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NON-INTERACTING OR INTERACTING?

In every physical system there are correlations between constituent
particles due to various interactions
@ "Non-interacting systems” - systems whose physics can be
understood using the single particle picture and where
correlations are an annoying ingredient reducing the predictive

power of the theory

@ "Interacting systems” - systems whose essential physical
properties would not exist without interactions
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SYSTEMS WHERE INTERACTIONS ARE ESSENTIAL

Here are some textbook examples:
o Ferro and antiferromagnets

@ Superconductors

Fractional quantum Hall systems

Kondo impurities

Systems at Coulomb Blockade

Luttinger liquids
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THE AIM OF THIS LECTURE COURSE

To give an elementary introduction into the physics of 1D Luttinger
liquids, the basics of Bosonization technique and the scaling theory.
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OUTLINE

PART 1

This is a formal part, where we will discuss the fermion-boson
correspondence, the Luttinger model and the Bosonization.

PART 11

In this part a contact to reality will be made. The concept of
Luttinger Liquid will be introduced and physical examples will be
given.

Part III

In this part applications of Luttinger Liquid theory to quantum
impurity problems will be discussed.
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THE HARMONIC OSCILLATOR

Bosonic Oscillator Fermionic Oscillator

The Bosonic algebra:
[b,b'] =1

[b,b] = [b',b'] =0
The Fock space:

bl0) =0, [n) = (b")"|0)
The Hamiltonian
Hg = hwNg, Ng=b'b

The Fermionic algebra:
Yyl + 9Ty =1

{v,9} ={ph ¢} =0
The Fock space:

$[0) =0, 1) =9T|0)
The Hamiltonian
Hr = hwNg, N =Ty
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OccUPATION NUMBERS

Bosons Fermions

The extended Bosonic algebra:

by, bt, n=1,...,N

[bna b;fn] = 6nm

The Fock space is spanned by
states of given occupation num-
bers 0 < n, < o0

Iny...ny) = (b1)™ ... (b,)™|0)

Ng = biby + - + bl by

The extended Fermionic algebra:
Yn P,

{wm wjn} = Onm

The Fock space is spanned by
states of given occupation num-
bers0 < n, <1

n=1,....,. M

|ny ... nn) = (W)™ .. (},)™]0)

Ne = 9li1+ -+ Ulytom
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FERMION-BOSON CORRESPONDENCE: N =1
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For extended fermionic oscillator
algebra 1y, 1}, 0 < k < o0 and

o
He = kNe, N =1l
k=0

THE CORRESPONDENCE OF
STATES:

The eigenstates of Hg for Np = 1
are in one to one correspondence
to the eigenstates of Hg = b'b.
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FERMION-BOSON CORRESPONDENCE: N =1

For extended fermionic oscillator

o0
- i _at

Hp /;kwkwk Hp=1b'b algebra . ¢;£, 0< k < o0 and
& o0

£ He =Y kNe,  Ni = vjux
S k=0

S

=

Ke)

\d

© THE CORRESPONDENCE OF

STATES:
The eigenstates of Hg for Np = 1
are in one to one correspondence
to the eigenstates of Hg = b'b.
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FERMION-BOSON CORRESPONDENCE: N =1

For extended fermionic oscillator

o0
- i _at

Hp /;kwkwk Hp=1b'b algebra . ¢;£, 0< k < o0 and
& o0

& Hr = Z kN, Nic = Pl
S k=0

S

=

Ke)

\d

© THE CORRESPONDENCE OF

STATES:
The eigenstates of Hg for Np = 1
are in one to one correspondence
to the eigenstates of Hg = b'b.
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FERMION-BOSON CORRESPONDENCE: N =1

For extended fermionic oscillator

o0
= i _at

Hp kzﬂ)kwkwk Hp=1b'b algebra . ¢;£, 0< k < o0 and
& o0

& Hr = Z kN, Nic = Pl
S k=0

S

=

Ke)

\d

© THE CORRESPONDENCE OF

STATES:
The eigenstates of Hg for Np = 1
are in one to one correspondence
to the eigenstates of Hg = b'b.
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FERMION-BOSON CORRESPONDENCE: Ng = 2

Fermion Hamiltonian
Eigenstates of Hg and Hg

He=-1+ Z kwlwk, ’ Fermions ‘ Bosons ‘ E ‘
k=0 1110000...) | ]00) | O
for N — 2. [101000...) | [10) |1
011000.) | Jo1) |,
1100100...) | |20)
Boson Hamiltonian |010100...) |11) 3
|100010...) |30)
Hg = b}bi + 2blb

Energy levels and their degeneracies coincide for Hg and Hg
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FERMION-BOSON CORRESPONDENCE: GENERAL Ng

Consider a pair of Hamiltonians

00 N
Hp = —En+hwY kil and  Hg =hw > mb} bp.
k=0 m=1

where Hp constrained onto the subspace of fixed particle number
Ng = N. Here Ey = hwN(N — 1)/2.

THEOREM

The eigenvalues of Hg and Hg coincide and are given by
E, = hwn, where n is a non-negative integer. Each level E, has
the same degeneracy D(n) for Hg and H.

'VADIM CHEIANOV INTRODUCTION IN BOSONIZATION I



OUTLINE

MOTIVATION

THE FERMION-BOSON CORRESPONDENCE
THE LUTTINGER MODEL

FERMION-BOSON CORRESPONDENCE. EXERCISES.

PROBLEM 1
Prove the theorem in the previous slide.

PROBLEM 2

For the eigenvalue E, of Hp calculate the degeneracy D(n) of the
corresponding eigenspace. Calculate large n asymptotics of D(n)
for n < N and for n > N.

PROBLEM 3

Calculate the quantum partition function Z(3) = 3., D(n)e PEn,
free energy and the specific heat of the system described by the
Hamiltonian Hg (Hg) in the large N limit.
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WEYL FERMION IN 1+1 DIMENSIONS I

Consider the Hamiltonian: E(m)
Hr = v i m— 1 . ¢T Um //
F r 2 ' mEm - //

m=—00

The ground state is the Dirac vacuum:

W0 = Yml0) =0, m>1
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WEYL FERMION IN 1+1 DIMENSIONS II

Introduce a local field:

1 0 m
V)= o 2L € -

(0(x), 01 ()} = 3(x — x') Tt

Time evolution is generated by Hamiltonian

2rr
Hr = v /0 dx : () (=i () :
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SINGULARITIES AND NORMAL ORDERING

Consider a point-split product 1 (x)i(x + €). It is singular in the
following sense:

W)X+ ) = —— + O(1),  €—0

2mie

This can be used for an alternative definition of normal ordering:

T G)B(x) = lim TG+ €) — =

e—0 2mie
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WEYL FERMION: THE CURRENT ANOMALY

The density operator is p(x) = ¥ (x)¥(x).
e Normally, the density operator satisfies [p(x), p(x’)] = 0
o For the Weyl fermion v (x)(x) is singular

e The non-singular (normal ordered) expression is

p(x) = T (x)p(x) :

The normal ordered density satisfies [p(x), p(x')] = 5=0"(x — X')
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WEYL FERMION. EXERCISES.

PROBLEM 1

Derive the formula for the current anomaly. (Hint: get rid of the
singular operators in the result of the commutation before taking
the € — 0 limit)

PROBLEM 2

Derive the equation of motion for the Weyl fermion v(x, t). Use
the equation of motion to show that all local operators of the
theory satisfy

O(x,t) = O(x — vt)
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CHIRAL BOSON IN 1+1 DIMENSIONS [

Consider a Hamiltonian

He =23 mblybm + %N2

m>1

where N is the "angular momentum” operator of a rotator algebra

[SDOaN]:ia @0"*’271—:300'

THE FERMION-BOSON CORRESPONDENCE IN 1+1 D

The energy levels and their degeneracies for the Weyl fermion and
the chiral boson on a cylinder coincide. N for the chiral boson
corresponds to the particle number of fermions.
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CHIRAL BOSON IN 1+1 DIMENSIONS 11

Introduce a local field:

p(x) = po+ = N+/Zr(bT e — bpe'™)

m>0

this field satisfies ¢(x, t) = ¢(x, t) + 27 and can be considered as
a map from a cylinder onto a unit circle. The commutation
relations are

[p(x), o(x)] = —imsgn(x — x')

The Hamiltonian becomes

H —V/zmdx(é) )2
B_47-( 0 xP
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LocAL FERMION-BOSON CORRESPONDENCE

By comparison of local operator algebras one can establish a local
Fermion-Boson correspondence called Bosonization

Example: Bosonization of density operator

For ~ the = Weyl  fermion | For the chiral boson
[p(x), p(X)] = 50" (x = x) | [p(x), o(x')] = —imsgn(x — x')

4

1

p(x) = 5 0xp
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BOSONIZATION OF FERMION FIELD

Local Fermion Algebra

YY)+ (X )(x) =0, Y(x)T(x)+ 9T (X)b(x) = 6(x —y)
—(x)d(x = X)

1

px) = 5-0xp,  (x) = c: et

o)
&
=
><\
[

Here : e¥ := e/¥+e/?- | that is all annihilation operators in ¢ are
put to the right of creation operators. The constant ¢ depends on
the ultraviolet regularization.
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BOSONIZATION EXERCIES

Prove that the operators %8)(@, - e/?(%) : satisfy the same algebra

as p(x), 1¥(x). Hint: use the Campbell- Hausdorff formula for two
operators whose commutator is a c-number:

eAeB — oBoAdlABI
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FREE MASSLESS DIRAC FERMIONS IN 141

DIMENSIONS

Free Massless Dirac Fermion = 2 Weyl L E(k) R,

Fermions \\ //
AN

N 7/
1 ) \\ //
X) = eikx k >
Y1,R(X) \/27’; Yr,r(k) VN
e N
. . e N
He = v [ o [uh(=ion — vl(-id o] N
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BOSONIZATION OF FREE MASSLESS DIRAC FIELD

Each Weyl fermion is Bosonized by its chiral boson ¢ (g).
[oc(x), or(x)] = imsgn(x—x")  [pr(x), pr(x)] = —imsgn(x—x)

Hg = ﬁ / dx [(8xSOR)2 + (aX‘PL)2]

Bosonization Rules

1 .
pR() = 5-Oxpr. Ur(x) = F0)

1 —i b
pr(x) = 5-OxpL, P (x) = e~ield
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FrREe ComMmpPACT BOSON FIELD IN 141 DIMENSIONS

Change of Variables

p=¢r+¢L and  O=9pr—¢
_ v 2 2
He = o [ ox[(0:6) + (0.6F]

Fields ¢ and 1 = 040 /7 are canonically
K;_ b+ om conjugate. In Lagrangian formulation:

Sg = % dxdt [(9:¢)* — v*(0x$)°]

v
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SUMMARY.

WEYL=CHIRAL BOSON

1

V/dm/ﬁ("ax)lﬁ = 4‘;/dX(8x90)2, p=e? plx) =50k

MASSLESS DIRAC=FREE BoOSON

v [ e [uh-i0un - wl(-ionn] = o= [ o [00F +(2.0F]

Y =00 Yp =€) [p(x),00(x)] = iTd(x — X')
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THE LUTTINGER MODEL

The Luttinger model is probably the
simplest model describing interacting
relativistic fermions. The interaction is

characterized by a dimensionless E
coupling . /\\

R R

THE LUTTINGER HAMILTONIAN

Huur = v [ de: [sliocw — whiosn + 1pu(x)p(x)] :

Note, that all terms are normal ordered!
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PERTURBATION THEORY TO LUTTINGER MODEL

The Schwinger-Dyson perturbation theory:

— =+ o+ .

The perturbation theory contains divergent terms which need to be
renormalized in the spirit of Gell-Mann and Low RG. The beta
function of this theory vanishes to all orders in parameter ~.

Exact resummation of the perturbation series using the axial Word
identities |. E. Dzyaloshinsky and A. |. Larkin, Sov. Phys. JETP
38, 202 (1974)
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BOSONIZATION OF THE LUTTINGER MODEL

The kinetic term of the Luttinger Hamiltonian is the massless
Dirac Hamiltonian. Its Bosonization is a Boson Hamiltonian. The
bosonization of the interaction term is

r(x) = |5 (00 00)] (00 - 00)
therefore

Hiur = v / dx [w]i0n — viEhiowwr +vpL(x)pr(x)]

J
HEsr = 5 [ dx {(0.07 + (00 + S l(00) ~ (0071}
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BOSONIZATION OF THE LUTTINGER MODEL

LUTTINGER HAMILTONIAN. STANDARD NOTATIONS.

Hoor = 2 [ dx [1(ax¢)2 + K(8,0)?
™ K

where

[0:0(x), 6(x)] = —imd(x — X')

2
Ve =vy/1— (l> is the sound velocity
27

1—~/2
K= ﬂ is the Luttinger parameter
1+~/2m
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LUTTINGER MODEL. EXERCISES.

PROBLEM 1

Using the Heisenberg equation i0;A = [A, H] show that field ¢
satisfies the wave equation

R0~ %o =0

PROBLEM 2

By performing the Legendre transform of the bosonized Luttinger
Hamiltonian find the Lagrange density of the Bose field ¢ (in this
case m0x0 should be treated as the momentum density).
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LUTTINGER MODEL. LAGRANGIAN FORMULATION.

IMAGINARY TIME LUTTINGER ACTION
Action for the ¢ field:

s=aw o [ (3) ()]

Action for the 0 field:
K [P 1 [00\? 960\ ?

Note the duality § — ¢, K — K1
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CORRELATION FUNCTIONS: BOSONS I

We start with the imaginary time correlator

G(x,7) = (To(x, 7)(x))

It is a Fourier transform of
— dk Tkx—i .
g(x,7)=p 1 ;/%ek “nTG(iwn, k)

where G(iwp, k) in a free Boson theory it is given by

v K 2mn

R
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CORRELATION FUNCTIONS: BOSONs 11

TEMPERATURE CORRELATOR OF BOSE FIELDS

Glx,7) = X n [1 — e Aerien] Ko [y o et-en
’ 4 4
In the limit of zero temperature T — 0 this becomes
__K 2 2,2
g(x,7) = 2 In(x*+ viT9) + ¢
In real time t = —i7 there are light cone singularities at

x = =xv.t
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GAUSSIAN INTEGRATION
Write the quadratic action of boson in a symbolic form
1 .
= 56670

Then for a source field 7 there is a

GAUSSIAN INTEGRATION FORMULA

(Tem?) = /D(;Se Sigind — g=2m9M

For example,

<Tei¢(X,T)e—I’(f)(X/,T/)> =c eg(X_X/aT_TI)

here ¢ = e~ (#(9% is an (infinite) constant.
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CORRELATION FUNCTION OF FERMIONS. T =0

The right-moving Fermion is given by

Yr(x) = el PR(X) = @if(x)+id(x)

Applying Gaussian Integration Formula to this expression we find

(GAUSSIAN INTEGRATION FORMULA

C

T o
(TRb TR = O A = ver)
where (1+ K)2 (1 K)z
A=k M ATk
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CORRELATION FUNCTION OF FERMIONS. T =0

The structure of correlation function
c

(Tor(x, T)PR(X)) = -

(X + iveT)B(x — iver)A

suggests that in interacting system the "right” electron is no more
a pure right-mover. It rather splits into two counterpropagating
wave-packets. This is called charge fractionalization.

Y

N

a_—
D
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PARTICLE OCCUPATION NUMBERS.

The particle occupation numbers are found as

nr(k) = /dxe_ikX<T¢;T?(X)1/JR(X/)> = no + csgn(k)[k|ATA1

K _ 1y n(k)

oK >0

A+A—1=

Instead of the sharp Fermi step
there is a continuous distribution

with a power-law singularity at
k=0. k
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SUMMARY.

@ Using the Fermion-Boson correspondence we solved exactly a
non-trivial interacting system of fermions.

o We found that the spectrum of the system is described by
bosons (phonons) whose velocity is renormalized by
interactions.

@ The interaction effects are encoded in the Luttinger parameter
K.

e For K # 1 charge fractionalization and the disappearance of
Fermi step are observed.
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