr associated

with this elementary step is the sum of the Wigner time

delay �W for the scattering process and the propagation

time with the group velocity. In our experimental con-

ditions, the Wigner time (of the order of �nat) is much

longer than the free propagation time (‘=c � 1 ps for

‘ � 300 
m). The dynamics is thus ‘‘scattering domi-

nated,’’ in contrast to the usual media where it is ‘‘free

propagation dominated.’’

The Wigner time delay, the group velocity, and the

mean-free path vary rapidly in the vicinity of the atomic

resonance. Even for a dilute gas (the case we consider

here), where the index of refraction nr of the medium is

close to unity, the group velocity vg—related to the

derivative dnr=d!—can be much smaller than c. The

propagation time depends on the distance between two

consecutive scattering events; its average value is ob-

tained when it is equal to the mean-free path. For strongly

resonant point scatterers, although �W, vg, and ‘ depend

on the detuning from resonance �L � !L �!0, the aver-

age transport time per scattering event

�tr � �W 	
‘

vg

� 1=� � �nat (1)

is predicted to be equal to the natural lifetime, indepen-

dently of the detuning from resonance [6]. Equivalently,

the transport velocity can be written vE
�L� � ‘=�tr �
‘
�L�=�nat. For an on-resonance mean-free path ‘
0� �
300 
m, the transport velocity is 4 to 5 orders of magni-

tude smaller than c. For short scattering paths, the fluc-

tuations of the path length induce fluctuations in the

transport time. For more than a few scattering events,

such fluctuations self-average, and the total transport

time is the product of the scattering order by �nat.
The decay of the scattered light after the incoming

laser beam is switched off can be written as a sum of

decaying exponentials, each corresponding to an ‘‘eigen-

mode’’ of the RT, usually called a ‘‘Holstein mode’’ [8].

At late times, it is dominated by the lowest mode: the

signal decays exponentially with a time constant �0. In

the elastic diffusion theory, �0 is a function of the dif-

fusion coefficient D � vE‘=3 � ‘2=3�tr and of the thick-

ness L of the medium, scaling like L2=D. The detailed

expression depends on the geometry of the medium. For

large optical thickness b, one gets

�0 ’
3

��2
�natb

2; (2)

where � is a numerical factor whose value is 1 for a slab, 4

for a sphere, and 5.35 for an inhomogeneous sphere with

Gaussian density [15]. The observation of �0 requires one

to measure the signal at late times, once the higher-order

modes have decayed.

In order to analyze the experimental results, we devel-

oped a Monte Carlo (MC) simulation of multiple scatter-

ing by the atomic cloud, described in [16]. In short, the

calculation follows the propagation of a photon in the

effective medium, with proper random choices of posi-

tions and directions of scattering events. We take into

account the inhomogeneous density of the sample, the

residual velocity of the atoms (Doppler effect), the recoil

frequency shift, as well as the finite linewidth of the

incoming laser. We compute the distribution of the scat-

tering orders in the diffuse transmitted light and affect to

the Nth scattering order the time delay N�nat. This proce-

dure yields the impulsional response of the system, which

is convolved by the excitation to get the temporal profile

of the transmitted intensity. This approach neglects in-

terference effects between different multiple scattering

paths responsible for the speckle pattern of the scattered

light and, e.g., coherent backscattering; this is legitimate

since we are in a dilute medium (k‘ 
 1) and the speckle

is averaged out in a large solid angle.

Examples of raw decay curves for resonant light

(�L � 0) are shown in Fig. 2(a) for different numbers of

atoms in the cloud, i.e., for different optical thicknesses.

Each curve has been normalized to the steady-state value

(t < 0). After a transient at short time, an exponential

decay is clearly visible. The dashed curves correspond

to the MC simulations without an adjustable parameter.

The values of �0 are obtained by fitting the signals to an

exponential decay between roughly 10% and 1% of the

steady-state value and displayed in Fig. 2(b) (circles). The

solid line is the analytic prediction, Eq. (2). The dashed

line is the result of the MC simulation. The different

behavior of these two curves at large optical thickness

is discussed below (Doppler effect included in the MC).
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FIG. 1. Radiation trapping (RT) experimental scheme. A

pulsed probe beam is sent through the center of a laser-cooled

atomic cloud. The transmitted diffuse light is collected as a

function of time in a solid angle close to the forward direction.
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We observe, for an optical thickness b � 34, a decay

constant �0 � 56�nat. From this value and the experimen-

tal measurement of the mean-free path, we deduce (using

an analysis based on the Holstein modes of a Gaussian

cloud) the values of the minimum diffusion coefficient

and transport velocity at the center of the atomic cloud:

D ’ 0:66 m2=s and vE ’ 3:1� 10�5c.

The physical picture employed so far relies on the

prediction that the transport time is frequency indepen-

dent [6]. To check this nonintuitive assertion, we mea-

sured the RT decay as a function of detuning. To minimize

the effect of frequency redistribution (see below), we

measured the ‘‘early’’ decay constant �i at relatively short

time, i.e., before frequency redistribution takes place, but

after higher Holstein modes have decayed. Two distinct

experiments were performed. First, we used a sample

containing a fixed number of atoms Nat whose optical

thickness varies as a Lorentzian with �L. The measured

early decay constant (circles), plotted in Fig. 3(a), is

maximum at resonance and has a width of roughly �.

From Eq. (2), one expects �i
�L� / b2
�L��tr. A small but

significant difference with the expected b2 behavior is

due to the nonmonochromatic excitation, as confirmed by

the MC simulation (solid line). In a second experiment,

we adjusted Nat for each detuning value to maintain a

constant optical thickness (b � 10:7� 1:0). This cancels

the trivial change of optical density with detuning. Since

b is now constant, �i is directly proportional to the trans-

port time. As shown in Fig. 3(b), this quantity is nearly

constant (20% rms fluctuations, mean value 7:3�nat),
while, e.g., the scattering cross section varies by a fac-

tor of 5. This observation confirms the theoretical pre-

diction of a frequency-independent transport time for

resonant point scatterers, at least in the explored range.

Note that these observations do not rely on the validity of

the diffusion approximation, Eq. : indeed, the geomet-

rical properties and the mean-free path—and thus the

multiple scattering paths—are identical for all points in

Fig. 3(b). The observation of a constant decay time is thus

a direct proof of the constancy of �tr.
The main physical ingredient which distinguishes our

MC approach from the elastic scattering theory of Eq.

is the Doppler effect. It may appear surprising that the

velocity of the atoms plays a role in a laser cooled sample,

where the Doppler width is negligible compared to the

natural width (typical velocity spread vrms such that

kvrms � �=30). This is however a single scattering argu-

ment. In the course of multiple scattering, the frequency

of the scattered wave performs a random walk resulting

in frequency redistribution. For a large number N of

scattering events, the frequency spreading is such that

h�!2i ’ 
2=3�N
kvrms�
2. For an initially monochromatic

excitation, the width of the frequency distribution will

reach � after N0 � 250 scattering events. Thus, frequency

redistribution is expected to play a significant role for

optical thicknesses larger than b �
������
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FIG. 3. Variation of transport time with frequency. We mea-

sure the ‘‘early’’ time (2< t=�nat < 10) decay constant �i (in all

these experiments, after an initial transient over � 2�nat due to

the higher Holstein modes, an exponential decay is observed

for at least 10�nat, as in Fig. 2) as a function of the detuning �L

from resonance, in two separate experiments. (a) The number

Nat of atoms in the cloud is fixed, with an optical thickness at

�L � 0 of 22.4. The circles correspond to the experimental data

and the solid line to the MC simulation. (b) For each value of

�L, we adjust Nat to maintain a fixed optical thickness b �
10:7� 1:0. �i is then nearly constant.
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FIG. 2. Decay of resonant light trapped in the atomic cloud.

We record the decay as we vary the number of atoms in the

cloud. (a) shows the data for three optical thicknesses (solid

lines): b � 34 (1), 19 (2), and 2.4 (3), and the Monte Carlo

results (dashed lines). The measured decay constant �0 is

plotted in (b) as a function of the optical thickness b (circles).

It is compared to the prediction of Eq. (2) for a sample with

Gaussian density (solid line), and to the MC calculation

(dashed line).
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trap cycles. The signal-to-noise ratio allows a reliable

measurement of the diffuse intensity down to about 1%

of the initial, steady-state value.

Our analysis of the experimental data relies on the

theory of multiple elastic scattering by resonant point

scatterers [6,7] adapted to the case of cold atoms [14].

The propagation along a multiple scattering path can

be decomposed into elementary steps involving a scatter-

ing event and the propagation in the effective medium up

to the next scattering. The transport time �tr associated

with this elementary step is the sum of the Wigner time

delay �W for the scattering process and the propagation

time with the group velocity. In our experimental con-

ditions, the Wigner time (of the order of �nat) is much

longer than the free propagation time (‘=c � 1 ps for

‘ � 300 
m). The dynamics is thus ‘‘scattering domi-

nated,’’ in contrast to the usual media where it is ‘‘free

propagation dominated.’’

The Wigner time delay, the group velocity, and the

mean-free path vary rapidly in the vicinity of the atomic

resonance. Even for a dilute gas (the case we consider

here), where the index of refraction nr of the medium is

close to unity, the group velocity vg—related to the

derivative dnr=d!—can be much smaller than c. The

propagation time depends on the distance between two

consecutive scattering events; its average value is ob-

tained when it is equal to the mean-free path. For strongly

resonant point scatterers, although �W, vg, and ‘ depend

on the detuning from resonance �L � !L �!0, the aver-

age transport time per scattering event

�tr � �W 	
‘

vg

� 1=� � �nat (1)

is predicted to be equal to the natural lifetime, indepen-

dently of the detuning from resonance [6]. Equivalently,

the transport velocity can be written vE
�L� � ‘=�tr �
‘
�L�=�nat. For an on-resonance mean-free path ‘
0� �
300 
m, the transport velocity is 4 to 5 orders of magni-

tude smaller than c. For short scattering paths, the fluc-

tuations of the path length induce fluctuations in the

transport time. For more than a few scattering events,

such fluctuations self-average, and the total transport

time is the product of the scattering order by �nat.
The decay of the scattered light after the incoming

laser beam is switched off can be written as a sum of

decaying exponentials, each corresponding to an ‘‘eigen-

mode’’ of the RT, usually called a ‘‘Holstein mode’’ [8].

At late times, it is dominated by the lowest mode: the

signal decays exponentially with a time constant �0. In

the elastic diffusion theory, �0 is a function of the dif-

fusion coefficient D � vE‘=3 � ‘2=3�tr and of the thick-

ness L of the medium, scaling like L2=D. The detailed

expression depends on the geometry of the medium. For

large optical thickness b, one gets

�0 ’
3

��2
�natb

2; (2)

where � is a numerical factor whose value is 1 for a slab, 4

for a sphere, and 5.35 for an inhomogeneous sphere with

Gaussian density [15]. The observation of �0 requires one

to measure the signal at late times, once the higher-order

modes have decayed.

In order to analyze the experimental results, we devel-

oped a Monte Carlo (MC) simulation of multiple scatter-

ing by the atomic cloud, described in [16]. In short, the

calculation follows the propagation of a photon in the

effective medium, with proper random choices of posi-

tions and directions of scattering events. We take into

account the inhomogeneous density of the sample, the

residual velocity of the atoms (Doppler effect), the recoil

frequency shift, as well as the finite linewidth of the

incoming laser. We compute the distribution of the scat-

tering orders in the diffuse transmitted light and affect to

the Nth scattering order the time delay N�nat. This proce-

dure yields the impulsional response of the system, which

is convolved by the excitation to get the temporal profile

of the transmitted intensity. This approach neglects in-

terference effects between different multiple scattering

paths responsible for the speckle pattern of the scattered

light and, e.g., coherent backscattering; this is legitimate

since we are in a dilute medium (k‘ 
 1) and the speckle

is averaged out in a large solid angle.

Examples of raw decay curves for resonant light

(�L � 0) are shown in Fig. 2(a) for different numbers of

atoms in the cloud, i.e., for different optical thicknesses.

Each curve has been normalized to the steady-state value

(t < 0). After a transient at short time, an exponential

decay is clearly visible. The dashed curves correspond

to the MC simulations without an adjustable parameter.

The values of �0 are obtained by fitting the signals to an

exponential decay between roughly 10% and 1% of the

steady-state value and displayed in Fig. 2(b) (circles). The

solid line is the analytic prediction, Eq. (2). The dashed

line is the result of the MC simulation. The different

behavior of these two curves at large optical thickness

is discussed below (Doppler effect included in the MC).

probe beam

cold

atoms

0 t

PM

0 t

FIG. 1. Radiation trapping (RT) experimental scheme. A

pulsed probe beam is sent through the center of a laser-cooled

atomic cloud. The transmitted diffuse light is collected as a

function of time in a solid angle close to the forward direction.
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We observe, for an optical thickness b � 34, a decay

constant �0 � 56�nat. From this value and the experimen-

tal measurement of the mean-free path, we deduce (using

an analysis based on the Holstein modes of a Gaussian

cloud) the values of the minimum diffusion coefficient

and transport velocity at the center of the atomic cloud:

D ’ 0:66 m2=s and vE ’ 3:1� 10�5c.

The physical picture employed so far relies on the

prediction that the transport time is frequency indepen-

dent [6]. To check this nonintuitive assertion, we mea-

sured the RT decay as a function of detuning. To minimize

the effect of frequency redistribution (see below), we

measured the ‘‘early’’ decay constant �i at relatively short

time, i.e., before frequency redistribution takes place, but

after higher Holstein modes have decayed. Two distinct

experiments were performed. First, we used a sample

containing a fixed number of atoms Nat whose optical

thickness varies as a Lorentzian with �L. The measured

early decay constant (circles), plotted in Fig. 3(a), is

maximum at resonance and has a width of roughly �.

From Eq. (2), one expects �i
�L� / b2
�L��tr. A small but

significant difference with the expected b2 behavior is

due to the nonmonochromatic excitation, as confirmed by

the MC simulation (solid line). In a second experiment,

we adjusted Nat for each detuning value to maintain a

constant optical thickness (b � 10:7� 1:0). This cancels

the trivial change of optical density with detuning. Since

b is now constant, �i is directly proportional to the trans-

port time. As shown in Fig. 3(b), this quantity is nearly

constant (20% rms fluctuations, mean value 7:3�nat),
while, e.g., the scattering cross section varies by a fac-

tor of 5. This observation confirms the theoretical pre-

diction of a frequency-independent transport time for

resonant point scatterers, at least in the explored range.

Note that these observations do not rely on the validity of

the diffusion approximation, Eq. : indeed, the geomet-

rical properties and the mean-free path—and thus the

multiple scattering paths—are identical for all points in

Fig. 3(b). The observation of a constant decay time is thus

a direct proof of the constancy of �tr.
The main physical ingredient which distinguishes our

MC approach from the elastic scattering theory of Eq.

is the Doppler effect. It may appear surprising that the

velocity of the atoms plays a role in a laser cooled sample,

where the Doppler width is negligible compared to the

natural width (typical velocity spread vrms such that

kvrms � �=30). This is however a single scattering argu-

ment. In the course of multiple scattering, the frequency

of the scattered wave performs a random walk resulting

in frequency redistribution. For a large number N of

scattering events, the frequency spreading is such that

h�!2i ’ 
2=3�N
kvrms�
2. For an initially monochromatic

excitation, the width of the frequency distribution will

reach � after N0 � 250 scattering events. Thus, frequency

redistribution is expected to play a significant role for

optical thicknesses larger than b �
������

N0
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FIG. 3. Variation of transport time with frequency. We mea-

sure the ‘‘early’’ time (2< t=�nat < 10) decay constant �i (in all

these experiments, after an initial transient over � 2�nat due to

the higher Holstein modes, an exponential decay is observed

for at least 10�nat, as in Fig. 2) as a function of the detuning �L

from resonance, in two separate experiments. (a) The number

Nat of atoms in the cloud is fixed, with an optical thickness at

�L � 0 of 22.4. The circles correspond to the experimental data

and the solid line to the MC simulation. (b) For each value of

�L, we adjust Nat to maintain a fixed optical thickness b �
10:7� 1:0. �i is then nearly constant.
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FIG. 2. Decay of resonant light trapped in the atomic cloud.

We record the decay as we vary the number of atoms in the

cloud. (a) shows the data for three optical thicknesses (solid

lines): b � 34 (1), 19 (2), and 2.4 (3), and the Monte Carlo

results (dashed lines). The measured decay constant �0 is

plotted in (b) as a function of the optical thickness b (circles).

It is compared to the prediction of Eq. (2) for a sample with

Gaussian density (solid line), and to the MC calculation

(dashed line).
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• Time scale is set. What about interference?
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Weak localisation: strategy of calculation

• Interpretation of diagrams:

Real space Reciprocal space

Ladder diagrams

L =
⊗
⊗

+
⊗ ⊗
⊗ ⊗

+ . . .

Crossed diagrams

C =
⊗ ⊗
⊗ ⊗

+ . . .

• 1. sum geometrical series for L
2. use reciprocity trick to obtain C:

⊗ ⊗
⊗ ⊗

→
⊗ ⊗
⊗ ⊗
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Impact of internal degeneracy

• A degenerate dipole transition (J > 0) has
an internal spin degree of freedom coupling
to the photon polarisation ε.

PSfrag replacements
|Jeme〉

|Jm〉
. . .

. . .

• Photon scattering vertex acquires topology of a ribbon:

u0(ω) =
⊗
⊗

J>0−→ Uijkl = u0(ω)
i j

kl

• Equivalence between crossed and ladder diagrams lost:

= 6=

• Absence of time-reversal symmetry:
[Jonckheere et al., PRL (2000)]

PSfrag replacements
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Vertex eigenvalues

• Diagonalisation into irreducible components K = 0, 1, 2:
[CAM & C. Miniatura, J.Phys.A (2002)]

=
∑

K

λKTK , =
∑

K

χKTK

λK = 3(2Je + 1)







1 1 K

Je Je J







2

, χK = 3(2Je + 1)















1 Je J

1 J Je

K 1 1















• Selection rules:

(i) λ0 = 1 for all J, Je (energy conservation)

(ii) χK = λK = 1 for J = 0 (isotropic dipole).

• Natural generalization to arbitrary spin and interaction
[with G. Montambaux]
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Bulk transport: Diffusion and depolarization

• Exact diagonalisation of transverse propagator ∀Ω, q:
eigenvalues b0 = 1, b1 = 1

2
, b2 = 7

10
at q → 0.

PSfrag replacements

ε

ε′

ε′′

– field transversality b1,2 < 1: “spin-orbit”

– atomic degeneracy λ1,2 ≤ 1 “spin-flip”

• Diffusion approximation: L(q) ≈
∑

K

lK
Dq2 + 1/τd(K)

• Polarization relaxation times τd(K) =
τtr

1/(bKλK)− 1

• Conserved intensity: diffusive mode with 1/τd(0) = 0.
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Cooperon: Dephasing of weak localization

• Weak localization contribution:

C(q) ≈
∑

K

cK

Dq2 + 1/τc(K)

• Dephasing times: τc =
τtr

1/(bKχK)− 1
∼ τtr

[Akkermans, Miniatura, & Müller, cond-mat/0206298]

• Anomalous (non-thermal) photon dephasing due to partial

trace over large ground-state degeneracy (2J + 1)N of the
atomic medium.
“uncompensated magnetic impurities at zero magnetic field”

[Y. Imry, cond-mat/0202044 + refs]
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III. Experimental signatures

Part 2: Coherent Backscatteriing
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Coherent Backscattering (CBS)

• Scattering by random sample:

〈I〉 =
∑

p

|ap|2

Counterpropagating amplitudes!

φ(θ) = (k + k′) · r ≈ k`θ

PSfrag replacements
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r

`

θ

PSfrag replacements

0

1

2 I

〈I〉

θ

CBS: Pairwise constructive in-
terference survives the ensemble
average for

|θ| < 1/k`

“random collection of Young slits”
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Experimental signature

• CBS by atoms without and with internal degeneracy:
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[Bidel et al., PRL 88, 203902 (2002)] [Labeyrie et al., EPL 61, 327 (2003)]

• Theory: analytic internal degeneracy
[Müller & Miniatura, J. Phys. A (2002)]

+ MC simulation of photon trajectories
[Labeyrie, Delande et al., PRA (2003)]
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Summary

• “Photons do it like electrons, but all at once and
resonantly”

τd ∼ τc ∼ τtr

• Atoms: exact microscopic theory for τd, τc as function of
experimental parameters J, Je.
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Open questions

• Towards strong localisation of photons in a gas of ‘immobile’
atoms: Self-consistent perturbation (Ward identities, etc.) in
strongly disordered limit nλ3 → 1

• What about external degrees of freedom (Recoil, Doppler,
quantum statistics, . . . )?

• Saturation becomes unavoidable at high density: fundamental
limit to Anderson-localisability?

• . . . ask me again at Windsor 2007 . . .

hλµ
←→ Quantum Transport of

Light and Matter
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Thanks to colleagues

QCCM 2004’s motto:

“If you wanted to draw this as a
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