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Previous Lectures:

1. Anderson Localization as Metal-Insulator Transition
2. Anderson model. Cayley tree problem.

3. Spectral Statistics and Localization.
Poisson versus Wigner-Dyson.
Invariant definition of the localization

4. Chaos and Localization.
Localization in the space of guantum numbers.



Wigner-Dyson random matrix statistics
follows from the delocalization.

Why the random matrix
Q " theory (RMT) works so well ?
" for nuclear spectra C

Many-Body excitations are delocalized |
What does it mean ?



Consider a finite system of quantum
particles, e.g., fermions. Let the one-
particle spectra be chaotic (Wigner-

Dyson).
What Is the statistics of the ?
many-body spectra? -

a.The particles do not interact with
each other.

Poisson:
Individual energies are conserving gquantum

numbers.




Part 4.

Many-Body

excitation in finite
systems.




Decay of a quasiparticle with an energy &€ In

Landau Fermi liquid

“e Landau Fermi liquid in a
e clean bulk system:
&1 e

Fermi Sea

Fermi
energy




Decay of a quasiparticle with an energy &€ In

Landau Fermi liquid

Eeo Quantum dot - zero-dimensional case ?

E— o .
Fermi golden rule
£40e (U.Sivan, Y.Imry & A.Aronov,1994 ):

Fermi Sea
Thouless

level energy
spacing




Inelastic relaxation rate in 0D case T=0

Offdiagonal
matrix
element




Decay of a quasiparticle with an energy &€ In

Landau Fermi liquid

e zero-dimensional case
E—A o ) 1 -
one-partlc;le spectrum Is
discrete
&1 e 1
equation

E+E,=E 1 +E
can not be satisfied exactly

297

Fermi Sea




Decay of a quasiparticle with an energy &€ In

Landau Fermi liquid

e zero-dimensional case
E—A o ) 1 -
one-partlc;le spectrum Is
discrete
&1 e 1
equation

E+E,=E 1 +E
can not be satisfied exactly

Fermi Sea

Recall: in the Anderson model the site-to-
site hopping does not conserve the energy




Chaos in Nuclel — Delocalization?

1 2 3 4 5 6 o
> Delocalization
c® generations .
in Fock space

&~ ® Can be mapped (approximately)
to the problem of localization

£+ ® on Cayley tree

Fermi Sea
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No e-e Interactions —
resonance tunneling




current

oo — D

The Interaction leads to
additional peaks -
many body excitations



current

oo — S

The Interaction leads to
additional peaks -
many body excitations



current

Landau
quasiparticle with
the width A




nonergodic states

Such a state occupies infinitely many sites of the Anderson
model but still negligible fraction of the total number of sites

N

N — const

total support of a
number of 1 givenwave
sites in the function
system

N — o0
localized N — o0 extended



W>1>W/K

There iIs of order one
resonance at every step

Nn~InN nonergodic







‘Metal-insulator transition in a weakly
Interacting many-electron system with
localized single-particle states

Annals of Physics, v. 321, p. 1126-1205 (2006)

D. M. Basko & I.L. Aleiner
Columbia University
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Transport in solids
O'(TA,COZO |

Metal Superconductor I
|
\ V
Ve ' |
1 Insulator
] >
T 1T
C 1
Conductance: G(w,T) = —
YV lv=o0
L.L,

Conductivity: G(w,T) =o(w,T) z -

zZ



strength Disorder + interactions

disorder (?

I o

)\ strength
of the
interaction

Fermi liquid Wigner crystal [



Can hopping conductivity ’)
exist




Question: can e-e interaction alone
sustain hopping conduction
In a localized system?

Given: All one-electron states are localized

Electrons interact with each other

The system Is closed (no phonons)

e A o

Temperature is low but finite

Find: DC conductivity o(T,»=0)

zero or finite?



“All states are localized “

means that

probability to find a state extended
over the system size L is

L
Pe:zzt X EXP (_#Cl—>



1. Localization of single-electron wave-functions:

2 _
VL U(r) e | Galr) = Eatia(r)

Ay (z) extended
—1 d=1; All states are localized

IR Amﬂiﬁ(\f\/\/\ X

V\/\x d=2; All states are localized
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T . G d>2; Anderson transition

localized



Anderson Transition

| > 1 <1
te e
N Eg I"J(‘)”(:Ztlif;tEG(? are
_s_f_?ﬂ_e;ﬂg \\%
i 005

EC - mobility edges (one particle)



Anderson Transition

> <
1> 1 1 <1
Coexistence of the localized
T & and extended states is not
possible!!!

\

all states are
localized

DoS

I+, - mobility edges (one particle)



Quantum particle in a random potential (Thouless, 1972)
Energy scales

L. Mean level spacing 0O, = 1/vx L
L

15 L IS the system size;
i 1/

energy

d IS the number of
dimensions

2. Thoulessenergy E.=hD/L® D isthediffusion const

ET has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

g=E./§ Mhotess g = Ghle?

conductance



Temperature dependence of the conductivity
of noninteracting electrons




Temperature dependence of the conductivity
of noninteracting electrons

are localized

%

\

Assume that all the states §
I




~_Inelastic processes -
transitions between localized states

___ — ~—=2 b — lg _¢,, energy
T, a e ° €F 1 B 5% mismatch
PA —Q@— PA

o(T) x o (inelastic lifetime)-

T=0 = o¢=0 (anymechanism)




Phonon-induced hopping

localization
spacing

‘ energy difference can be matched by a phonon




Phonon-induced hopping

Variable Range Hopping o(T) exp |—| = A
N.F. Mott (1968)

Mechanism-dependent

prefactor Optimized
phase volume

Any bath with a continuous spectrum of delocalized
excitations down to @ = 0 will give the same exponential




« Can e-h pairs replace phonons and lead to
=  phonon-less Variable Range Hoping

A#1l. Sure
Easy steps:

1) Recall phonon-less AC conductivity:

Sir N.F. Mott (1970) o2 d—2 B 2
o (w) >~ ;{’C <5§> e

O¢
hw

2) Calculate the Nyquist noise.

3) Use the electric noise instead of phonons.

4) Do self-consistency (whatever it means).



« Can e-h pairs replace phonons and lead to
=  phonon-less Variable Range Hoping -

A#1: Sure

A#2: NO wa [L. Fleishman. P.W. Anderson (1980)]
Y (for Coulomb interaction in 3D — may be)

2 ~d—2 2
1%,
o (w) >~ ¢ ;;C (5C ) Indti

5.| IS contributed by rare
hw| ~ resonances

w=5ﬁ—€a=f’y—§5




« Can e-h pairs replace phonons and lead to
=  phonon-less Variable Range Hoping

A#1: Sure

A2 NO way |[L. Fleishman. P.W. Anderson (1980)]




Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure [a person from the street (2005)]:
A#2: NoO way [L. Fleishman. P.W. Anderson (1980)]

A#3: Finite T Metal-Insulator Transition

o(T)]

[Basko, Aleiner, BA (2005)]

Drude

>

A1

Interaction strength

< metal

<—insulator—

>

O¢ T




Q: Can we replace phonons with
e-h pairs and obtain phonon-less VRH?

A#1: Sure [a person from the street (2005)]:
A#2: NoO way [L. Fleishman. P.W. Anderson (1980)]

A#3: Finite T Metal-Insulator Transition
[Basko, Aleiner, BA (2006)]

Many body wave
functions are localized in Drude
functional space

<—insulator—

Interaction
)\ << strength

— d _1Localization
:(Vé/ ) spacing




ho(T) o 4 5
;]'L|]1].,»}'L| A ,:I'LE

< Insulators

Metal

- -
— = * *
I‘: -le.f?a:l TI:E‘E:I ;
Good

Bad metal (Drude)
metal



Many-body mobility threshold

[Hl + Hmt] — £,
N [Basko, Aleiner, Altshuler (2005)]
o(T)
< metal
<—insulator—, gc many-body
mobility threshold

>

e I



Many-body mobility threshold
[Hl + Hmt] — 5,0,

[Basko, Aleiner, Altshuler (2005)]

o(T)

metal
aiﬂ)B—'ﬁﬁt.TES EXTENDED g
\ C

\\ All STATES LOCALIZED

>

many-body
mobility threshold

’7/

>

1



“All states are localized “

means that

Probability to find an extended state:

/ V.o

Peat o< exp ( _#\7_ 3\ )
\ Vioc\

lim V;,.(£) = o0
€580 loc




Main energy scale

1 Energy spacing

%) r =——g between the states
Vé’ localized nearby
& localization yy one-electron
length density of states

Need a model with small parameters




We have to take into account that

. A one-electron wave function decays
exponentially as a function of the distance
from Its center.

. There Is level repulsion for the states
localized nearby

. Matrix elements of the interaction decay
(probably as a power law) when differences
between the energies of involved
guasiparticles Is increased.

. These matrix elements have random sign.






No spins









Interaction only within the same cell;
no diagonal matrix elements



Technique EEGEEEE b
An A A A2

e? /R | |
¢z C T, .
< Insulators i i
-~ Metal | -
.Tc: T (i72] T[EE ] T
Self- Boltzmann
Consistent Equation

Born
Approximation
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|dea of the calculation:

. Start with some infinitesimal width 77 (Im part of
the self-energy due to a bath) of each one-electron

eigenstate

. Consider Im part of the self-energy I in the

presence of tunneling anc

. Calculate the probability ©

e-e Interaction.
istribution function P(I")

. Consider the limit: n_)lo',\rp_m P(F )E Po(r )
V isthe
volume of

the system



|dea of the calculation:

. Start with some infinitesimal width 77 (Im part of
the self-energy due to a bath) of each one-electron

eigenstate

. Consider Im part of the self-energy I in the

presence of tunneling anc

. Calculate the probability o

. Consider the limit: . lim

V isthe

volume of
the system

R (T)

e-e interaction.

istribution function P(I")
P(I7)=PRy(I")

—->0V o

= 5(F) - insulator

#0forT’'#0 -metal




Probability Distribution

metal

Note: (I')

(L)

insulator

J

x 1/n

/

Look for:

{

lim lim P(I' >0) =
n——+0V—oo

(r)

J > 0; metal

l 0; nsulator




Stability of the insulating phase:

NO spontaneous generation of broadening

[’ (¢)=0 E—>e+In
IS always a solution linear stability analysis
I I
>mo(e—&)) +

(6-&,)" +T° (6-¢&,)°
After N iterations of [ \N
the equations of the n AT 1
Self Consistent P.(I') ~E const 5— In Z
Born Approximation \ g y,

first m — o0 : :
<l1l- |
then n — O (...) <1-insulator is stable !



Stability of the metallic phase:

Finite broadening Is self-consistent

_ 1 (T —(M)?
P(r)_ﬁﬂ(sr?) = [_ 2(6r2) ]

)
\/(0r2) < (M) aslongas | T > f

(M) <« ¢ (levels well resolved)

guantum Kkinetic equation for transitions between
localized states

o (T) o< A\2T%| (model-dependent)



Many-body mobility edge

1

mobility
transition ! edge



Many-body mobility edge

1'A Large E (high T): extended states

(good metal) ergodic states
5C/>‘2 -------------- S
Fermi Golden Rule dic stat
hopping (bad metal) Nenergocdic stares
S/ A | -
mobility

transition ! edge _
Such a state occupies

Infinitely many sites of the
Anderson model but still
negligible fraction of the

total number of sites



Many-body mobility edge

Large E, ) high T: extended states

interaction | dephasing | cutoff of WL
(good metal)

Fermi Golden Rule
hopping (bad metal)

mobility
transition ! edge

Why no activation?



Many-body mobility edge

Large E, ) high T: extended states

interaction ! dephasing | cutoff of WL
(good metal) No activation:

Fermi Golden Rule
hopping (bad metal)

mobility

" x volume
transition ! edge

> 0

volume —» o



Conclusions & Some speculations

Conductivity exactly vanishes at finite
temperature. Finite temperature phase transition
without any apparent symmetry change!

s it an ordinary thermodynamic phase transition
or low temperature phase Is a glass?

We considered weak interaction.
What about strong electron-electron interactions?
Melting of a pined Wigner crystal?

What if we now turn on phonons?

Cascades.

Is conventional hopping conductivity picture ever
correct?



