Electronic properties of graphene - II

Vladimir Falko

helped by E.McCann, V.Cheianov K.Kechedzhi, D.Abergel, A.Russell T.Ando, B.Altshuler, I.Aleiner

Monolayer graphene

Band structure of bilayer graphene, 'chiral' electrons and Berry's phase 2π .

Effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

Interlayer asymmetry gap in bilayers.

Bilayer [Bernal (AB) stacking]

Bilayer [Bernal (AB) stacking]

In the vicinity of each of K points

$$\begin{array}{cccc} (\text{B to A}) \text{ and } (\widetilde{B} \text{ to } \widetilde{A}) & A & \widetilde{B} & \widetilde{A} & B \\ & \text{hopping} & & \\ & \text{given by} & H = \begin{pmatrix} & & \nu \pi^+ \\ & \nu \pi & & \\ & \nu \pi^+ & & \end{pmatrix} \begin{array}{c} A & \widetilde{B} & \widetilde{A} & B \\ & \widetilde{B} & \widetilde{A} \\ & \widetilde{B} & \widetilde{A} \\ & V \pi^+ & & & \\ & V \pi & & & \end{array} \right) \begin{array}{c} A & \widetilde{B} & \widetilde{A} & B \\ & \widetilde{B} & \widetilde{A} \\ & \widetilde{B} & \widetilde{A} \end{array}$$

Bilayer [Bernal (AB) stacking]

In the vicinity of each of K points

$$\hat{H}_{2} = \frac{-1}{2m} \begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \end{pmatrix} = \frac{-p^{2}}{2m} \begin{pmatrix} 0 & e^{-2i\varphi} \\ \pi^{-2i\varphi} & 0 \end{pmatrix} = \frac{-p^{2}}{2m} \vec{n} \cdot \vec{\sigma}$$

$$\pi = p_x + ip_y = pe^{i\phi}$$
$$\pi^+ = p_x - ip_y = pe^{-i\phi}$$

$$\vec{n}(\vec{p}) = (\cos 2\varphi, \sin 2\varphi)$$

$$\psi \to e^{2 \times 2\pi \frac{i}{2}\sigma_3} \psi = e^{i2\pi} \psi$$

Berry phase 2π

(for a monolayer = π) Monolayer: $H = v\xi \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix}$

Monolayer graphene

Band structure of bilayer graphene, 'chiral' electrons and Berry's phase 2π .

Effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

Interlayer asymmetry gap in bilayers.

$$\hat{H}_{2} = -\frac{1}{2m} \left[\sigma_{x} \left(p_{x}^{2} - p_{y}^{2} \right) + \sigma_{y} \left(p_{x} p_{y} + p_{y} p_{x} \right) \right] \\ + v_{3} \left(\sigma_{x} p_{x} - \sigma_{y} p_{y} \right) \\ \text{'trigonal warping'} \\ \text{Berry phase:} \\ 2\pi = 3\pi - \pi \\ \text{weak magnetic field} \\ \lambda_{B}^{-1} \sim p < mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{weak magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ \lambda_{B}^{-1} \sim p >> mv_{3} \\ \text{strong magnetic field} \\ N_{L} < N < 8N^{*} \\ N^{*} = \frac{\gamma_{1}^{2}}{4\pi\hbar^{2}v^{2}} \sim 4 \times 10^{12} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} \sim 10^{11} cm^{-2} \\ \text{Lifshitz transition} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} \sim 10^{11} cm^{-2} \\ \text{Lifshitz transition} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} \sim 10^{11} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} \sim 10^{11} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} \sim 10^{11} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} = 10^{11} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} = 10^{11} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{\gamma_{1}}{4\pi\hbar^{2}v^{2}} = 10^{11} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 2 \left(\frac{v_{3}}{v} \right)^{2} \frac{v_{3}}{4\pi\hbar^{2}v^{2}} = 10^{11} cm^{-2} \\ \text{strong magnetic field} \\ N_{L} = 10^{10} cm^{-2} \\ N_{L} = 10^{10} cm^{-2}$$

Summary of band structure: chiral electrons in monolayer and bilayer graphene

$$H_{1} = \varsigma v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} + \mu \begin{pmatrix} 0 & \pi^{2} \\ (\pi^{+})^{2} & 0 \end{pmatrix} \qquad \begin{pmatrix} A \\ B \\ B \\ \zeta = -1 \end{pmatrix}$$
valley
'trigonal warping' terms
$$H_{2} = \frac{1}{2m} \begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \varsigma v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{+} & 0 \end{pmatrix} \qquad \begin{pmatrix} A \\ \tilde{B} \\ \tilde{B} \\ \zeta = -1 \end{pmatrix}$$

dominant at a high magnetic field and in high-density structures

Bilayer graphene

Monolayer graphene

Band structure of bilayer graphene, 'chiral' electrons and Berry's phase 2π .

Effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

Interlayer asymmetry gap in bilayers.

Monolayer and bilayer graphene optics.

2D Landau levels

semiconductor QW / heterostructure (GaAs/AlGaAs)

$$\vec{p} = -i\hbar \nabla - \frac{e}{c}\vec{A}, \quad rot\vec{A} = B\vec{l}_z$$
$$\pi = p_x + ip_y; \quad \pi^+ = p_x - ip_y$$
$$\pi \varphi_0 = 0$$
$$\varphi_{n+1} = \frac{\lambda_B}{\sqrt{n+1}}\pi^+ \varphi_n$$

 $H = \frac{\vec{p}^2}{2m} = \frac{\pi \pi^+ + \pi^+ \pi}{4m} \Longrightarrow (n + \frac{1}{2})\hbar\omega_c \longleftarrow \text{ energies / wave functions}$

2D Landau levels of chiral electrons J=1 monolayer J=2 bilayer

$$g\begin{pmatrix} 0 & (\pi^{+})^{J} \\ \pi^{J} & 0 \end{pmatrix} \psi = \varepsilon \psi$$

$$\begin{pmatrix} \varphi_{0} \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \varphi_{J-1} \\ 0 \end{pmatrix} \Rightarrow \varepsilon = 0$$

$$\pi^J \varphi_0 = \ldots = \pi^J \varphi_{J-1} = 0$$

4J-degenerate zero-energy Landau level

valley index

$$\begin{pmatrix} 0 & (\pi^{+})^{J} & & \\ \pi^{J} & 0 & & \\ & 0 & (-\pi^{+})^{J} & \\ & (-\pi)^{J} & 0 & \end{pmatrix} \begin{pmatrix} A & + \\ \tilde{B} & + \\ \tilde{B} & - \\ A & - \end{pmatrix}$$

also, two-fold real spin degeneracy

Monolayer, J=1, Berry's phase π

McClure, Phys. Rev. 104, 666 (1956) Haldane, Phys.Rev.Lett. 61, 2015 (1988) Zheng, Ando Phys. Rev. B 65, 245420 (2002)

$$\varepsilon^{\pm} = \pm \sqrt{2n} \frac{v}{\lambda_B}$$

$$g \begin{pmatrix} 0 & (\pi^{+})^{J} \\ \pi^{J} & 0 \end{pmatrix} \psi = \varepsilon \psi$$

Bilayer, J=2, Berry's phase 2π $\mathcal{E}^{\pm} = \pm \hbar \omega_c \sqrt{n(n-1)}$

8-fold degenerate $\varepsilon = 0$ Landau level for electrons with degree of chirality J=2

McCann, VF - Phys. Rev. Lett. 96, 086805 (2006)

Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene

How robust is the degeneracy of $\mathcal{E}_0 = \mathcal{E}_1 = 0$ Landau level in bilayer graphene?

Direct inter-layer $A\widetilde{B}$ hops (warping term, Lifshitz trans.)

$$\mathcal{E}_0 = \mathcal{E}_1$$

McCann, VF - PRL 96, 086805 (2006)

Monolayer graphene

Band structure of bilayer graphene, 'chiral' electrons and Berry's phase 2π .

Effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

Interlayer asymmetry gap in bilayers.

Interlayer asymmetry gap in bilayer graphene

McCann, VF - PRL 96, 086805 (2006)

$$\hat{H}_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \xi v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix} + \begin{pmatrix} \xi \Delta & 0 \\ 0 & -\xi \Delta \end{pmatrix} + \begin{pmatrix} \xi \Delta & 0 \\ 0 & -\xi \Delta \end{pmatrix}$$

T. Ohta *et al* – Science 313, 951 ('06) (Rotenberg's group at Berkeley NL)

Interlayer asymmetry gap in bilayer graphene

McCann, VF - PRL 96, 086805 (2006) McCann - cond-mat/0608221

$$\hat{H}_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \xi v_{3} \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix} + \begin{pmatrix} \xi \Delta & 0 \\ 0 & -\xi \Delta \end{pmatrix} + \begin{pmatrix} \xi \Delta & 0 \\ 0 & -\xi \Delta \end{pmatrix}$$

Band mini-gap in bilayer graphene can be controlled electrically, so that a bilayer graphene transistor can be driven into a pinched-off (insulating) state.

Bilayer graphene

Band structure of bilayer graphene, 'chiral' electrons and Berry's phase 2π .

Effect of trigonal warping and the Lifshitz transition.

Landau levels and the quantum Hall effect in bilayer and monolayer graphene.

Interlayer asymmetry gap in bilayers.

 $\frac{2\pi e^2}{\hbar c}$ - < 5%

Why can one see graphene in an optical microscope?

Abergel, VF - PR B 75, 155430 (2007)

Graphene flakes are visible when the oxide layer in SiO₂/Si wafer acts as clearing optical film if

$$\frac{\lambda}{2} = \frac{\sqrt{\varepsilon_s - \sin^2 \alpha}}{N + \frac{1}{2}} s$$

visibility, $V = (R - R_0) / R_0$ 60 (a)Monolayer Bilayer 8.0 50 Thick oxidized Si slab Thick_300h Sinslab 0.6 [gab] -30 0.4 0.2 $\delta \alpha = 10^{\circ}$ 12 20 -0.2 Incident angle 1.2 (b) Bilayer Monolayer 0.8 SiC slab $s = 1 \mu m$ SiC slab 0.6 0.4 0.2 n $\delta \alpha = 10^{\circ}$ 20 -0.2 10 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0.4 0.6 0.8 1.2 1.4 1.6 1.8 1 Frequency - [eV]

Abergel, Russell, VF - Appl. Phys. Lett. 91, 063125 (2007)

Blake, Hill, Castro Neto, Novoselov, Jiang, Yang, Booth, Geim - Appl. Phys. Lett. 91, 063124 (2007)