Electronic properties of graphene - I

Vladimir Falko

helped by V.Cheianov, E.McCann K.Kechedzhi, D.Abergel T.Ando, B.Altshuler, I.Aleiner

Ultra-thin graphitic films: from flakes to micro-devices

Novoselov *et al* -Science 306, 666 (2004)

for references, see the review article Geim and Novoselov - Nature Mat. 6, 183 (2007)

L1: band structure of monolayer graphene,
 'chiral' electrons, Berry's phase π in
 monolayer graphene, unusual properties of
 the PN junction in graphene.

L2: bilayer graphene and QHE in graphene.

L3: disorder and transport in graphene.

Monolayer graphene

Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

'Chiral' electrons and Berry's phase π in monolayer graphene, suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene focusing & caustics, Veselago lens for electrons.

Carbon has 4 electrons in the outer s-p shell

 sp^2 hybridisation forms strong directed bonds which determine a honeycomb lattice structure.

 $p^{z}(\pi)$ orbitals determine conduction properties of graphite

Wallace, Phys. Rev. 71, 622 (1947) Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Transfer integral on a hexagonal lattice

$$\mathcal{H}_{AB} = \langle \Phi_A | H | \Phi_B \rangle$$

$$\mathcal{H}C_{j} = \varepsilon_{j}SC_{j}$$

Wallace, Phys. Rev. 71, 622 (1947) Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Transfer integral on a hexagonal lattice

 $\mathcal{H}_{AB} = \langle \Phi_A | H | \Phi_B \rangle$

four-fold degeneracy

In the corners of the Brillouin zone, electron states on the A and B sub-lattices decouple and have exactly the same energy:

$$H_{AB} = -\gamma_0 (e^{-i2\pi/3} + 1 + e^{i2\pi/3}) = 0$$

and also for both corners of the BZ,

Four degenerate states in the corners of the Brillouin zone realize a 4-dimensional irreducible representation of the symmetry group of the honeycomb lattice $G\{C_{6v} \otimes T\}$

$$H_{AB,K_{+}} = -\gamma_{0} \left[e^{-i\frac{2\pi}{3}} e^{-i(\frac{a}{2}p_{x} + \frac{a}{2\sqrt{3}}p_{y})} + e^{i\frac{a}{\sqrt{3}}p_{y}} + e^{i\frac{2\pi}{3}} e^{i(\frac{a}{2}p_{x} - \frac{a}{2\sqrt{3}}p_{y})} \right]$$

$$\approx -\frac{\sqrt{3}}{2} \gamma_{0} a(p_{x} - ip_{y}) = -\frac{\sqrt{3}}{2} \gamma_{0} a\pi^{+}$$

$$\pi^{+} = p_{x} - ip_{y}$$

$$\pi = p_{x} + ip_{y}$$

$$H_{BA,K_{+}} \approx -\frac{\sqrt{3}}{2} \gamma_{0} a(p_{x} + ip_{y}) = -\frac{\sqrt{3}}{2} \gamma_{0} a\pi$$

$$W = \frac{\sqrt{3}}{2} \gamma_{0} a \sim 10^{8} \frac{cm}{sec}$$

$$W = \frac{\sqrt{3}}{2} \gamma_{0} a \sim 10^{8} \frac{cm}{sec}$$

Also, one may need to take into account an additional real spin degeneracy of all states

Monolayer graphene

Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

'Chiral' electrons and Berry's phase π in monolayer graphene, suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene focusing & caustics, Veselago lens for electrons.

To write down the monolayer Hamiltonian describing electrons near the K-points, one has to construct all possible invariants using 4x4 matrices (with sublattice and valley indices) acting within the 4-dimensional representation and the momentum operator, \vec{p} . (phenomenology)

Alternatively, one can apply the tight-binding model including the dominant next-neighbour (AB) hop and also longer-distance (AA) hops and to expand to higher order in pa <<1 (or π, π^+). (microscopy)

$$H_{AB,K_{+}} = -\gamma_{0} \left[e^{-i\frac{2\pi}{3}} e^{-i(\frac{a}{2}p_{x} + \frac{a}{2\sqrt{3}}p_{y})} + e^{i\frac{a}{\sqrt{3}}p_{y}} + e^{i\frac{2\pi}{3}} e^{i(\frac{a}{2}p_{x} - \frac{a}{2\sqrt{3}}p_{y})} \right]$$

$$\approx \frac{\sqrt{3}}{2} \gamma_{0} a(p_{x} - ip_{y}) - \frac{\gamma_{0}a^{2}}{8}(p_{x} + ip_{y})^{2}$$
higher order invariants (expansion terms)
$$\hat{H} = \varsigma_{V} \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} + \mu \begin{pmatrix} 0 & \pi^{2} \\ (\pi^{+})^{2} & 0 \end{pmatrix} + \delta \begin{pmatrix} p^{2} & 0 \\ 0 & p^{1} \end{pmatrix}$$

$$\begin{pmatrix} A_{+} \\ B_{+} \\ B_{-} \\ A_{-} \end{pmatrix}$$
valley
$$K_{-} \qquad a \text{ weak electron-hole asymmetry dua to an n-orthogonality of orbital basis and AA, BB hopping}$$

$$\hat{H} = \varsigma v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} + \mu \begin{pmatrix} 0 & \pi^{2} \\ (\pi^{+})^{2} & 0 \end{pmatrix} \text{ weak 'trigonal warping': which has interesting consequences for the weak localisation effect (Lecture 3).}$$

$$valley$$

$$\varsigma = \pm 1$$

$$\pi = p_{x} + ip_{y} = pe^{i\varphi}$$

$$\pi = p_{x} - ip_{y} = pe^{-i\varphi}$$

$$\vec{p} = p(\cos\varphi, \sin\varphi)$$

$$time-inversion$$

$$symmetry \ t \to -t$$

$$\vec{p} \to -\vec{p}; K_{\pm} \to K_{\mp}$$

A. Bostwick *et al* – Nature Physics, 3, 36 (2007)

Monolayer graphene

Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

'Chiral' electrons and Berry's phase π in monolayer graphene, suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene focusing & caustics, Veselago lens for electrons.

Monolayer graphene: truly two-dimensional gapless semiconductor with the Dirac-type spectrum of electrons

Monolayer

K. Novoselov et al., Science 306, 666 (2004)

Bloch function amplitudes (e.g., in the valley K) on the AB sites ('isospin') mimic spin components of a relativistic Dirac fermion.

$$\pi^+ = p_x - ip_y$$
$$\pi = p_x + ip_y$$

$$H_1 = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v \vec{\sigma} \cdot \vec{p} = vp \ \vec{\sigma} \cdot \vec{n}$$

<u>Chiral electrons</u> isospin direction is linked to the axis determined by the electron momentum.

for conduction band electrons, $\vec{\sigma} \cdot \vec{n} = 1$

$$\varepsilon = vp$$

$$\varepsilon_{F}$$

$$\hat{H}_{1} = v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} = vc$$

$$= v\vec{\sigma}\cdot\vec{p} = vp \ \vec{\sigma}\cdot\vec{n}$$

Bloch function amplitudes on the AB sites - 'isospin'

$$\boldsymbol{\psi} = \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix}$$

Chiral electrons: 'isospin' direction is linked to the axis determined by the electron momentum,

 $\vec{\sigma} \cdot \vec{n} = 1$

$$\psi \rightarrow e^{2\pi \frac{i}{2}\sigma_3}\psi = e^{i\pi}\psi$$

Berry phase π

$$H_1 = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v \vec{\sigma} \cdot \vec{p} = vp \ \vec{\sigma} \cdot \vec{n}$$

$$\pi = p_x + ip_y = pe^{i\phi}$$
$$\pi^+ = p_x - ip_y = pe^{-i\phi}$$

Chiral electrons: isospin direction is linked to the electron momentum.

$$\psi_{\vec{p}} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\theta/2} \\ e^{-i\theta/2} \end{pmatrix}$$

for conduction band electrons,

$$\vec{\sigma} \cdot \vec{n} = 1$$
 \vec{p}

$$\vec{\sigma} \cdot \vec{n} = -1$$
 \vec{p}

Due to the isospin conservation, A-B symmetric potential cannot backward scatter chiral fermions, Ando, Nakanishi, Saito J. Phys. Soc. Jpn 67, 2857 (1998)

$$w(\theta) \sim \cos^2 \frac{\theta}{2} f(|\vec{p} - \vec{p}'|)$$

Monolayer graphene

Lattice, symmetry and band structure of monolayer graphene.

Intricate details: trigonal warping in the band structure.

'Chiral' electrons and Berry's phase π in monolayer graphene, suppressed backscattering of chiral electrons.

Unusual properties of the PN junction in graphene focusing & caustics, Veselago lens for electrons. PN junctions in the usual gap-full semiconductors are nontransparent for incident electrons, therefore, they are highly resistive.

Transmission of chiral electrons through the PN junction in graphene

$$\psi_{\vec{p}} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\theta/2} \\ e^{-i\theta/2} \end{pmatrix}$$

Due to the isospin conservation, A-B symmetric potential cannot backward scatter chiral electrons

 $\hat{H} = v\vec{\sigma}\cdot\vec{p}$

For graphene PN junctions: Cheianov, VF - PR B 74, 041403 (2006) 'Klein paradox': Katsnelson, Novoselov, Geim, Nature Physics 2, 620 (2006)

Transmission of chiral electrons through the PN junction in graphene

Due to the 'isospin' conservation, electrostatic potential *U(x)* which smooth on atomic distances cannot scatter chiral fermions in the exactly backward direction.

$$w(\theta) = e^{-\pi p_F d \sin^2 \theta} \cos^2 \theta$$

Transmission of chiral electrons through the PN junction in graphene

Due to transmission of electrons with a small incidence angle, $\theta < 1/p_F d$, a PN junction in graphene should display a finite conductance (no pinch-off)

A characteristic Fano factor in the shot noise:

$$\frac{g_{np}}{L_{\perp}} = \frac{2e^2}{\pi h} \sqrt{\frac{p_F}{d}}$$

$$\left\langle I \cdot I \right\rangle = (1 - \sqrt{\frac{1}{2}}) eI$$

Cheianov, VF - PR B 74, 041403 (2006)

Fig. 2. (a) Atomic force microscopy image of a single-layer graphene Josephson junction used in our experiments. The electrodes consist of a Ti/Al bilayer, with the Tutatnium in contact with graphen.(b) Large graphene layer deposited on top of a Si/SiO₂ substrate by controlled exfoliation of a single graphite crystal. graphe

PN junctions should be taken into consideration in two-terminal devices, since contacts dope graphene.

Heersche *et al* - Nature Physics (2007)

Wishful thinking about graphene microstructures

Focusing and Veselago lens for electrons in ballistic graphene

Cheianov, VF, Altshuler - Science 315, 1252 (2007)

The effect we'll discuss would be the strongest in sharp PN junction, with $d \sim \lambda_F$.

Veselago Lens for photons

Veselago, Sov. Phys.-Usp., 10, 509 (1968)

Pendry, Phys. Rev. Lett., 85, 3966 (2000)

Graphene bipolar transistor: Veselago lens for electrons

Focusing prism (beam-splitter) for electrons

Graphite studied from 1930th

Buckyballs Curl, Kroto Smalley 1985

Nanotubes Iijima 1991 Smalley 1993

'Theoretical graphene'

construction block in the theory of graphite and nanotubes

Layered poorly conducting semimetal used in pencils and nuclear fusion moderators M. Dresselhaus, G. Dresselhaus Adv. Phys. 51, 1 (2002)

> *Physical Properties of Carbon Nanotubes* Saitoh, Dresselhaus, Dresselhaus, Imperial College Press 1998