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Conductance Quantisation

Simple picture: Transmission and reflection of waves through a waveguide

[Landauer’s Formula

T - Transmission coefficient

Electron-Electron Interactions

2D and 3D - Well-defined Fermi surface - Fermi liquid theory works.
1D - No Fermi surface, Fermi liquid theory break down!

Exactly solvable model - Luftinger model Excitations - Bosonic

Coulomb interactions between electrons renormalise conductance to

.
G = hK

For repulsive Coulomb interaction, interaction parameter K < 1.

G follows power law temperature and voltage dependences.

Low density : n << 1/Bohr radius, Wigner Crystal results for long range
Coulomb interactions.
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Temperature dependence of the structure at
0.7(2e%/h) compared to thelast quantised plateau

= sample B
1.5F B=0T
=
o
@ |
(g
s 1
e |
|-
=
g |
o 0.5
6.8 6.6 6.4 6.2
Gate Voltage V, (V)

Pk;y Reu. el 72, 135 ((94¢6)



10000

5000_ 0 .-llo. R (l) T 1l0. M
_ Parallel Magnetic Field (T) —/\/\——/\
O e A

i R R e Y T

Gate Voltage V, (V)

dG/dV, (arb. units)




T R -492 Vg -462

Cronenwett, et al. —

Figure 3 Phigs Ry Leb. $% 226705 (2002)



Zeeman splitting and crossing
of energy levels
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In figure 4 we have removed this anomalous resistance to demonstrate fully that the
preservation of the quantised structure when the electron transport through the two -
narrow constrictions is entirely ballistic. Plateau indices have again been marked on the
diagram and the qualitative featuresdiscussed above are readily apparent. The quantise
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Figure 3. The device resistance is plotted as a function of Vi for voltage V,; (a) = 1and (b)
0V the numbers indicate the number of occupied sub-bands, and the vertical bars the @
corresponding steps in resistance as discussed in the text; A = h/24¢? and B = h/40¢>. The E

horizontal line is a guide to illustrate the equivalence of the quantised value of resistance 48
when a voltage of —1V is applied to either gate independently. i
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Figure 4. The channel resistance is plotted (in arbitrary units) in a three-dimensional ‘
representation as a function of the two applied gate voltages. The quantised nature of the |
resistance is clearly demonstrated and plateau indices are marked for clarity. The line |
connecting the points of inflection between plateaus 4 and 5 illustrates the perturbation due &
to the proximity of the gates as discussed in the text.
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FIG. 1. (a) Schematic layout of the sample. Gate pairs 4
and B define two QPC’s with a cavity in between. Current I,
I, and voltage V1, V2 contacts are attached to the wide 2D EG
regions. (b) Typical electron trajectory in the absence of a mag-
netic field, illustrating nonadiabatic transport. (c) Electron flow
in edge channcls along equipotential lines in a high magnetic
field, illustrating adiabatic transport.
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FIG. 2. Comparison between the conductances of the indivi-
dual QPC’s G4 and Gz and the conductance of the complete de-
vice Gir, illustrating the transition from Ohmic transport at
B =0, to adiabatic transport at 8=1.0 T. The curves have been
offset for clarity.
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Gate Characteristics

Single and Series Wires
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Fig. 3. Wire conductance as a function of effective gate voltage,
Vy— Vi, at 1.3 K The curves are offset for clarity. ‘



Sample Parameters

Samples A and B

2D Carrier density = 2.4 x 10! cm
2D Mobility = 3.4 x 10°cm?/Vs

S

Wires 1 and 3 Wire 2
L=3um L=04pum

All wires have a width of 1.2ym ’
Separation between adjacent wires is 0.4yum

2DEG is is 0.3 um away from surface gates
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Conductance Collapse!
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Reproducibility of Collapse
in Gate Sweeps
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Conductance Collapse at Various T




Reproducibility in Temperature Cycles
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DC bias dependence
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In a Perpendicular B Field...
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Sample C

2D Carrier density = 3.3 x 101! cm
2D Mobility = 3.6 x 10°cm?/Vs

Wires 1 and 3 Wire 2
L=03um L=2 pm
W=04 um W=0.8 um

Separation between adjacent wires is 0.25 um
2DEG is 0.1 um away from surface gates
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Conductance Collapse Type 2

(B I -Induced)
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Collapse Type 2: T Dependence
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Summary

We have observed an unusual
collapse in the conductance of

1D quantum wires.

Two types of collapse are
observed, both of which

have the defining feature of

zero conductance in a gate voltage
region where a finite conductance is

expected.

The mechanism is unknown but
may result from an inter-subband
charge density wave or a 1D Wigner

crystallization.

Further experimental and theoretical
work are necessary to understand

the phenomenon.




