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e Stochastic Loewner Evolution

e 2D Critical Phenomena (CFT) =

Stochastic Growth process
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e lterative conformal maps

e M. Hastings and Levitov 1996 - Diffusion Limited aggregations



2D Critical Phenomena:

e Equilibrium Statistical Mechanics
(Ising, Potts ,... models)

e Geometrical Critical Phenomena
Percolation, self-avoiding walks, growth ,...

Two sorts of questions

e Critical exponents

e Correlation functions ~

boundary related questions



Three complementary languages:

e Statistical mechanics (~ combinatorics)
Example: Q-Potts model

7 — Z QLength of a loop
closed loops

- Percolation: Q — 1
e Eucledian QFT (space+time)
- Correlation functions

< 0[@(1)...0(n)[0 >

|0 > is the lowest eigenstate of the transfer matrix.

A problem of identitification of operators




Stochastic (Fractal) Geometry of critical clusters

. Part of a (big) critical percolation cluster on the square lattice



Approaches: conformal invariance

e Scale Invariance:
T — AT

B(r) = A2p(Ar)

e Scale Invarience +locallity=—=> Conformal Invariance: 2D

z — w(z)

P(z, 2) — |w'(2)|"p(w(z), w(z))



How to weight fluctuating geometry?

e Thermodynamics in statistical mechanics:
F~ (T —=T.)"°
e Finite size corrections : c - is the central charge
C 2
F — FO — —L
24

e Entropy in gravity (random surfaces) -7y - "string susceptibility”

Entropy ~ Area” =7

Both ¢ and = are signatures of the type of of critical behavior



Conformal Field Theory

Scaling in 2D =Local Conformal Invariance

States <— operators transformed according to irreducible reprs of Virasoro algebra
(algebra of holomorphic diffeomorphisms).

Critical exponents (conformal dimensions of operators) are obtained from the value
of Central charge —2 < ¢ < 1

Some Correlation functions obey hypergeometric differential equations built out of
central charge and exponents ( Ward Identities of conformal invariance).

Example: Ising model

2n 1/16

2 (G

i — ZJ)Q Z; izjaﬂ)] < o(l)...o0(2n) > =0
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Geometrical aspects of Critical Phenomena

Two major developments :

e Crossing Probability
(Cardy, 1992)

e Conformal measure of critical clusters
(Duplantier, 1999)
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Is there left to right crossing?

Percolation:

Fig. 10.1. Is there a left to right crossing of white hexagons?
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And now?
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Fig. 10.2. And now?




Crossing Probability

Fig. 10.1. Is there

0

arP
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(1 — 2x)
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dax? +

x(l — x)

x'/*F(1/3,2/3,4/3; )
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Crossing probability is simply P(x) = 1
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Conformal measure of critical clusters

e w(z) - a conformal
map of a critical cluster
onto a unit disk

e w'(z) - conformal
measure or electric field
created by a charged
cluster

. Part of a (big) critical percolation cluster on the square lattice

0 A(8,c)
< <E|ectric field(z)> >=< |w'(2)]° >~ <}%>
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Interface as a stochastic growth process

Figure 2 A F-cluster confiquration in the Potts models. The SLE, | Fig. 4.1. Sample of the beginning of a halE-plane walk {conjectured to converge
Yt} is the boundary of the FK-cluster connected to the negative real az 1o chordal SLEq).

An interface as a random self-avoiding walk
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A boundary of a cluster is SAW (red).

Conformal measure < |w’(2)|™ > is a probability for m RW reach the point 2
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Critical exponent of meeting n
random walks with a SAW on a
random lattice is simply .

A(A - ’Yst'r) — (]- - ﬁYSt"“)n

B. Duplantier (1999)
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Evolution of Conformal Maps:

Hadamard formula
e A map of the cluster onto an exterior of a unit disk
z 1 :
w(z) = —4+ O(-), r — conformal radius
r z
e Hadamard formula

Sw(z) w(z)+ e*? . or

w(z) w(z)—e® r

5?7“ — 5(Area)|w(z("))]2.
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A sequence

A sequence

Iterative Conformal maps

wy,(2) - wy,(z) — etn ’ )

01, 02, 05... on mathematical plane

‘D1, Dy, Ds... of domains on physical plane

Wni1(2)  wn(z) + e Tl
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e On a plane

® In continuum limit

Loewner’s equation

wpt1(2) — wa(2z) = €

dw(z,t) B
dt -

w(z,t =0) =

wy(z) — 0,

2
w(z,t)—0(t) °

Z e
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Stochastic Loewner equation

([ dw(z,t) 2
dt w(z,t)—0(t)’

| w(z,t=0) = =z.

Wienner process (white noise)
deo

"=
< (B (0) >= K1)

Stochastic Conformal Maps generate a self-avoiding path statistically equivalent
to hulls of clusters of 2D critical phenomena (Schramm, 2000)
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e < KKC4-

path is simple

e 4 < K< 8-
path touches itself
(but never crosses)

e K > 8-
path fills the space

Hull < trace duality

kK — 16/k

k = 4 — fermion
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SLE=CFT

Stochastic Loewner evolution describes
all 2D critical phenomena at —2 < ¢ < 1

Relation between k- strength of noise and central charge

Duality: hull - trace

Fractal dimension

4_ 2
c—1_3gt=r
2K
kK — 16/k
A=14+2
N 8
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Examples

percolation: Kk =6, ¢=0, A=1+3/4
Self-avoiding walks: kK = 16/6, ¢=0, A =1+1/3
Free fermions: Kk =4, c¢c=1, A =3/2

Ising model k =3, e¢c=1/2, A=1+12/3

Q-Potts model (Ising model Q = 2)

Q = 4cos’(4w/K)
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SLE is Langevin dynamics

[ dw(z,t) 2
dt — w(z,t)—0(t)?

w(z,t) —  w(z,t) + 0(t)

([ dw(z,t) _ 2 | é(t),

dt w(z,t)

\

| (6(1)0(0)) = Kd(t)
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Langevin — Fokker-Plank Equation

e Langevin Equation
b=-221

e Fokker-Plank equation/ Feynman-Kac formula

P =Hrp P

o _ _(r8 85\
rr= (535~ 5) 53
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Fokker-Plank equation for SLE

P(t, w(z)) = <6(w<z, £ — w(z>)>
d'P t — HrpP(t
LP(t,w(2)) = HrpP(t, w(2))

K O 2)8
ow

Hpp = — — — —
e (28'w w

Fokker-Plank equation for SLE = Conformal Ward lIdentities for correlation
functions of CFT
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Conformal measure - h(t,z) =< w’(2)° >

The Feynman-Kac formula

K 26
O:h = —h" + —h — —h
2 z z2

Conformal invariance:

h(t, z) = h(%

hypergeometric equation

exponent:

4 46
h" + ( )h——h_O

Rz Kz2

h ~ 22

A(S, k) = i(n — 4+ \/(k — )% + 166k)
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Virasoro algebra

e Diffeomorphisms

w— w+ew’, z(w)— z(w)+ l,z(w)

e Classical Virasoro algebra 1, = wn+18%
[ln7 lm] — (n T m)ln+m

e Probability distribution
P — P+ L,P

e Extended Virasoro algebra

(L, Ln] = (1 — m) Lo + 1—‘;n(n2 — 1)8n—m

What is ¢ 7
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Fokker-Plank equation and Virasoro algebra

{ Hpp = 5L, —2L_,

<P = HpgppP
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e Equilibrium state -
e Conformal invariance -

e Normalization -

Hpp|l0 >=0
Lnlo >: O, n > O.

3(4_’4’)

c =1 — 5
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Dimensions

e Dimensions (from Kac table):

(rk — 4s8)® — (k — 4)?

hrs(c(k)) = 16r

e lIdentification of CFT Operators with geometrical objects:
SLE-trace/hull  =- Boundary Operator (7, s) = (2, 3)
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Stochastic growth:
Diffusion Limit of aggregation (DLA)

An aggregate grows by particles diffusing and sticking to the aggregate.
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Stochastic Hadamard formula

e 0, are random and uncorrelated (Poisson distribution)

log wn+1(Z) — € |wl(e'l,9n)wn(z) + eien
Wy, (2) " wn(2) — etfn
1
Plon] = on

e This process generates a branching tree
(Hastings and Levitov)
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Fractal geometry = Analytical aspects of conformal map;

CFT Ward Ildentity is SLE-Fokker-Plank equation in the equilibrium regime;

|dentification of CFT Operators and SLE processes;

CFT as stochastic deformation of Riemann surfaces in moduli space;

Other fractals, like DLA?

Relation between stochastic conformal maps and Random Matrix theory
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