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Lecture 3 Lecture 3 

Many Body Many Body 
LocalizationLocalization



Previous Lectures:Previous Lectures:

1. Anderson Localization as Metal-Insulator Transition

2. Anderson model. Cayley tree problem.

3. Spectral Statistics and Localization.                   
Poisson versus Wigner-Dyson.                          
Invariant definition of the localization

4. Chaos and Localization.                                 
Localization in the space of quantum numbers.



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Many-Body excitations are delocalized !

Wigner-Dyson random matrix statistics
follows from the delocalization.

What does it mean ?



Q:

Consider a finite system of quantum 
particles, e.g., fermions. Let the one-
particle spectra be chaotic (Wigner-
Dyson).

What is the statistics of the          
many-body spectra?
a.The particles do not interact with 

each other.
Poisson: 
individual energies are conserving quantum 
numbers.

a. The particles do interact. ????



Part 4. Part 4. 

ManyMany--Body Body 
excitation in finite excitation in finite 
systems.systems.
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Fermi Sea

Decay of a quasiparticle with an energy ε in 
Landau Fermi liquid
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Landau Fermi liquid in a 
clean bulk system:

Fermi 
energy



Fermi Sea

Decay of a quasiparticle with an energy ε in 
Landau Fermi liquid
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Quantum dot – zero-dimensional case ?
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Fermi golden rule
( U.Sivan, Y.Imry & A.Aronov,1994 ):
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Fermi Sea

Decay of a quasiparticle with an energy ε in 
Landau Fermi liquid

ε

ε−ω

ε1+ω

ε1

zero-dimensional case

one-particle spectrum is 
discrete

equation 
ε1+ε2 = ε’1 + ε’2

can not be satisfied exactly

???



Fermi Sea

Decay of a quasiparticle with an energy ε in 
Landau Fermi liquid

ε

ε−ω

ε1+ω

ε1

zero-dimensional case

one-particle spectrum is 
discrete

equation 
ε1+ε2 = ε’1 + ε’2

can not be satisfied exactly

Recall: in the Anderson model the site-to-
site hopping does not conserve the energy



Fermi Sea

generations
1 2 3 4 5 6

. . . .

ε
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1 2 3 4 5

Delocalization 
in Fock space

Can be mapped (approximately) 
to the problem of localization 
on Cayley tree

Chaos in Nuclei – Delocalization?
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gate

QDQD

current

S

D

VSD

g
No e-e interactions –
resonance tunneling

The interaction leads to 
additional peaks –
many body excitations
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loc
Ergodic - WDNE

Landau 
quasiparticle with 

the width γSIA



nonergodic states

total 
number of 
sites in the 
system

∞→N
constn → ∞→n

const
N
n

→

Such a state occupies infinitely many sites of the Anderson 
model but still negligible fraction of the total number of sites

support of a 
given wave 
function

nN

localized extended

0→
N
n

ergodic nonergodic



KWIW >>
There is of order one 
resonance at every step

WI >
Typically each pair of 
nearest neighbors is 
at  resonance

Nn ln~

Nn ~

nonergodic

ergodic



Part 5. Part 5. 

ManyMany--Body Body 
LocalizationLocalization



Annals of Physics, v. 321, p. 1126-1205 (2006)

D. M. Basko & I.L. Aleiner
Columbia University

B. L. Altshuler
Columbia University, NEC-Laboratories America

MetalMetal--insulator transition in a weakly insulator transition in a weakly 
interacting manyinteracting many--electron system with electron system with 

localized singlelocalized single--particle statesparticle states



I
V

Conductivity:

Conductance:

Insulator

Metal

?????

Superconductor

( )0, =ωσ T
Transport in solids



strength 
of the 
interaction

strength 
of the 
disorder

srWigner crystalFermi liquid

Disorder + interactionsDisorder + interactions



Can hopping conductivity Can hopping conductivity 
exist exist without phononswithout phonons



can e-e interaction alone 
sustain hopping conduction
in a localized system?

1. All one-electron states are localized

2. Electrons interact with each other

3. The system is closed (no phonons)

4. Temperature is low but finite

Question:Question:

Given:Given:

Find:Find: DC conductivity σ(T,ω=0)

zero or finite?



“All states are localized “

means that

probability to find a state extended 
over the system size L is



1. Localization of single-electron wave-functions:

extended

localized

d=1; All states are localized

d=2; All states are localized

d>2; Anderson transition



DoS DoS

all states are
localized

I < IcI > Ic

Anderson  Transition

- mobility edges (one particle)

extended



DoS DoS

all states are
localized

I < IcI > Ic

Anderson  Transition

- mobility edges (one particle)

Coexistence of the localized 
and extended states is not 

possible!!!

extended



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Quantum particle in a random potentialQuantum particle in a random potential ((Thouless, 1972))
Energy scales



Temperature dependence of the conductivity Temperature dependence of the conductivity 
of of noninteractingnoninteracting electronselectrons

DoS DoSDoS



Temperature dependence of the conductivity Temperature dependence of the conductivity 
of of noninteractingnoninteracting electronselectrons

DoS DoSDoS

Assume that all the states 
are localized



Inelastic processes -
transitions between localized states

(inelastic lifetime)–1

α

β energy
mismatch

(any mechanism)(any mechanism)



Phonon-induced hopping

energy difference can be matched by a phonon

α

β
d

locνζ
δζ

1
≡

localization 
spacing



Phonon-induced hopping

Any bath with a continuous spectrum of delocalized 
excitations down to ω = 0 will give the same exponential

α

β

Variable Range Hopping
N.F. Mott (1968)

Optimized
phase volume

Mechanism-dependent
prefactor



Can e-h pairs replace phonons and lead to 
phonon-less Variable Range Hoping

A#1:   Sure

3) Use the electric noise instead of phonons.

1) Recall phonon-less AC conductivity:
Sir N.F. Mott (1970)

2) Calculate the Nyquist noise.

4) Do self-consistency (whatever it means).

Easy steps:Easy steps:

Q: ?



A#1:  Sure

A#2: No way
(for Coulomb interaction in 3D – may be)

[L. Fleishman. P.W. Anderson (1980)]

is contributed by rare 
resonances 

δ
α

βγ

R

Can e-h pairs replace phonons and lead to 
phonon-less Variable Range HopingQ: ?



A#1:  Sure

A#2: No way
(for Coulomb interaction in 3D – may be)

[L. Fleishman. P.W. Anderson (1980)]

is contributed by rare 
resonances 

δ
α

βγ

R

Thus, the matrix element vanishes !!!

0 *

Can e-h pairs replace phonons and lead to 
phonon-less Variable Range HopingQ: ?



Q: Can we replace phonons with 
e-h pairs and obtain phonon-less VRH?
A#1:  Sure [a person from the street (2005)]: 
A#2: No way [L. Fleishman. P.W. Anderson (1980)]

A#3:  Finite T MetalMetal--Insulator TransitionInsulator Transition

insulator

Drude

metal

[Basko, Aleiner, BA (2005)]

Interaction strength



Q: Can we replace phonons with 
e-h pairs and obtain phonon-less VRH?
A#1:  Sure [a person from the street (2005)]: 
A#2: No way [L. Fleishman. P.W. Anderson (1980)]

A#3:  Finite T MetalMetal--Insulator TransitionInsulator Transition

insulator

Drude

metal

[Basko, Aleiner, BA (2006)]

Interaction 
strength

Localization
spacing( ) 1−

≡ dνζδζ

Many body 
localization!

Many body  wave 
functions are localized in 

functional space



Bad metal Good 
(Drude) 
metal



ManyMany--body mobility thresholdbody mobility threshold

insulator
metal

[Basko, Aleiner, Altshuler (2005)]

-many-body
mobility threshold



ManyMany--body mobility thresholdbody mobility threshold

insulator
metal

[Basko, Aleiner, Altshuler (2005)]

Many body DoS

All STATES LOCALIZED

All STATES EXTENDED -many-body
mobility threshold



Probability to find an extended state:

System volume

“All states are localized “
means that



ζ localization  
length

Main energy scale

dνζ
δζ

1
≡

Energy spacing 
between the states 
localized  nearby

ν one-electron 
density of states

Need a model with small parameters



We have to take into account that
1. A one-electron wave function decays 

exponentially as a function of the distance 
from its center.

2. There is level repulsion for the states 
localized nearby

3. Matrix elements of the interaction decay 
(probably as a power law) when differences 
between the energies of involved 
quasiparticles is increased. 

4. These matrix elements have random sign.
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Interaction only within the same cell;  
no diagonal matrix elements
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Technique

Self-
Consistent

Born
Approximation

Boltzmann
Equation





Idea of the calculation:
1. Start with some infinitesimal width η (Im part of 

the self-energy due to a bath) of each one-electron 
eigenstate

2. Consider Im part of the self-energy Γ in the 
presence of tunneling and e-e interaction. 

3. Calculate the probability distribution function P(Γ)

4. Consider the limit: ( ) ( )ΓΓ
η 00

PPlim
V,

≡
∞→→

V is the 
volume of 
the system



Idea of the calculation:
1. Start with some infinitesimal width η (Im part of 

the self-energy due to a bath) of each one-electron 
eigenstate

2. Consider Im part of the self-energy Γ in the 
presence of tunneling and e-e interaction. 

3. Calculate the probability distribution function P(Γ)

4. Consider the limit:

( ) ( )
0 0 0

P
for

δ= Γ
Γ

≠ Γ ≠
- insulator
- metal

V is the 
volume of 
the system

( ) ( )ΓΓ
η 00

PPlim
V,

≡
∞→→



Probability Distribution

metal

insulator

Note:

Look for:



Stability of the insulating phase:Stability of the insulating phase:
NONO spontaneous generation of broadeningspontaneous generation of broadening

0)( =Γ εα
is always a solution

ηεε i+→
linear stability analysis
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After n iterations of 
the equations of the 
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Born Approximation
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first
then (…) < 1 – insulator is stable !



•

(levels well resolved)•

• quantum kinetic equation for transitions between
localized states

(model-dependent)

as long as

Stability of the metallic phase:
Finite broadening is self-consistent



transition !
mobility 
edge

Many-body mobility edge



Large E (high T): extended states

Fermi Golden Rule 
hopping (bad metal)

transition !
mobility 
edge

(good metal)

Many-body mobility edge

ergodic states

nonergodic states

Such a state occupies 
infinitely many sites of the 
Anderson model but still 
negligible fraction of the 

total number of sites



Large Ek ) high T: extended states

Fermi Golden Rule 
hopping (bad metal)

transition !
mobility 
edge

interaction ! dephasing ! cutoff of WL 
(good metal)

Many-body mobility edge

Why no activation?



Many-body mobility edge

Large Ek ) high T: extended states
interaction ! dephasing ! cutoff of WL 
(good metal)
Fermi Golden Rule 
hopping (bad metal)

No activation:
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Conclusions & Some speculations
Conductivity exactly vanishes at finite 
temperature. Finite temperature phase transition 
without any apparent symmetry change!
Is it an ordinary thermodynamic phase transition 
or low temperature phase is a glass?

We considered weak interaction. 
What about strong electron-electron interactions?
Melting of a pined Wigner crystal?

What if we now turn on phonons? 
Cascades.
Is conventional hopping conductivity picture ever 
correct?


